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Abstract. We define and illustrate the expressiveness of the AB̄L
fragment of the Epistemic Halpern–Shoham Logic as a specification
language for multi-agent systems. We consider the model check-
ing problem for systems against specifications given in the logic.
We show its decidability by means of a novel technique that may
be reused in other contexts for showing decidability of other logics
based on intervals.

1 Introduction

Multi-agent systems are typically specified by means of formal lan-
guages expressing various aspects of their behaviour. One key for-
malism often used is epistemic logic, or logic for knowledge. This
is a well-understood modal logic aimed at representing what agents
know in the system and how their knowledge evolves over time [6].
A key attractiveness of epistemic logic is that a number of tool-
kits [7, 13, 11], based on model checking [4], support the verifica-
tion of systems against temporal-epistemic specifications. In these
approaches time is assumed to be discrete, either branching or linear,
and formulas are evaluated at states. Other notions of time are how-
ever of interest and have recently been thoroughly explored. Notably,
in interval temporal logic [17, 9] propositions are not evaluated at in-
stants but at intervals of time. By doing so one can express properties
of continuous processes; this is useful in several AI areas including
planning [8, 19].

It is therefore natural and compelling to investigate extensions of
interval temporal logic for the specification of multi-agent systems.
An attempt towards this aim was made in [12] where a temporal-
epistemic language, called epistemic Halpern-Shoham logic (EHS),
based on the interval logic proposed by Halpern and Shoham [9] was
introduced. In the paper the authors put forward a notion of knowl-
edge interpreted on intervals, defined the resulting model checking
problem and analysed its complexity for some limited fragments.
This is shown to be PSPACE-hard for a basic epistemic logic with
no temporal operators. It is also shown that model checking inter-
preted systems against specifications combining epistemic operators
with the BDE-fragment of the Halpern and Shoham logic (HS) is
PSPACE-complete. The BDE-fragment is defined by considering
only the modalities for B (“begins”), D (“during”), and E (“ends”).

While this work introduces the model checking problem in the
context of multi-agent systems against an epistemic language, only
a handful of variants are considered. 212 fragments of HS exist; the
majority of them have been studied over the years from a satisfiability
point of view [3, 5]. While many of them are undecidable, some very
expressive decidable fragments exist.
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It is therefore natural to identify fragments of EHS which enjoy
a decidable model checking problem. We isolate one such fragment
in this paper. We begin in Section 2 by defining the semantics of in-
terpreted systems defined on intervals and the syntax of the AB̄L
fragment of EHS (that consists of the modalities “after”, “begun by”
and “later”), which we call EHSAB̄L. We illustrate its expressive-
ness in Section 3 by discussing an interval-based variant of the well-
known bit transmission problem. We turn to the the model checking
problem for EHSAB̄L in Section 4 where we show its decidability.
The methodology we put forward is novel and includes the introduc-
tion of a technique, similar in spirit to the pumping lemma in com-
putability theory, that enables us to check infinitely many intervals
by analysing a finite number of them. We discuss the limitations of
the technique in Section 5 and provide some remarks as to how these
may be overcome.

Related work. The only paper we are aware of investigating the
model checking problem for interval temporal logic with or without
epistemic operator is [12]. The BDE fragment is shown to have a
decidable model checking problem, but in that logic one can only
refer to intervals with the same length or shorter, thereby greatly lim-
iting the expressivity of any specification. Since the number of such
intervals is finite, decidability is immediate. This is not the case for
the fragment that we analyse here which includes the “After” modal-
ity A, that can refer to an infinite number of intervals.

2 The epistemic-interval logic EHSAB̄L

In this section we define a variant of interpreted systems based on in-
tervals and introduce the model checking problem for an expressive
fragment of the epistemic-interval logic EHS. We follow the presen-
tation given in [12], although we simplify it by removing the notion
of “generalised Kripke structure” discussed there.

Definition 1. Given a set of agents A = {0, 1, . . . ,m}, an inter-
preted system is a tuple IS = ({Li}i∈A, {l0i }i∈A, {ACTi}i∈A,
{Pi}i∈A, {ti}i∈A, L), where:

• Li is a finite set of local states for agent i;
• l0i ∈ Li is the initial state for agent i;
• ACTi is a finite set of local actions available to agent i,
• Pi : Li → 2ACTi is a local protocol function for agent i, return-

ing the set of possible local actions in a given local state;
• ti ⊆ Li×ACT0×· · ·×ACTm×Li is a local transition relation

returning the next local state when a joint action is performed by
all agents and the environment on a given local states;

• L : S2 → 2Var is a labelling function, where S = L0 × L1 ×
· · · × Lm is the set of possible global states for the system and
Var is a set of propositional variables.
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Figure 1. Three Allen’s relations. t+ denotes the transitive closure of t.

