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Abstract

We study parameterised verification of robot swarms
against temporal-epistemic specifications. We relax
some of the significant restrictions assumed in the lit-
erature and present a counter abstraction approach that
enable us to verify a potentially much smaller abstract
model when checking a formula on a swarm of any size.
We present an implementation and discuss experimen-
tal results obtained for the alpha algorithm for robot
swarms.

1 Introduction
A robot swarm is a collection of behaviourally identical
robotic agents (Şahin and Winfield 2008). Typically, each
agent interacts with its peers and the environment by fol-
lowing simple, local, nature-inspired protocols that enable
the swarm to achieve sophisticated, global behaviour (En-
gelbrecht 2006). Swarm robots are attractive as they may
provide an efficient and robust mechanism to achieve com-
plex tasks (Beni 2005; Tan and Zheng 2013), such as remote
surveillance (Spears et al. 2005), search and rescue (Pet-
tinaro et al. 2002), and de-mining (Zafar, Qazi, and Baig
2006). This is in contrast with single-robot systems that are
often extremely complex, expensive and offer little or no
fault-tolerance.

While robot swarms are appealing, predicting their col-
lective behaviour is known to be problematic as this may
depend on the number of robots present and their interaction
among themselves and with their environment. Yet, without
assurances on their resulting behaviour, robot swarms can-
not be deployed in a large range of scenarios. Model check-
ing (Clarke, Grumberg, and Peled 1999) is a widely used
verification technique in reactive systems and Multi-Agent
Systems (MAS). It involves encoding a system S by means
of a mathematical model MS and checking whether the
model MS satisfies a property P , or MS |= φS , where φS is
a logical formula representing the propertyP under analysis.
A fundamental assumption in traditional model checking is
that all the components present in the system are defined and
modelled at design time. This cannot be assumed in robotic
swarms where we often do not know how many robots will
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be active in the swarm initially and while the swarm evolves.
Therefore we need to be able to validate properties of the
swarm irrespective of the number of robots present. The aim
of the paper is to provide a general methodology for the ver-
ification of temporal and epistemic properties of a variety of
swarms with an unbounded number of participants.

The rest of the paper is organised as follows. In Section 2
we formalise swarms via a form of interpreted systems and
give the syntax of our specification language. In Section 3
we present a novel approach for solving the verification
problem for swarm systems by giving sufficient conditions
for the identification of a cutoff. In Section 4 we present an
implementation and discuss our results in the context of the
alpha algorithm for swarms (Winfield et al. 2008). We con-
clude in Section 5 by discussing related work.

2 Semantics for Robot Swarms
Interpreted systems are a standard semantics for describ-
ing multi-agent systems (Fagin et al. 2003). Given the
asynchronous nature of swarm-based systems, we here de-
velop a variant of interleaved interpreted systems (Lomus-
cio, Penczek, and Qu 2010), a class of interpreted systems
constraining the interleaved evolution of the agents’ actions,
to give a model for the evolution of swarms. Specifically, we
extend and generalise parameterised interleaved interpreted
systems (Kouvaros and Lomuscio 2013b), a semantics used
to model multi-agent systems with an unbounded number
of agents. In this setting we make the following assump-
tions on a swarm system: (i) the robotic agents composing
the swarm are behaviourally identical and relatively simple;
(ii) each agent interacts with its peers and the environment;
(iii) each agent may evolve asynchronously from the rest of
the swarm; (iv) each agent may become inactive while the
rest of the swarm continues its evolution; (v) the number
of agents present in the swarm is unknown at design time.
For the common technical details we follow the presentation
in (Kouvaros and Lomuscio 2013b).

Swarm Systems
We assume that a swarm is composed of an arbitrary number
of identical robotic agents interacting with an environment.
The behaviour of the agents and the environment is specified
by a template agent T = (L, ι, Act, P, t) and a template
environment E = (LE , ιE , ActE , PE , tE). A template agent



T defines a nonempty set of local states L, a unique initial
state ι ∈ L, and a nonempty set of actions Act. Actions are
performed in compliance with a protocol P : L → P(Act)
that selects which actions may be performed at a given state.
The evolution of the template local states is characterised by
a transition function t : L×Act→ L returning the next local
state given the template’s local state and action. Similarly,
E is associated with a nonempty set of local states LE , an
initial state ιE ∈ LE , a nonempty set of actions ActE , a
protocol PE , and a transition function tE . We include the
“null” actions ε and εE to the sets of actions Act and ActE
respectively. It is assumed that the protocol P is such that
for every l ∈ L we have that ε ∈ P (l) (i.e., the null action
is enabled at every template state); the transition function t
is such that t(l, ε) = l (i.e, the local state does not change
whenever the null action is performed). The environment’s
null action εE is similarly described.

