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Abstract. Artifact systems are a novel paradigm for implementing ser-
vice oriented computing. Business artifacts include both data and process
descriptions at interface level thereby providing more sophisticated and
powerful service inter-operation capabilities. In this paper we put for-
ward a technique for the practical verification of business artifacts in the
context of multi-agent systems. We extend GSM, a modelling language
for artifact systems, to multi-agent systems and map it into a variant of
AC-MAS, a semantics for reasoning about artifact systems. We introduce
a symbolic model checker for verifying GSM-based multi-agent systems.
We evaluate the tool on a scenario from the service community.

1 Introduction

It has long been argued [1, 2] that agents are a fitting paradigm for service ori-
ented computing (SOC). Indeed, agent-based research has contributed a wealth
of techniques ranging from verification [3], protocols [4] and actual prototype im-
plementations [5]. SOC is currently a fast moving research area with significant
industrial involvement where highly scalable implementations play a key role.
Agent-based solutions can shape developments in SOC if they remain anchored
to emerging paradigms being put forward by the leading players in the area.

An increasingly popular paradigm being investigated in SOC is that of busi-
ness artifacts [6]. In this approach data, not only processes, play a key part in
the service description and implementations. While in traditional service com-
position processes are advertised at interface level, in the artifact approach both
processes and the data structures are given equal prominence. Guard-Stage-
Milestone (GSM) has recently been put forward [7] as a language for imple-
menting business artifacts. GSM is a declarative language that provides a de-
scription of stages, which are clusters of activity pertaining to some artifact
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data-structure. Stages are governed by guards controlling their activation and
milestones determining whether or not the stage goals have been reached. The
Guard-Stage-Milestone (GSM) approach to artifact systems [7] is particularly
suitable for large unstructured processes where users have the freedom to decide
what actions they perform and in what order. GSM is substantially influencing
the emerging Case Management Modelling Notation standard [8]. IBM Watson
developed Barcelona, a web-based application for modelling and execution of
GSM-based artifact systems [7]. Barcelona provides a fully model-driven envi-
ronment where a business operations model of an artifact system is created in a
web-based design editor component, and then directly used for deployment on
an execution engine.

While business artifacts are an attractive methodology for developing busi-
ness processes and GSM-based services are a rapidly evolving area of research,
they lack fully-fledged automatic methodologies for verification, orchestration
and choreography. In this paper we put forward a technique and an implementa-
tion for the practical verification of business artifacts from a multi-agent system
perspective. Specifically, we give a MAS-based formal model to GSM systems
and define the model checking problem on this model. We observe the problem is
undecidable in general, but note that as long as we can show the system operates
within bounds, the problem is decidable. Within these parameters the method-
ology we report is sound and complete. We have built an implementation to
verify automatically whether a GSM system, including a number of agents, sat-
isfies given temporal-epistemic specifications which may include quantification
over artifact instances. We test the technique against a noteworthy application
developed by IBM.

Several contributions have so far studied the verification problem from a the-
oretical perspective [9–12]. The results obtained identify fragments of decidable
settings either through restrictions on the specification language or the seman-
tics. While these results are certainly valuable, they provide no methodology for
the practical verification of GSM-based systems.

The work presented in this paper is based on [13] where GSMC, a model checker
for GSM, is introduced. However, the semantics of the underlying formalism
is one of plain transition systems and no support for agents in the system is
provided. With no agents being present, no support is offered for views and
windows, two key concepts that we fully support here. Additionally, as their
concern is focused purely on the artifact system, the specification language only
supports temporal logic, thereby making impossible to verify the information-
theoretic properties of agents throughout an exchange as we do here.

2 The Guard-Stage-Milestone Artifact Model

Artifact systems form a conceptual basis for modelling and implementing busi-
ness processes [6] and are given in terms of artifact types, which correspond to
classes of key business entities. Each type has a lifecycle model, which describes
the structure of the business process, and an information model, which gives an
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integrated view of the business data and the progress of the business process.
The artifact system interacts with its environment via events. Our formal model
of GSM is in line with [7].