Sometimes we refer to agent 0 as the environment e in the system.
By composing ti for all agents and the environment we obtain the

global transition relation t. We now define models of an IS on sets of
paths from is initial state.

Definition 2. Given a set of agents A = {0, 1, . . . ,m} and
an interpreted system IS = ({Li}i∈A, {l0i }i∈A, {ACTi}i∈A,
{Pi}i∈A, {ti}i∈A, L), an interval-based interpreted system (IBIS),
or simply the model of the IS, is a tuple M = (S, s0, t, L), where

• The set S = L0 × L1 × · · · × Lm is the set of possible global
states;

• The state s0 = (l00, . . . , l
0
m) is the initial state of the system;

• t ⊆ S2 is the global transition relation;
• L is the labelling function.

Given an IBIS M , an interval in M is a finite path on M , i.e., a
sequence of states I = s1s2 . . . sn such that t(si, si+1), 1 ≤ i ≤
(n − 1). A point interval is an interval that consists of exactly one
state. Given an interval I = s1s2 . . . sn, by first(I) we denote the
first state of I , namely s1, by last(I) we denote the last state of I ,
namely sn, and by pi(I) we denote whether I is a point interval.

Notice that the above definition is different than the one in [12],
where the set of states of an IBIS is the result of applying the standard
unravelling procedure to the set of the global states and the global
transition relation. Since here we only consider forward modalities
(i.e., formulas can only refer to the future), we obtain exactly the
same semantics of the AB̄L fragment of the epistemic Halpern-
Shoham logic defined in [12].

For a global state s = (l0, l1, . . . , lm) we denote by li(s) the local
state li ∈ Li of agent i ∈ A in s.

We now define the syntax of the specification language we focus
on in this paper. The temporal operators we consider represent some
of the relations between intervals as originally defined by Allen [1].
These are depicted in Figure 1: RA represents “After” or “meets”;
RB̄ stands for “Begun by” or “started by”; and RL encodes “Later”.

Definition 3. The syntax of logic EHSAB̄L is defined by the follow-
ing BNF.

ϕ ::= p | pi | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CGϕ | 〈A〉ϕ | 〈B̄〉ϕ | 〈L〉ϕ

where p ∈ Var is a propositional variable, i ∈ A is an agent, and
G ⊆ A is a set of agents.

The logic EHSAB̄L is a fragment of the epistemic-interval logic
EHS introduced and studied in [12] as the proposition pi (point
interval) can be seen as an abbreviation of ¬〈B〉>. We write [X]ϕ
for ¬〈X〉¬ϕ and we use Boolean connectives ∨, ⇒, ⇔ and con-
stants >,⊥ in the standard way.

We say that two global states g, g′ are such that g ∼i g′ iff
li(g) = li(g

′), i.e., two global states are epistemically equivalent for
agent i if its local states are the same in the two global states [6]. Fol-
lowing [12] we say that two intervals I = s1, . . . sk, I

′ = s′1, . . . s
′
l

are such that I ∼i I ′ iff k = l and for all j ≤ k, li(sj) = li(s
′
j).

In other words agent i cannot distinguish between the corresponding
states in the intervals I, I ′. We extend this definition to the com-
mon knowledge case by considering for any group of agents G,
∼G= (

⋃
i∈G ∼i)

∗, where ∗ denotes the transitive closure.
We can now define when a formula is satisfied in an interval.

Definition 4 (Satisfaction). Given an EHSAB̄L formula ϕ, an IBIS
M , and an interval I , we inductively define whether ϕ holds in the
interval I , denoted M, I |= ϕ, as follows:

1. For all p ∈ Var , we have M, I |= p iff p ∈ L(first(I), last(I)).
2. M, I |= pi iff I is a point interval.
3. M, I |= ¬ϕ iff it is not the case that M, I |= ϕ.
4. M, I |= ϕ1 ∧ ϕ2 iff M, I |= ϕ1 and M, I |= ϕ2.
5. M, I |= Kiϕ, where i ∈ A, iff for all I ′ ∼i I we have M, I ′ |=
ϕ.