We extend parameterised interleaved interpreted sys-
tems (Kouvaros and Lomuscio 2013b) to define a swarm sys-
tem (SS) as a tuple S = 〈T , E ,V〉, where V : L → P(AP)
is a labelling function on the template agent’s states for a
set AP of template atomic propositions. S gives a generic
description of an unbounded collection of concrete swarm
systems, each one obtained by setting the parameter pre-
scribing to the number of agents in the system. The concrete
agents can interact either by full synchronisation among all
of them with the environment, or by pairwise synchroni-
sation between one agent and the environment. They can
also evolve asynchronously at any time. Each communica-
tion pattern is the result of performing, respectively, global-
synchronous, agent-environment, and asynchronous actions.
Formally, the sets of actions Act = A ∪ AE ∪ GS ∪ {ε}
and ActE = AE ∪ AE ∪ GS ∪ {εE} are decomposed into
disjoint sets of asynchronous (A,AE), agent-environment
(AE), and global-synchronous (GS ) actions. These types of
actions encode our assumptions on how the agents may in-
teract. Specifically, A actions enable a robot to evolve asyn-
chronously; AE actions enable a robot to interact with its en-
vironment; GS actions enable the agents to interact among
themselves; finally, ε actions enable a robot to dynamically
become inactive while the swarm evolves.

Consider an SS S. If we are given an integer n ≥ 1 rep-
resenting how many agents are present in a swarm, we can
construct the concrete swarm system S(n) obtained by tak-
ing n instantiations of T and one instantiation of E . Let
A1,n denote the set of concrete agents {1, . . . , n} and let
Ȧ1,n = A1,n ∪ {E(n)} denote, additionally, the concrete
environment E(n). For any i ∈ A1,n, the i-th concrete
agent is defined as follows: Li = L × {i}; ιi = ι × {i};
Acti = Ai ∪ AE i ∪ GS ∪ {εi}, where Ai = A × {i} and
AE i = AE ×{i}. Given a ∈ Acti, let aτ to denote the cor-
responding template action, i.e, if a = (b, i) ∈ Ai ∪ AE i,
then aτ = b, otherwise, if a ∈ GS , then aτ = a. Agent
i’s protocol Pi is defined as a ∈ Pi((l, i)) iff aτ ∈ P (l);
its evolution function ti is defined as ti((l, i), a) = (l′, i)
iff t(l, aτ ) = l′. E(n) is defined as follows: LE(n) = LE ,
ιE(n) = ιE , ActE(n) = AE ∪ {AE i}i∈A1,n ∪GS ∪ {εE};
PE(n) is given by a ∈ PE(n)(l) iff aτ ∈ PE(l) and tE(n)

is given by tE(n)(l, a) = l′ iff tE(l, aτ ) = l′.
A global state g = (l1, . . . , ln, lE) is a tuple of local

states for all the agents in the system and it corresponds to
a description of the system at a particular instant of time.
For a global state g we write g.i to denote the template lo-
cal state of agent i in g. The system’s global states evolve
over time in compliance with the agents’ local protocols and
local evolution functions, thereby inducing a global transi-
tion relation. For Y ∈ {Act,A,AE ,GS} and X ⊆ Ȧ1,n,
let YX =

⋃
i∈X Yi denote the union of the set of actions

Y for each agent in X , e.g., AA1,n =
⋃
i∈A1,n Ai. For

a ∈ ActȦ1,n , let Agent(a) =
{
i ∈ Ȧ1,n : a ∈ Acti

}
de-

note the set of agents admitting the concrete action a in their
repertoire.

Definition 1 (Global transition relation). The global tran-
sition relation R(n) ⊆ G(n) × G(n) on a set G(n) of
global states is defined as (g, g′) ∈ R(n) iff there is ā =
(a1, . . . , an, aE) ∈ Act1 × · · · ×Actn ×ActE(n) and a ∈
ActȦ1,n such that for all i ∈ Agent(a), we have that ai = a

and ti(g.i, ai) = g′.i; and for all i ∈ Ȧ1,n \ Agent(a), we
have that ai = εi and ti(g.i, ai) = g′.i = g.i. In brief we
write g →a g

′ ifR(g, g′) by means of action a.