GSM provides a declarative, hierarchical mechanism for specifying lifecycle
models. Figure 1 gives a portion of the lifecycle of a manufacturing process and
represents the core concepts: The boxes denote stages, which represent clusters of
activity designed to achieve milestones (◦) that represent operational objectives.
A guard (�) triggers activities in a stage when a certain condition is fulfilled.
Stages are organised hierarchically, where the roots are called top-level stages, the
leaves are called atomic stages and the non-leaf nodes are called composite stages.
Atomic stages contain tasks that perform automated actions. Stages can run in
parallel and own at least one milestone and one guard, while both milestones
and guards belong to exactly one stage. A stage becomes open when one of its
guards is fulfilled and closed when one of its milestones is achieved.

The example above gives the portion of the lifecycle of a manufacturing
process that handles the procuring of the required building parts and the or-
ganisation of the assembly. When a new order is received by the manufacturer,
the submitted event is sent to the artifact system, which triggers the guard of
the Preparing stage, and in turn starts with Collecting Parts. When this stage
is open, an employee of the manufacturer researches the required components
and sends the research event to the artifact system which in turn processes the
order of the required parts. When a part is received (event part received), the
Assembling of the available parts is triggered; when all parts are received and
collected, the Preparing stage can be closed. More details on this lifecycle will
be discussed in Section 6.

Formally, an artifact system holds a number of artifact instances ι of artifact
type AT = 〈R,Att, Lcyc〉, with R the name of the artifact type; Att the infor-
mation model as set of attributes; and Lcyc the lifecycle model. The information
model Att is partitioned into the set Attdata of data attributes to hold business



data and the set Attstatus of status attributes to capture the state of the lifecycle
model. Each stage (resp. milestone), has a Boolean status attribute in Attstatus,
which is true iff the stage is active (resp. the milestone has been achieved). Both
milestones and guards are controlled declaratively through sentries. A sentry of
an artifact instance ι is an expression χ(ι) in terms of incoming events and the
status of the instance.

The progress of the lifecycle is driven by incoming events containing payloads,
which are called applicable if the lifecycle is ready to consume them. An event
with a specific payload is called a typed external event.

Definition 1 (Event Type). An event type ET is a tuple ET = 〈E,AT,
A1, . . . , Al〉, where E is the name of the event type, AT is an artifact type, and
Ai ∈ Attdata, where Attdata is the set of data attributes of AT .

In addition, the opening of an atomic stage activates a task associated with the
stage. It either performs an automated system task, such as the creation of a new
instance, or corresponds to an operation outside the artifact system. Agents are
not directly present in the GSM model, but it is assumed that human or artificial
entities perform tasks and generate events for the system.

Definition 2 (GSM Model). A GSM model Γ is a set of n artifact types ATi
for 1 ≤ i ≤ n and m event types ETj for 1 ≤ j ≤ m.

Definition 3 (Snapshot of GSM Model). A pre-snapshot of Γ is an assign-
ment Σ that maps each attribute A ∈ Attι of each active artifact instance ι to
an element in the domain of A. A snapshot of Γ is a pre-snapshot that satis-
fies the following GSM invariants: all sub-stages of a closed stage are closed; all
milestones of an open stage are not achieved; at most one milestone of a stage
can be achieved at any time.

The operational semantics for GSM is based on the notion of a business step
(B-step). This is an atomic unit that corresponds to the effect of processing one
incoming event into the state of the artifact system. A B-step is computed by so
called PAC rules which are formed from the sentries of the GSM model and has
the form of a tuple (Σ, e,Σ′, Gen), where Σ, Σ′ are snapshots, e is an incoming
external event, and Gen is a set of outgoing external events generated by opening
atomic stages during the B-step. For more details on the computation of a B-step
please refer to [13].

3 Agent-Based GSM

Naturally, a GSM program only deals with the machinery related to the artifact
system but does not provide a description of the agents interacting with it. To
conduct the verification of agent-based GSM systems via model checking, we
define A-GSM as an extension of GSM with a set of external agents.

The artifact system and agents communicate using events, where the avail-
able events for an agent depend on the current state. The system progresses by
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non-deterministically selecting an agent, which sends an event and triggers the
execution of the AS. Selection of the event and execution of the AS are seen as
one step, a stable state has no pending events.

3.1 Agent Description

Here we outline how the agents are specified and interact with GSM, thereby
defining an A-GSM instance. The behaviour of an agent is determined by the
permitted access to the artifact system AS and by local decisions regarding
events to send. The former is determined by an agent’s role, while the latter are
defined for each agent individually.