6. M, I |= CGϕ, whereG ⊆ A, iff for all I ′ ∼G I we haveM, I ′ |=
ϕ.

7. M, I |= 〈X〉ϕ iff there exists an interval I ′ such that IRXI ′ and
M, I ′ |= ϕ, where RX is an Allen’s relation as above.

In this paper we are interested in analysing the model checking
problem for the logic above.

Definition 5. Given an EHSAB̄L formula ϕ, an interpreted system
IS defining the model M , and an interval I , the model checking
problem for L amounts to checking whether or not M, I |= ϕ.

It is instructive to identify expressive fragments for which verifi-
cation is decidable. As we see later the logic EHSAB̄L is one of such
fragments. Before showing this, we turn to analyse the expressive-
ness of the logic EHSAB̄L by means of a well-known scenario in AI
and epistemic logic. It is worth mentioning that the knowledge-free
fragment of EHSAB̄L is known to have a satisfiability problem in
EXPTIME over the naturals [16].

3 An EHSAB̄L-based analysis of the bit
transmission protocol

The bit transmission protocol (BTP) is a well-known communica-
tion scenario that has been analysed by means of temporal-epistemic
specifications [6]. In the BTP two agents, a “Sender” S and a “Re-
ceiver”R, communicate over a faulty channel, which may drop mes-
sages but may not flip them. We here present a revised version of the
protocol where the sender needs to compute what message to send
before initiating communication; we refer to the existing literature
for more details [6]. As in the original protocol we here consider
only one bit of information, either 0 or 1; the protocol can be gener-
alised with no difficulty. As usual we assume that S keeps sending
the bit until he gets an acknowledgement from R who, in turn, re-
mains silent until he gets the bit; from then on R keeps sending an
acknowledgement back to S. A CTLK specification often consid-
ered when analysing the BTP is AG(reckack → KS(KR(bit =
0) ∨KR(bit = 1))); in other words, when an ack has been received
by the sender, the sender knows that the receiver knows the value of
the bit. While the specification has been shown to be useful, discrete
notions of time do not enable us to describe sequences of contiguous



or overlapping epistemic states of affairs in the runs. Intuitively, in
the absence of any fairness constraint, a property we would like to
ensure is that runs of the protocol consist of potentially unbounded
intervals in which S is first computing the value to send, then S is
waiting for the acknowledgement, and finally enters an unbounded
interval in which S knows that R knows the value of the bit. Dif-
ferently from the CTL-based specification the emphasis here is on
specifying what holds at sequences of intervals which may be re-
lated among them following the Allen relations. In what follows we
show that the EHSAB̄L logic can provide an expressive specification
for the variant of the BTP here described.

To do this we first model the revised BTP in the formalism of
the previous section. The sender is modelled by considering lo-
cals states of the form (status, bit) ∈ LS , where status ∈
{computing, sending, acked} and bit ∈ {0, 1, λ}. We take S’s
initial state to be ls = (computing, λ). The actions for S consist of
ACTS = {compute, send0, send1, ε}, where compute represents
the action of computing the bit to be sent and ε encodes a null action.

The receiver agent R is modelled by taking LR = {λ, 0, 1}. R’s
initial state is lr = λ, when R is waiting for the bit to be received.
R’s actions are ACTR = {ε, sendack} where ε is the null action.

We take the environment’s local states to consist of a single state
le = λ from which it may non-deterministically perform the actions
→,←,↔ and ε, representing, respectively, messages being delivered
from S to R, from R to S, in both directions, and in no direction.

The protocols mapping states to possible actions can be formalised
by following the description above. The transition relation tS for S
is such that a loop may be formed on the local state (computing, λ)
by means of any joint action that includes the local action compute.
Under the same conditions the relation tS also includes a non-
deterministic transition to the states (sending, 0), (sending, 1),
from which S starts sending the bit. S remains in one of these states
until he receives an acknowledgement from R, triggered by either
the joint actions (sendbit, sendack,←) or (sendbit, sendack,↔).
From that point onward S moves either to the local state (acked, 0),
or to (acked, 1) depending on the value of the bit and loops on that
state for the rest of the run.

The transitions for R can similarly be formalised. The relation tR
includes a loop on the initial state λ where R performs the action
ε. From there R makes a transition either to the state 0 or 1 follow-
ing the joint actions (sendbit, ε,→) and (sendbit, ε,↔). From that
state R can only loop in combination with the local action sendack.