Given the above, we observe the following: (i) only one
local action is performed in the system at any time; (ii) for
an action to be performed, every agent admitting said action
in its repertoire has to perform it at the round. So, commu-
nication in SS is by means of shared actions. It follows from
the agents’ concrete definitions that a global transition from
a global state g can only happen in either one of the follow-
ing cases: (i) an A (AE respectively) action is enabled for
an agent (the environment respectively) at g; (ii) an AE ac-
tion is enabled for an agent and the environment at g; (iii) a
GS action is enabled for all the agents and the environment
at g. We assume that the joint null action is always enabled
thereby inducing a serial global transition relation.

A path π is a sequence π = g1a1g2a2g3 . . . such that
gi →ai g

i+1, for every i ≥ 1. Given a path π, we write π(i)
for the i-th state in π. The set of all paths originating from
a state g is denoted by Π(g). A global state g is said to be
reachable from a global state g1 if there is a path π ∈ Π(g1)
such that π(i) = g, for some i ≥ 1.

We now define the concrete semantics.

Definition 2 (Concrete swarm system). Given S =
〈T , E ,V〉 and n ≥ 1, the concrete swarm system (CSS)
S(n) is a tuple S(n) = 〈G(n), ι(n),R(n),V(n)〉, where
G(n) ⊆ L1 × . . . × Ln × LE(n) is the set of global states
reachable via R(n) from the initial global state ι(n) =
((ι, 1), . . . , (ι, n), ιE(n)), and V(n) : G(n) → P(AP ×
A1,n) is a labelling function for the set AP × A1,n of con-
crete atomic propositions such that (p, i) ∈ V(n)(g) iff
p ∈ V(g.i).

In line with the parametric nature of robot swarms, an SS
S gives a concise description of an unbounded collection
{S(n) : n ≥ 1} of CSS, each composed of a different num-
ber of identical agents.
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Figure 1: Fragment of the template agent of the AA for a 2× 2 grid and wireless range of 1.
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Figure 2: Fragment of the template environment of the AA for a 2× 2 grid and wireless range of 1.

The Swarm System of the Alpha Algorithm
As a case study we consider the alpha algorithm (AA) for
robot swarms (Winfield et al. 2008). This is a swarm ag-
gregation algorithm, where the robots have to form a clus-
ter in an area of the environment (Brambilla et al. 2012;
Berman et al. 2009; Martinoli, Ijspeert, and Mondada 1999).

Each robot i is equipped with a wireless sensor of lim-
ited range. Through local communication the i-th robot can
observe the number N(i) of robots in the range of its sen-
sor, i.e., the number of its neighbours. Robot i is said to be
connected if its neighbourhood is composed of at least α
robots, for a threshold α; i.e., N(i) ≥ α. The behaviour
of each robot is characterised by its connectivity status and
by whether it is in forward (motion) mode or in coherence
(motion) mode. More specifically, if a robot is in forward
mode and connected, then it moves forward; if it is in for-
ward mode, but not connected, then it performs a 180◦ turn
and changes its motion mode to ‘coherence’; if it is in coher-
ence mode, but not connected, then it moves forward; finally,
if it is in coherence mode and connected, then it performs a
random 90◦ turn and changes its motion mode to ‘forward’.

We can encode the alpha algorithm as an SS, where
the robots are assumed to be moving on a finite square
grid which wraps round, i.e., for an N × N grid, a
robot moving east from position (1, N) gets to posi-
tion (1, 1). The states of the template agent are given
as tuples of four components: the position on the grid,
the direction of movement (North,East ,South,West),
the motion mode (Forward ,Coherence), the connec-
tivity status (Connected ,¬Connected), and the phase
(p1, p2, p3a, p3b) of the encoding. The encoding is in terms
of three phases. For each phase p1, p2, p3a, p3b an ac-
tion is performed by each of the robots followed by a
change of the phase component to s1, s2, s3a, s3b respec-
tively. This is followed by the global synchronous action syn
thereby simulating the synchronous semantics1 (see Fig-
ures 1 and 2). The robots are initially in square (1, 1). In

1Note that as stated in (Dixon et al. 2012), since the robots move
at the same speed and their connectivity status is updated with high
frequency, synchronicity is an adequate assumption.