The role is defined using the view ν for the visible attributes, the window ω
to select the visible instances, and the set of events ε that are accepted by AS.
While ν and ε are simple lists, ωi(ι) is a formula that is evaluated for a specific
artifact instance ι and an agent i. The instance is exposed to the agent only if
ωi(ι) evaluates to true. In addition to the role, the description of an agent also
contains a protocol ℘ to determine its behaviour depending on the visible state
of the AS, the agent’s unique ID, and its private variables.

The concepts of ν, ω and ε are powerful tools to define the aspects agents
can see and the ways they can interact with an artifact system. In Figure 2 the
lines correspond to artifact instances that were created during run-time and the
columns correspond to data attributes. ν defines a static view of the system, as it
hides for each agent a fixed set of attributes depending on his role. For example,
a Customer can only see that the state of an order moved from assembling to
shipping, while a Manufacturer sees more detail, e.g., on suppliers. In contrast,
ω gives a dynamic selection of the parts of the AS an agent can access in terms
of the state of artifact instances as it hides complete instances depending on
the current state. For instance, a Manufacturer may only see instances that
represent unfinished orders while the window of a Customer can use the ID to
restrict access to its own orders only.

Figure 3 gives an example of agent’s description file. Visible data attributes
are listed in the view field. The window field contains the formula for ωi(ι),
where $$ is a placeholder for the agent’s ID. The field instantiation lists all



role Customer {

view: CustomerId, ManufacturerId;

window: CustomerId == $$;

instantiation: CO;

transformation: condense_stage(CO, Preparing);

};

agent Diogenes {

role: Customer;

vars: bool cancelled = false;

protocol:

Create_CO: CustomerId == "Diogenes" -> cancelled = cancelled,

OnCancel: true -> cancelled = true;

};

Fig. 3. An agent definition file.

artifact types that agents of this role may instantiate; the corresponding in-
stantiation events are added to ε. To specify the status attributes and events
that are added to ν and ε, the field transformation holds a set of GSM op-
erators that allow to hide parts of the GSM model Γ . Valid commands here
are hide stage status("S") and hide milestone("m") to hide the status at-
tributes of stage S and milestone m respectively, and delegate sentry("s")

to remove events from εi if they are only used in sentry s. For convenience,
the macro operators condense stage("S") and eliminate stage("S") hide
all sub-stages or all information including guards and milestones respectively.

The private variables of an agent are defined in a list var of variable names
x with their type and initial value. The protocol lists entries of the form e :

γ -> µ for all events e the agent can send. Multiple entries for the same event
are treated as a disjunction. The condition γ is given in terms of data attributes
of the instance ι, the payload, and the private variables. It defines the protocol
function ℘i(ι, x), which gives the set of events e with their respective payloads
that can be sent in the current state. The protocol also gives an update function
µi(e, x), which computes new assignments for the local variables depending on
the selected event and the local state of the agent. By imposing conditions on
the payload of an event e, ℘ also allows the agent to assign a specific value to its
parameters, e.g., CustomerId is a parameter of Create CO.

To handle automated tasks, we define an AutoAgent, which handles service
calls and computations in the GSM model Γ and returns the result to the artifact
system in form of an event. The AutoAgent holds pending tasks in a buffer t, has
full access to Γ , and can send the return messages at any time, but is otherwise
handled like any other agent.



4 Artifact-Centric Multi-Agent Systems

To analyse interactions within a GSM-based artifact system, we use artifact-
centric multi-agent systems (AC-MAS) [10, 14], a semantics based on interpreted
systems [15, 16]. As a GSM system supports multiple active artifact instances,
we require a limited form of quantification. We therefore introduce IQ-CTLK,
an extended version of CTLK, which is frequently used to describe agents that
share a common environment. IQ-CTLK is a temporal-epistemic specification
language with quantification over artifact instances. We give a formal mapping
f : A-GSM → AC-MAS, such that f preserves satisfaction of formulas in the
specification language IQ-CTLK.

4.1 Formal Model

In an AC-MAS a set of agents A share an environment E constituted by the
artifact system, i.e., the underlying elements of the environment are evolving
artifacts of type R. The environment and an agent i ∈ A have a local state (LE
and Li respectively), where the agent can observe parts of the environment (i.e.,
some of the artifact instances in it). The local state of an agent thus comprises
private data for the agent and observable aspects of the artifact system. We
write lE(s) to represent the local state of the environment in the global state s,
and li(s) to represent the local state of agent i.