From the description of the IS for the BTP above we can gen-
erate the IBIS M . We consider a labelling function L for M such
that p ∈ L(s, s′), where s = (λ, (statusS , bitS), bitR), s′ =
(λ, (status′S , bit

′
S), bit′R) iff:

• p = sending and status′S 6= acked,
• p = computingbit′

S
, statusS = status′S = computing and

bit′S 6= λ, or
• p = bRbitR and bitR 6= λ.

We are interested in verifying the following property: In any inter-
val beginning with an interval in which S is computing the bit, if S
stops sending the bit, having started at some point after its computa-
tion began, then in all intervals from that point onwards S knows that
R knows the value of the bit. This represents the natural flow of in-
tervals for the protocol culminating in an interval where an epistemic
postcondition holds.

Let [G]ϕ = ϕ∧[B̄]ϕ∧[A]ϕ∧[L]ϕ be an operator that [G]ϕ holds
if ϕ holds in all the reachable intervals. The specification above can

be expressed by means of the following EHSAB̄L formula.∧
b∈{0,1}

[G](computingb → [B̄](¬sending ⇒ [A]KSKRbit
R
b ))

It can be checked that the property holds inM . Note that this spec-
ification is not expressible in any other fragment of EHS for which
the model checking problem is known to be decidable; in particular,
it is not expressible in the BDE fragment analysed in [12].

In the next section we will show that the model checking problem
against EHSAB̄L specifications is decidable.

4 Decidability of the model checking problem
To begin, observe that the modality 〈L〉 can be expressed by using
〈A〉; indeed, for any ϕ, 〈L〉ϕ ≡ 〈A〉(¬pi ∧ 〈A〉ϕ). Given this, in
what follows we assume that the formulas do not contain 〈L〉 opera-
tors.

Let KM be the set of the epistemic modalities, i.e., KM =
{Ki | 1 ≤ i ≤ m} ∪ {CG | G ⊆ {1, . . . ,m}}, and SM =

KM ∪ {〈A〉, 〈B̄〉} be the set of all the operators in EHSAB̄L. For
convenience, for each X ∈ SM we define a relation RX as follows:
R〈A〉 = RA, R〈B̄〉 = RB̄ , RKi =∼i and RCG =∼G.

Given a formula ϕ, a top-level subformula of ϕ is a modal
subformula of ϕ which is not in the scope of any modality. For
example, the top level subformulas of 〈A〉K1p ∧ C{1}〈B̄〉q are
〈A〉K1p and C{1}〈B̄〉q. Assume an IBIS M such that |SIS | = n
states. Let fM (ϕ) be defined recursively as follows: fM (ϕ) =

2n22f
M (ϕ1) . . . 2f

M (ϕk), where X1ϕ1 . . .Xkϕk are the top-level
subformulas of ϕ with Xi ∈ SM, i = 1, . . . , k. If ϕ contains no
modalities, then f(ϕ) = n2. Clearly f is non-elementary in the size
of ϕ.

A key consideration in our decidability proof for the model check-
ing problem for EHSAB̄L is that, as we will see later, the problem
can be solved by considering only a bounded number of intervals. To
show this, we give a bounded satisfaction definition and show that
this is equivalent to (unbounded) satisfaction of Definition 4.

Definition 6 (Bounded satisfaction). Given an EHSAB̄L formula
ϕ, an IBIS M , and an interval I , we inductively define whether
M, I |=B ϕ, as follows:

1. For all p ∈ Var , we have M, I |=B p iff p ∈ L(I).
2. M, I |= pi iff I is a point interval.
3. M, I |=B ¬ϕ iff it is not the case that M, I |=B ϕ.
4. M, I |=B ϕ1 ∧ ϕ2 iff M, I |=B ϕ1 and M, I |=B ϕ2.
5. M, I |=B Kiϕ, where i ∈ A, iff for all I ′ ∼i I we have
M, I ′ |=B ϕ.

6. M, I |=B CGϕ, where G ⊆ A, iff for all I ′ ∼G I we have
M, I ′ |=B ϕ.

7. M, I |=B 〈X〉ϕ iff there exists an interval I ′ such that |I ′| ≤
|I|+ fM (ϕ), IRXI ′ and M, I ′ |=B ϕ, where X is A or B̄.

It follows from the above that to determine the truth value of a
formula in a given interval of a system w.r.t. the bounded semantics,
one only needs to consider a bounded number of intervals. This is
because there are only finitely many intervals of the same size as I
(cases 5, and 6) and finitely many intervals whose size is less than or
equal to a given bound which depends on the formula to be checked
(case 7). This leads to the following.