phase 1 each robot performs one of the asynchronous ac-
tions north, east, south, west, thereby choosing an initial
random direction. In phase 2 each robot moves forward one
step by performing the asynchronous action move. Phase 3
is responsible for updating the connectivity status of each
of the robots. This is done in terms of 2 steps. In phase 3a
each robot performs the agent-environment action (x, y),
where (x, y) is the location of the robot. A template en-
vironment’s state has a component ((x, y), z), where z ∈
{1, . . . , α+ 1}, for each square (x, y) in the grid. The envi-
ronment increases z (up to α+ 1) each time an (x, y) action
is performed. Following this, the environment can deduce
whether or not a robot in (x, y) is connected. In phase 3b,
for each location (x, y) the environment’s protocol enables
the agent-environment action con (x, y) if the sum of z’s
in the range of (x, y) is at least α + 1, otherwise it enables
the agent-environment action ¬con (x, y). Thus each robot
can update its connectivity status by synchronising with the
environment through the con actions. This happens for all
robots in a sequence of steps before the system may move to
the next phase; upon each synchronisation, the correspond-
ing agent updates its direction and motion mode as described
in the previous paragraph. Then, the system goes back to
phase 2 where the counters in the environment are reset to
zero in repeating the cycle.

Specifications for Robot Swarms
We express properties of robot swarms in the temporal-
epistemic logic ACTL∗K\X (Lomuscio, Penczek, and Qu
2010). This logic combines the epistemic logic S5 with
the temporal logic ACTL∗ \ X(the universal fragment of
CTL∗ without the neXt operator X). To express proper-
ties that are independent of the number of robots in the
swarm, we use variables to index the atomic propositions
and epistemic modalities appearing in a specification. We
write φ({v1, . . . , vm}) to indicate that each of the variables
v1, . . . , vm appears in an atomic proposition or epistemic
modality in φ. We verify SS against properties of the form

∀v1 . . . ∀vm

 ∧
i,j∈{1,...,m}

¬(vi = vj)→ φ({v1, . . . , vm})





where ∀ is a universal quantifier over the variables. We de-
note such a formula as ∀V φ(V ), where V = {v1, . . . , vm},
and we say that ∀V φ(V ) is an m-indexed formula if |V | =
m. In other words, when evaluated on a concrete system
S(n), ∀V φ(V ) denotes a specific ACTL∗K\X formula ex-
pressing the conjunction of all its ground instantiations un-
der any assignment for V from the domain A1,n. For exam-
ple, consider the connectedness property (Dixon et al. 2012)
for the AA “each robot knows that it will be connected in-
finitely often”. We can express this property with the spec-
ification φAA = ∀{v}KvGFconv , where con is a template
atomic proposition holding in the template states indicating
connectedness. When evaluated on S(2), φAA is a shortcut
for K1GFcon1 ∧ K2GFcon2. We refer to (Kouvaros and
Lomuscio 2013b) for more details on indexed ACTL∗K\X
including the definition of the satisfaction relation |=.

3 Model Checking Swarm Systems
In contrast with the existing literature on swarm systems, we
here introduce a counter abstraction procedure (Pnueli, Xu,
and Zuck 2002) for the verification of an SS independent
from the number of agents in the system. In the verification
community this is referred to as the parameterised verifica-
tion problem (Clarke, Grumberg, and Browne 1989).
Definition 3 (Parameterised model checking problem
(PMCP)). Given an SS S and an m-indexed formula
∀V φ(V ), determine whether or not the following holds:

∀n ≥ m : S(n) |= ∀V φ(V )

Clearly, the PMCP involves checking an unbounded num-
ber of systems; so the problem cannot by solved by tradi-
tional model checking techniques. To solve this, we define a
counter abstraction procedure and show how an SS may still
be verified.

Abstract Swarm System
We define the abstract SS and show that any m-indexed for-
mula ∀V φ(V ) satisfied by the abstract system is satisfied by
every concrete system composed of at least m agents. To
do this, we first observe that an m-indexed formula ∀V φV
can be evaluated by considering only its ground instantiation
φ[m], obtained by assigning to the variables in V pairwise
distinct values inA1,m (Kouvaros and Lomuscio 2013b). In-
tuitively, this results from the symmetric nature of a CSS
since each ground instantiation of ∀V φ(V ) refers to an m-
tuple of identical (up to re-indexing) agents. In other words,
φ[m] is equivalent to any ground instantiation of ∀V φ(V );
thus φ[m] is equivalent to ∀V φ(V ). For example the formula
φAA = ∀{v}KvGFconv can be evaluated simply by con-
sidering its single conjunct φAA[1] = K1GFcon1. For the
rest of the paper, we denote anm-indexed formula ∀V φV by
its instantiation φ[m]. To reason in the abstract system about
the agents that the atomic propositions and epistemic modal-
ities in φ[m] refer to, we abstract all concrete agents but the
agents 1, . . . ,m. To do this, we define an abstract agent and
an abstract environment adhering to the counter abstraction
of the agents m + 1, . . . , n, for any concrete system S(n)
(n > m), and then we define the abstract SS as the system