Definition 4 (Environment). The environment represents an artifact system
AS and is a tuple E = 〈LE , ActE , PE〉, where LE is the set of local states;
ActE is the set of local actions, which correspond to the interface of the AS; and
PE : LE → 2ActE is the environment’s protocol function, which enables actions
to be executed depending on the local state of the AS.

An agent is defined formally as:

Definition 5 (Agent). An agent in an AS is a tuple i = 〈Li, Acti, Pi〉, where
Li is the set of local states including the observable aspect of the AS; Acti is the
set of local actions corresponding to events that can be sent by the agent onto the
AS and including an action skip for performing a null action; and Pi : Li → 2Acti

is the local protocol function.

An agent i and the environment E communicate by synchronisation on ac-
tions, where ActE corresponds to events enabled by the artifact system, and
Acti ⊆ ActE ∪ {skip} is the set of local actions corresponding to events that
can be executed by the agent and the idle action skip. Given the relation be-
tween notions of action in interpreted systems and event in GSM, we use these
terms interchangeably in the rest of the paper. As in plain interpreted systems,
protocols are used to select the actions performed in a given state.

Following the terminology of [14] we define an AC-MAS as the composition
of the environment and a number of agents as follows:



Definition 6 (AC-MAS). Given an environment E and a set of agents A, an
artifact-centric multi-agent system is a tuple P = 〈S, I, τ〉, where S ⊆ LE ×
L1 × · · · × Ln is the set of reachable global states; I is the initial state; and τ :
S×Act→ 2S with Act = ActE×Act1×· · ·×Actn is the global transition relation.
The transition τ(s, α) is defined for α = 〈aE , a1, . . . , an〉 iff aE ∈ PE(lE(s)), and
∃0≤i<n : ai ∈ Pi(li(s)), aE = ai ∧ ∀j 6=i : aj = skip.

Intuitively, the conditions on the transition relation limit the communication
between agents and environment such that environment and agent agree on
the same action. The environment enables actions when the artifact system is
ready to consume them, while the agent i decides on the actions to execute
depending on a local strategy encoded in Pi. Only one agent can interact with
the environment at a time while the others are idle.

We write s → s′ iff there exists an action α, such that s′ ∈ τ(s, α), and call
s′ the successor of s. A run r from s is an infinite sequence s0 → s1 → . . . with
s0 = s. We write r[i] for the i-th state in the run and rs for the set of all runs
starting from s. A state s′ is reachable from s if there is a run from s that contains
s′. In line with the semantics of epistemic logic [16], we say that the states s and
s′ are epistemically indistinguishable for agent i, or ∼i, iff li(s) = li(s

′).

4.2 The Logic IQ-CTLK

We are interested in specifying temporal-epistemic properties of agents interact-
ing with the artifact system, as well as the system itself. Since GSM supports
the dynamic creation of unnamed artifacts, the properties need to be indepen-
dent of the actual number or possible IDs of artifact instances in the system. To
specify such properties we here define a temporal-epistemic logic that supports
quantification over the artifact instances. We call the logic IQ-CTLK, for In-
stance Quantified CTLK, where CTLK is the usual epistemic logic on branching
time. It is a subset of FO-CTLK where quantification can only be over artifact
instances but not data. The syntax is defined in BNF notation as follows:

ϕ :: = p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ)

| Kiϕ | ∀x : R ϕ | ∃x : R ϕ

where R is the name of an artifact type and p is an atomic proposition over the
agents’ private data and the attributes of active instances that are specified in
terms of instance variables bound by the quantification operators. The quantified
instance variables range over the active instances of a given artifact type R in
the state where the quantification is evaluated and must be bound. We write
R(s) for the set of instances of type R in s.

The defined operators are read as follows: EXϕ means there is a next state in
which ϕ holds; EGϕ conveys there is a run where ϕ holds in every state; E(ϕUψ)
denotes there is a run in which ϕ holds until ψ holds; Kiϕ: expresses agent i
knows ϕ; ∀x : R represents for all instances of type R; and ∃x : R says there
is an instance of type R. The remaining CTL operators can be constructed by



combination of the ones given above in the standard way. For example, AG ∀x :
OrderAF Kix.sent encodes the property expressing that in any reachable state,
agent i will eventually know that the attribute sent is set to true for every active
instance of type Order.