Theorem 7. The model checking problem for EHSAB̄L on bounded
semantics is decidable.



Algorithm 1 The model checking procedure for the EHSAB̄L logic.
1: procedure VERIFY(M , I , ϕ)
2: if ϕ = p then return p ∈ L(first(I), last(I))

3: if ϕ = pi then return pi(I)

4: if ϕ = ¬ϕ′ then return NOT(VERIFY(M , I , ϕ′))
5: if ϕ = ϕ1 ∧ ϕ2 then return AND(VERIFY(M , I , ϕ1), VER-

IFY(M , I , ϕ2))
6: if ϕ = Kiϕ

′ where i ∈ A then
7: for all J s.t. I ∼i J do
8: if NOT(VERIFY(M , J , ϕ′)) then return false
9: return true

10: if ϕ = CGϕ
′ where G ⊆ A then

11: for all J s.t. I ∼G J do
12: if NOT(VERIFY(M , J , ϕ′)) then return false
13: return true
14: if ϕ = Xϕ′ where X ∈ {〈A〉, 〈B̄〉} then
15: for all J s.t. IRXJ and |J | ≤ f(ϕ) + |I| do
16: if VERIFY(M , J , ϕ′) then return true
17: return false

Proof of Theorem 7. The procedure VERIFY() (Algorithm 1) solves
the model checking problem. Firstly, note that the procedure always
stops. In case of the knowledge modalities, VERIFY(M, I, ϕ) calls
itself recursively at most |S||I| times on the relevant subformula.
The bound |S||I| corresponds to the number of intervals of length
|I|. In case of the temporal modalities, the algorithm calls itself at
most |S||I|+f

M (ϕ) times on the nested subformula. Since f cannot
be bounded elementarily in the size of ϕ, the whole procedure is
non-elementary.

To see that the procedure solves the model checking problem, ob-
serve that the exit calls correspond to the definition of the bounded
semantics.

The main technical result of this section is the equivalence be-
tween the bounded and the unbounded semantics. To achieve this we
introduce the notion of modal context tree and some results pertain-
ing to those.

Definition 8 (Modal Context Tree). Given an IBIS M , the modal
context tree of an interval I w.r.t. an EHSAB̄L formula ϕ, denoted by
MCTϕI , is the unranked tree with labelled nodes and edges defined
recursively as follows.

• The root of the tree is labelled by I .
• For each top-level subformula Xψ of ϕ and each interval I ′ such

that IRXI ′, the root of MCTϕI has an X-successor MCTψI′ (X
indicates the labelling of an edge).

In other words, MCTϕI contains all the intervals that need to be
considered to determine the value of ϕ in I . Modal context trees are
usually infinite. Below we present their finite counterparts.

Definition 9 (Restricted Modal Context Tree). Given an IBIS
M , the restricted modal context tree of an interval I w.r.t. an
EHSAB̄L formula ϕ, denoted by RMCTϕI , is the unranked tree
obtained from MCTϕI first by changing each node label from I to
first(I), last(I), pi(I) and then by applying recursively the follow-
ing operation in the bottom-up manner:

• If w is a node connected to a subtree T by an edge labelled by
some X , then remove all the other subtrees T ′ that are identical
to T and such that w is connected to T ′ by an edge labelled byX .

s1 s2 s3

s1 s2 s3 s1 s2

s3

s1 s2 s3 s1

s1

s1 s2

· · ·

Figure 2. The agent 1 from Example 10 (top left) and its unraveling.
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. . .

K1 K1 〈A〉 〈A〉 〈A〉 〈A〉

s1, s3,⊥

s1, s3,⊥ s1, s1,⊥ s3, s3,> s3, s1,⊥ s3, s2,⊥ s3, s3,⊥

K1 K1 〈A〉 〈A〉 〈A〉 〈A〉

Figure 3. MCTϕI from Example 10 (top) and the corresponding
RMCTϕI (bottom).

So RMCTϕI is obtained from MCTϕI by replacing intervals in
the labels by their endpoints and removing identical subtrees.

Example 10. Consider an agent 1 with local states L1 =
{s1, s2, s3} and one actions ACT1 = {ε} such that t1 =
{(s1, ε, s2), (s2, ε, s3), (s3, ε, s1), (s2, ε, s1)} and the environment
such that Le = {se} and ACTe = {ε} (see Figure 2). Assume that
∼1= {(s1, s1), (s2, s2), (s3, s3), (s1, s3), (s3, s1)}.

Consider a formula ϕ = K1p ∧ ¬〈A〉p and an interval I =
s1s2s3 (to simplify the notion, we ignore the environment states
here, writing si for the IBIS states instead of (se, si)). The root of
MCTϕI (Figure 3, top) is labelled by I . The top level subformulas
of ϕ are K1p and 〈A〉p. The root of MCTϕI has exactly two K1-
successors: s1s2s3, s1s2s1 (since s3 ∼1 s1), and infinitely many
〈A〉-successors: s3, s3s1, s3s1s2, s3s1s2s1 . . . .

While the tree MCTϕI is infinite, the tree RMCTϕI (Figure 3,
bottom) is finite. For example, the nodes s3s1 and s3s1s2s1 are
represented by the same node s3, s1,⊥ that represents all the 〈A〉-
successors of the root starting in s3 and ending in s1.

Lemma 11. Given an IBIS M and a formula ϕ, the following facts
hold.

1. |{RMCTϕI | I is an interval in M}| < fM (ϕ).
2. If I, I ′ are intervals such that RMCTϕI = RMCTϕI′ , then
M, I |= ϕ if and only if M, I ′ |= ϕ.

3. If I, I ′ are intervals such that RMCTϕI = RMCTϕI′ and an



interval J is such that last(J) is a predecessor of first(I), then
RMCTϕJI = RMCTϕJI′ .

Proof. We show Part 1. by induction on ϕ. Clearly, if a formula
has no modalities, then {RMCTϕI | I is an interval in M} contains
trees with only one node. For n > 1, the number of such trees can
bounded by the number of different labelling of a node, i.e., n2 + n,
which is greater that 2n2.

Consider a formula ϕ with the top-level subformulas X1ϕ1, . . . ,
Xkϕk. Each tree for ϕ consists of one of n2 + n possible roots and,
for each i, any subset of subtrees for ϕi. Therefore, |{RMCTϕI |
I is an interval in M}| < 2n22f

M (ϕ1) . . . 2f
M (ϕk) = fM (ϕ).

Part 2 can also be shown by induction on ϕ. Assume that ϕ = p
for some variable p. The root of the RMCTϕI is labelled by the end-
points of I , and the root of theRMCTϕI′ is labelled by the endpoints
of I ′. Since the two trees are equal, the endpoints are the same and
since the labelling depends only on the endpoints of an interval, it
follows that M, I |= p iff M, I ′ |= p.

Assume that ϕ = pi. The root of the RMCTϕI is labelled by
pi(I), and so is the root of RMCTϕI′ , and therefore pi(I) = pi(I ′).

Assume that ϕ = 〈A〉ϕ′ for some ϕ′. As above, we know that the
last point of I and I ′ is the same point s. Therefore, M, I |= 〈A〉ϕ′
iff there is a path starting from s satisfying ϕ′ which is iff M, I ′ |=
〈A〉ϕ′.

Assume that ϕ = ¬ϕ′ for some ϕ′. By the inductive assumptions,
M, I |= ϕ′ iff M, I ′ |= ϕ′, so M, I |= ϕ iff M, I ′ |= ϕ.

Assume that ϕ = ϕ1 ∧ ϕ2 for some ϕ1, ϕ2. By the induction
assumption,M, I |= ϕ1 iffM, I ′ |= ϕ1 andM, I |= ϕ2 iffM, I ′ |=
ϕ2, so M, I |= ϕ iff M, I ′ |= ϕ.

Assume that ϕ = Kiϕ
′ for some ϕ′ and i. Assume that M, I |=

ϕ. Consider any interval J ′ such that I ′ ∼i J ′. By the definition, in
the tree MCTϕI′ the subtree MCTϕ

′

J′ is an Ki-successor of the root.
It follows that in the tree RMCTϕI′ , RMCTϕ

′

J′ is an Ki-successor
of the root. Let J be such that I ∼i J and RMCTϕ

′

J′ = RMCTϕ
′

J .
Such a J exists because RMCTϕI′ = RMCTϕI . Clearly, since
M, I |= ϕ, M,J |= ϕ′. By the inductive assumptions, M,J ′ |= ϕ′.
Therefore M, I ′ |= ϕ.