We inductively define the semantics of IQ-CTLK over an AC-MAS P as
follows. A formula ϕ is true in a state s of P, written (P, s) |= ϕ, iff:

(P, s) |= p iff p ∈ s
(P, s) |= ¬ϕ iff it is not the case that(P, s) |= ϕ

(P, s) |= ϕ1 ∨ ϕ2 iff (P, s) |= ϕ1 or (P, s) |= ϕ2

(P, s) |= EXϕ iff ∃s′ : s→ s′ and (P, s′) |= ϕ

(P, s) |= EGϕ iff ∃r∈rs : ∀i≥0 : (P, r[i]) |= ϕ

(P, s) |= E(ϕUψ) iff ∃r∈rs : ∃k≥0 : (P, r[k]) |= ψ and

∀j<k(P, r[j]) |= ϕ

(P, s) |= Kiϕ iff ∀s′ ∈ S : s ∼i s′ implies (P, s′) |= ϕ

(P, s) |= ∀x : R ϕ iff ∀u ∈ R(s) : (P, s) |= ϕ[u/x]

(P, s) |= ∃x : R ϕ iff ∃u ∈ R(s) : (P, s) |= ϕ[u/x]

The above semantics provides an information-theoretic definition of knowl-
edge, i.e., Ki expresses what agent i can infer from the information available to
him. An agent knows that ϕ is true in state s if ϕ is true in all states s′, which
the agent cannot distinguish from s. Finally, given an AC-MAS model P and an
IQ-CTLK specification ϕ, the model checking problem concerns the decision as
to whether the formula ϕ holds at the initial state of P.

Note that the above semantics provides an information-theoretic definition
of knowledge, i.e., Ki expresses what agent i can infer from the information
available to him. An agent knows that ϕ is true in state s if ϕ is true in all states
s′, which the agent cannot distinguish from s. This means the agent does not
need to build a knowledge base, from which he can deduce new information, since
he already knows everything he could possibly deduce in a certain situation.

Given an AC-MAS model P and an IQ-CTLK specification ϕ, the model
checking problem concerns establishing whether the formula ϕ holds at the initial
state of P, written P |= ϕ. In the context of our formal model, an AC-MAS P
satisfies ϕ if (P, I) |= ϕ. Intuitively this means that the model P satisfies ϕ if ϕ
is true in the initial state of P.

This was shown to be undecidable on similar semantic structures and more
expressive logics [11]. In the following sections, we will achieve decidability by
bounding the data and the number of instances present. We will also show the
implementation of the technique to demonstrate its feasibility.

4.3 Mapping to Agent-Based GSM to AC-MAS

We now establish the formal mapping f : A-GSM → AC-MAS. Note that the
semantics for the local states and protocols of agents in A-GSM are given



in terms of AC-MAS. We define the map by constructing the environment
〈LE , ActE , PE〉 from the GSM model Γ of a given artifact system and create
an agent 〈L0, Act0, P0〉 for the AutoAgent, and 〈Li, Acti, Pi〉 with 1 ≤ i ≤ n
for each external A-GSM agent. We identify a GSM event e with an AC-MAS
action a and will omit the conversion in the following for ease of presentation.
The sets of actions ActE , Act0, and Acti are thus directly defined by the events
the AS provides and the permissions of the agents.

Global state: To construct a global AC-MAS state 〈lE , l0, . . . , ln〉 ∈ S from an
snapshot Σ, an AutoAgent buffer t and the local agent states xi, we identify lE
with Σ and l0 with t. The local states l1, . . . , ln of the external agent comprise
the state of the private variables xi and the projections Σ|i of the environment
snapshot such that:

Σ|i = {ι | ∃ι′∈Σ : ωi(ι
′) ∧ ι = ι′|νi}

where ι′|νi is the restriction of the artifact instance ι′ to the variables in νi
(variables not in νi are replaced by ⊥).

The initial state I is the empty state without any artifact instances in Σ or
pending tasks in l0. Private variables are initialised to their initial value.

Protocol: By construction, GSM executes only applicable events and blocks all
others. Artifact instantiation events are always permitted. This is reflected in
the environment protocol PE :

PE(Σ) = {a | ∃ι∈Σ : (χ ∈ X(Γ ) ∧ χ(ι, a)) ∨ a ∈ inst}

where X(Γ ) is the set of all sentries in the milestones and guards of Γ and
χ(ι, a) is the evaluation of a sentry χ with respect to the action a and status
attributes Attstatus ∈ ι. We write inst for the set of artifact instantiation events.
The AutoAgent stores the set of pending tasks in its buffer t and sends them
at a later point to Γ . Thus, the protocol simply selects any pending task from
its buffer by using the expression P0(t) = {a|a ∈ t}. The protocol of an agent
i gives the set of actions that are available in visible instances of its local state
and satisfy its local protocol:

Pi(li) = {a | ∃ι∈li : a ∈ εi(ι) ∩ ℘i(ι, xi)}

These components suffice to instantiate a full AC-MAS from Definition 6.
With these details in place we conclude the formal map from A-GSM to AC-
MAS. In the remainder of the paper we present an implementation of a model
checker for IQ-CTLK on AC-MAS.

5 Implementation

To perform AC-MAS model checking, we have extended GSMC [13] model check-
ing. The new version, numbered 0.8.53, is written in C++ and uses the CUDD

3 The pre-compiled binaries of the tool can be downloaded from http://www.doc.ic.

ac.uk/~pg809/gsmc/0.8.5.tar.gz
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library [17] for the back-end symbolic computations. GSMC builds the model and
the transition relation and performs a symbolic state space exploration based
on BDDs. The GSM model and the specification of the AutoAgent are directly
loaded from the Barcelona XML input file; agent definitions are given in form of
a configuration file as shown in Figure 3. The internal architecture of the model
checker is illustrated in Figure 4.

To obtain finite state models, we introduce a bound on the number of in-
stances that can be generated and use abstraction to create finite data; an over-
flow flag indicates if the bound was reached during a run. We allocate BDD
variables for the states of the agents and the maximum number of artifact in-
stances present in a run. The basic layout of the BDD data structure is shown
in Figure 5. We introduce an Overflow flag that indicates if the number of in-
stances or data values were exceeded in a run. We pay special attention to this
case because some of the results of the check may be unsound and require a
re-check with higher bounds. We also capture the Event ID and Payload of the
next action a that is to be executed. The artifact instances correspond to Σ.
The actual number and size of these fields depend on the artifact type and the
bounds that are fixed at the start of the verification. The special flag Created in
each artifact instance indicates whether it was instantiated in the corresponding
run. The task buffer fields t with a Pending flag and the corresponding payload
belong conceptually to the AutoAgent, but are stored in the artifact state space
for technical reasons. Private variables of agents complete the data structure.

Any IQ-CTLK formula ϕ to be verified is first rewritten by replacing the
quantification operators with formulas that range over the actual instances.
However, because artifact instances are created dynamically at run-time, the
number of active instances is not known a priori and needs to be considered in
the formula. We use the expression created(ι) to check if an instance was created
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(the Created flag is set) and rewrite the quantified formulas as follows:

∀x : ϕ⇒
∧
ι∈Γ

: created(ι)→ ϕ

∃x : ϕ⇒
∨
ι∈Γ

: created(ι) ∧ ϕ

Note that, for any existential formula to be valid, at least one of the artifact
instances needs to be active; this is not the case in the initial state because
no artifact instance has been created yet. Quantifiers can be arbitrarily nested
and are resolved recursively. Once the details above are considered, GSMC fol-
lows existing methodologies to perform the verification of temporal-epistemic
formulas [18].

5.1 Limitations

The bound in the number of instances restricts the possible behaviour of the
system, while data abstraction leads to an over approximation. This may lead to
loss of soundness or completeness when the limit of artifact instances is reached.
The exact outcome depends on the type of the property considered. A violation of
a universal property, for instance, does denote a violation on the full unbounded
model even if the bound was exceeded during the computation. If an existential
property is not satisfied, no conclusion can be drawn regarding the full model
in general. These are limitations in the technique at present but, as we show in
the following, interesting scenarios can still be analysed.

6 Experimental Results

We evaluated GSMC on the Order-to-Cash scenario, a simplified version of the
IBM back-end order management application supplied by IBM Research [7]. In
this scenario a manufacturer schedules the assembly of a product based on a
confirmed purchase order from a customer. Typically, a product requires several



Table 1. Properties of the Order-To-Cash case study.

AG ∀x : CO((x.BId = Dio ∧ ¬x.Cancelled) → KDio EF x.Received) (1)

EF ∃x : CO(x.BId 6= Dio ∧KDio x.Received) (2)

AG ∀x : CO((x.BId = Dio ∧ x.Ready) → KDiox.Parts = 3) (3)

EF ∃x : CO(x.BId = Dio ∧ x.Cancelled ∧ ¬Dio.cancelled) (4)

components that are sourced from different suppliers. After all components have
been delivered the product is assembled and shipped to the customer.