The proof for the cases of ϕ = CGϕ
′ and ϕ = 〈B̄〉ϕ′ are similar

and omitted.

Part 3. Given a formula ϕ, an IBIS M , an interval I and a state
s such that t(s,first(I)), RMCTϕsI can be computed on the basis
of M and RMCTϕI . Therefore, if we consider two intervals I, I ′ of
the same model such thatRMCTϕI = RMCTϕI′ , thenRMCTϕsI =
RMCTϕsI′ . The consideration above can be used to prove Part 3.

To do this, consider the procedure PREPEND in Algorithm 2.
We show that the result of PREPEND(s, T ), where s is a state and
T = RMCTϕI for some interval I , isRMCTϕsI . In the algorithm we
use the function singe_node_tree(l) to define a new tree contain-
ing only the root labelled with l; label(T ) returns the label of a node;
root(T ) returns the root of T ; subtree(T,w) returns a subtree of T
rooted inw; and add_a_subtree(t, l, T ) adds T as an l-successor of
t. Recall that t is the transition function of the interpreted system.

We now show by induction that for any ϕ and any I , s,
PREPEND(s,RMCTϕI ) = RMCTϕsI .

The roots of PREPEND(s,RMCTϕI ) and RMCTϕsI are labelled
by (s, last(I),⊥), so they are equal.

Assume that X1ϕ1, . . . , Xkϕk are the top-level subformulas of
ϕ and i ∈ {1, . . . , k} (if there are no such formulas, then the result
follows).

Assume Xi = 〈A〉. Observe that for any interval J , IRAJ iff

Algorithm 2 The procedure for Part 3 of Lemma 11
1: procedure PREPEND(s, T )
2: (f, l, pi)← label(root(T ))
3: T ′ ← single_node_tree((s, l,⊥))
4: for all 〈A〉-successor w of root(T ) do
5: add_a_subtree(root(T ′), 〈A〉, subtree(T,w))

6: for all 〈B̄〉-successor w of root(T ) do
7: T ′′ ← PREPEND(s, subtree(T,w))
8: add_a_subtree(root(T ′), 〈B̄〉, T ′′)
9: for all X ∈ KM and X-successor w of root(T ) do

10: (f ′, l′, pi′)← label(w)
11: for all s′RXs such that t(s′, f ′) do
12: T ′′ ← PREPEND(s′, subtree(T,w))
13: add_a_subtree(root(T ′), X, T ′′)
14: return T ′

sIRAJ . Therefore the 〈A〉-successors of the root in RMCTϕI are
the same as 〈A〉-successors of the root in RMCTϕsI , and therefore
they are the same in PREPEND(s,RMCTϕI ) and RMCTϕsI .

Assume Xi = 〈B̄〉. Observe that for any interval J , IRBJ
iff sIRBsJ . Therefore, RMCTϕi

sJ is an 〈B̄〉-successors of the
root in RMCTϕi

sI iff RMCTϕi
J is an 〈B̄〉-successors of the

root in RMCTϕi
I . By the inductive hypothesis, for any J the

trees PREPEND(s,RMCTϕi
J ) and RMCTϕi

sJ are the same; there-
fore, the set of the 〈B̄〉-successors of the root is the same in
PREPEND(s,RMCTϕI ) and RMCTϕsI .

Assume Xi ∈ KM . Observe that for an interval J , and state s′

s.t. s′RXis and t(s′,first(J)), IRXiJ iff sIRXis
′J . As in the pre-

vious case, we have thatRMCTϕi
s′J is anXi-successor of the root in

RMCTϕsI iff RMCTϕi
J is an Xi-successor of the root in RMCTϕI

and s′RXis; so we conclude that the sets of Xi-successors of the
root is the same in PREPEND(s,RMCTϕI ) and RMCTϕsI .

Having established the Lemma above, we can now give the main
result of this section.

Theorem 12. Given an EHSAB̄L formula ϕ, an IBIS M and an
interval I , M, I |= ϕ if and only if M, I |=B ϕ.

Proof. The proof is by induction on the structure of ϕ.
The cases for ϕ = p, ϕ = pi, ϕ = ¬ϕ′, ϕ = ϕ1∧ϕ2, ϕ = Kiϕ

′,
or ϕ = CGϕ

′ for some subformulas ϕ′, ϕ1, ϕ2, follow given the fact
that the semantic rules are the same in both semantics.