The GSM program is specified in the form of a single-artifact Barcelona

schema consisting of 9 stages and 11 milestones. To verify the model we per-
formed small modifications to abstract from concrete products and created three
agent roles for the above scenario: 1) a Customer who creates an artifact instance
that represents the order and can only see instances they created; 2) a Manu-
facturer who fulfils the order and can see only uncompleted instances of orders
sent to him by a customer; and 3) a Carrier who ships the finished product to
the customer, and who can see only instances of orders that are to be shipped
via them.

Figure 1 gives the lifecycle of the Preparing stage. It is controlled solely by
the manufacturer, who, upon receiving the order, launches a research process to
identify suitable suppliers and orders the required components. The assembling
process can begin when the first component is received and remains active until
all the components are collected. This is modelled by introducing a counter; the
process is considered complete when 3 components have arrived.

Table 1 reports the properties we checked for different numbers of agents and
artifact instances, where Dio is a customer agent (Diogenes) and CO stands for
the CustomerOrder artifact type. Property (1) represents that Diogenes knows
that, unless he cancels an order, the product can always be received in all of
his orders. (i.e., that there is no deadlock in processing an order: An order can
always be delivered or is cancelled). To check that the order is private to the
customer, property (2) expresses that Diogenes may know a product is received
for an order with different owner. Property (3) encodes the ability of an agent
to deduce information it can not directly observe by checking if Diogenes always
knows there are 3 Parts collected in all of his orders when the milestone Ready is
achieved. Property (4) implies that an agent other than Diogenes can cancel an
order that belongs to Diogenes. This is done by using a private variable, which
is set true only if Diogenes executed the Cancelled event.

We ran the tests on a 64-bit Fedora 17 Linux machine with a 2.10GHz Intel
Core i7 processor and 4GB RAM and measured the number of reachable states,
memory used, and CPU time required. The model checker evaluated the proper-
ties (1) and (3) to be true and the properties (2) and (4) to be false in the model.



Table 2. Reachable states, memory and time usage for different numbers of artifact
instances ι and agents.

3 agents 15 agents
#ι #states MB s #states MB s

1 1.17 e2 27 0.1 2.92 e3 31 0.2

2 3.71 e3 52 0.7 4.16 e6 70 4.9

3 1.16 e5 64 5.9 5.82 e9 84 65.5

4 3.67 e6 96 42.1 8.01 e12 222 360.2

5 1.18 e8 195 176.7 1.09 e16 539 1419.6

This is in line with our intuition of the model and shows that the GSM program
of Order-to-Cash application is indeed correct with respect to the requirements.

Table 2 reports the performance for 3 agents (one for each role) and 15
agents respectively (6 customers, 5 manufacturers, and 4 carriers). We see that
the run-time grows exponentially with the number of artifact instances, while the
number of agents influences the resource usage only moderately. This is because
additional agents add fewer states than additional artifact instances. The results
show that the tool has the ability to effectively handle large state spaces, which
is required to model realistic artifact systems with complex agent interactions.

7 Conclusions

In this paper we put forward a technique for the practical verification of GSM-
based MAS. The approach consists of defining a formal map from the declarative,
executable language GSM to an extension of previously studied artifact-centric
MAS, a semantics for reasoning about MAS in a quantified setting of the ar-
tifact system environment. We reported on a fully-fledged model checker that
implements this formal map and supports temporal-epistemic specifications in
which quantification is allowed over artifact instances. The experimental results
obtained against the Order-to-Cash application led us to conclude that the prac-
tical verification of reasonably sophisticated GSM-based MAS is feasible and
scalable in valuable scenarios in business processes and services. However, GSM
and Barcelona are still a topic of active research and development and sophisti-
cated and stable models are hard to come by.

We plan to extend the work reported here in a number of ways, including the
support of limited quantification over data. Theoretical studies [10, 14] point to
high-undecidability in settings where unbounded data is present. For this reason
we will work on existential abstraction and data abstraction to achieve a transfer
of the verification outcome from abstract to concrete models. In particular we
work on 3 valued abstraction [19], an abstraction technique that supports the
detection of insufficient information in the abstraction.
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