Assume that ϕ = Xϕ′ for some ϕ′ and X ∈ 〈A〉, 〈B̄〉. If
M, I |=B ϕ, then there is an interval I ′ of bounded size such that
M, I ′ |=B ϕ′ and IRXI ′. By the induction hypothesis, M, I ′ |= ϕ′

and therefore M, I |= ϕ. If M, I |= ϕ, then there is an interval I ′

such that M, I ′ |= ϕ′ and IRXI ′. Let I ′ be the shortest possible
interval with this property. We show that |I ′| ≤ |I|+ fM (ϕ).

Let I ′ = s1 . . . st and I ′k denote the suffix of I ′ starting at sk,
i.e., sk . . . st. Assume that |I ′| > |I|+ fM (ϕ′). By Lemma 11.1 we
have that among I ′|I|+1 . . . I ′|I|+fM (ϕ′) there are two suffixes I ′k, I ′l
such that |I| < k < l and RMCTϕ

′

I′
k

= RMCTϕ
′

I′
l

.
Let J = s1 . . . sk−1sl . . . st. By Part 3 of Lemma 11, we have that

RMCTϕ
′

J = RMCTϕ
′

I′ , and so by Part 2 of Lemma 11 we have that
J is an interval such thatM,J |= ϕ′ and IRXJ . Clearly, |J | < |I ′|;
this is a contradiction given our assumption that |I ′| > |I|+fM (ϕ′).

Notice that the requirement that k > |I| is only needed in the case
of 〈B̄〉 since J has to contain I as a prefix.

We can now derive the main technical result of the paper.



Theorem 13. The model checking problem for EHSAB̄L is decid-
able.

The proof follows immediately by considering Theorem 7 and
Theorem 12

Consider a relationRN such that s1 . . . skRNs
′
1 . . . s

′
l iff t(sk, s′1)

and a corresponding modality 〈N〉. This modality is a counterpart
of the X operator of CTL. In EHS, this can be defined by assigning
〈N〉ϕ = 〈A〉(¬pi∧〈B〉〈B〉⊥∧〈A〉ϕ). One significant limitation of
EHSAB̄L is that it cannot define 〈N〉. However, the technique above
can be extended to the case of this operator in a straightforward way.

Proposition 14. The model checking problem for EHSAB̄L extended
with the modality 〈N〉 is decidable.

5 Conclusions and Future Work

Since the early proposals, dating back to Prior [18], to use logic to
express temporal concepts, there has always been an active interest
in exploring different models of time. The usual dichotomy between
linear and branching models is one example of this, but others ex-
ist, including discrete and continuous models. Interval temporal logic
was put forward in the 90s [17, 9] as a powerful mechanism to rep-
resent and reason about continuous processes. These often occur, for
instance, in planning where one needs to express facts that occur at
intervals and not at time instances. This was preceded by investiga-
tions dating back at least to the 70s [10].

The current literature on HS logic focuses on the study of subtly
different logics expressing intervals which can be defined by using
subsets of the operators corresponding to the Allen’s relations. While
the number of possible fragments is 1012, most of them are known
to have undecidable satisfiability problems [5, 14]. A key avenue of
research has so far involved the identification of fragments for which
satisfiability and validity are decidable [2, 3, 15].

The logic EHS combining the interval temporal logic HS and epis-
temic logic has recently been introduced [12]. Since EHS is a proper
extension of HS, its satisfiability problem is also undecidable. How-
ever, it was shown that the model checking problem for its BDE
fragment, as well as a number of other weak logics, is decidable.
While these results are positive, the BDE fragment is not particu-
larly expressive; for example, all the intervals it may refer to are of
a bounded length. In this paper we showed the decidability of the
model checking problem for the AB̄L fragment of the logic. As we
discussed, specifications written in EHSAB̄L enable us to refer to in-
tervals of arbitrary length. The BTP example that we discussed in
Section 3 demonstrates this.

One possible future direction of study is to characterise the expres-
sive power of the logics here discussed (under the locality assump-
tion, see [12]) to that of more popular formalisms such as CTLK.

While a key result of the paper is the decidability result, the re-
duction technique put forward in its proof, enabling us to reduce the
model checking problem for infinitely many intervals to one on in-
tervals on bounded length, seems significant on its own. It is possible
that the decidability for other fragments may be obtained by adapting
the scheme of the proof here introduced.

We conclude by remarking that it is currently not known whether
the model checking problem for the full EHS logic is undecidable,
although we suspect that is the case. Further research on identifying
the precise border of decidability is therefore required.
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