built from the abstract agent, the abstract environment, and
m concrete agents.
Definition 4 (Abstract agent). Given an SS S = 〈T , E ,V〉,
the abstract agent â = 〈L̂, ι̂, Âct, P̂ , t̂〉 is defined as follows.

• L̂ = P(L)\∅ is the set of states; ι̂ = {ι} ∈ L̂ is the initial
state;

• Âct = Â ∪ ÂE ∪ GS ∪ {ε̂} is the set of actions, where
Â = (A× L× {↑, ↓}) and ÂE = (AE × L× {↑, ↓});

• P̂ : L̂ → P(Âct) is the protocol defined as P̂ (l̂) =

{(a, l, ↓), (a, l, ↑) ∈ Â∪ÂE : l ∈ l̂ and a ∈ P (l)}∪{a ∈
GS : for all l ∈ l̂ we have that l ∈ P (l)};

• t̂ : L̂ × Âct → L̂ is the evolution function defined as
t̂(l̂, x) = l̂′ iff x ∈ P̂ (l̂) and one of the following holds:
(i) if x ∈ GS , then l̂′ = {l′ ∈ L : ∃l ∈ l̂.t(l, x) = l′}; (ii)
if x = (a, l, ↑), then l̂′ = l̂∪{t(l, a)}; (iii) if x = (a, l, ↓),
then l̂′ = (l̂ \ {l}) ∪ {t(l, a)}.
Following the definition of the PMCP, we would like to

check whether a specification encoded as an m-indexed for-
mula holds in the swarm system irrespective of the number
of robots. In line with this, the abstract agent represents in
a finitary manner the ways that the agents in Am,n may in-
terfere with the agents in A1,m in any CSS with at least m
agents. In particular, a state in L̂ represents the set of tem-
plate states that the agents in Am,n may be in in a global
state. A template action in Âct represents all of its con-
crete instantiations that the agents in Am,n may perform
in a global state. To respect the encoding of the abstract
states, two cases have to be considered when a concrete
asynchronous action or an agent-environment action a is
performed at a global state: (i) there is exactly one concrete
agent in template state l at which a is performed; (ii) there
are at least two agents. The former case is captured in â with
the action (aτ , l, ↓), whereas the latter is captured with the
action (aτ , l, ↑). The former action may cause the abstract
state to “shrink” (↓) and not include l, whereas the latter ac-
tion may cause the abstract state to “grow” (↑) and include
the template state l′ as specified by the template transition
t(l, aτ ) = l′. Under this light, P̂ and t̂ are defined accord-
ingly.

The abstract environment is defined as the
concrete environment E(m), but with additional
agent-environment actions added for synchronis-
ing with the abstract agent. Formally, Ê(m) =

〈L̂E(m), ι̂E(m), ˆActE(m), P̂E(m), t̂E(m)〉, where
L̂E(m) = LE(m), ι̂E(m) = ιE(m) and ˆActE(m) =

ActE(m) ∪ ÂE . The abstract protocol and transition func-
tion are defined for ÂE as follows: (a, l, x) ∈ P̂E(m)(l) iff
a ∈ PE(l) and t̂E(lE , (a, l, x)) = l′E iff tE(lE , a) = l′E , for
x ∈ {↑, ↓}.

The abstract SS Ŝ(m) = 〈 ˆG(m), ι̂(m), R̂(m), V̂(m)〉 is
constructed by composing m concrete agents, the abstract
agent and the abstract environment. The abstract valuation
function V̂(m) : Ĝ(m)→ P(AP ×A1,m) is given by pi ∈
V̂(m)(γ) iff p ∈ V(γ.i).



A state γ ∈ Ĝ(m) represents any concrete state g in
which: (i) γ.i = g.i for each i ∈ Ȧ1,m; (ii) g.i ∈ γ.â
for each i ∈ Am+1,n; (iii) for each l ∈ γ.â, there is an
i ∈ Am+1,n such that g.i = l. Given a concrete state g,
let [g] denote the abstract state representing a set of states
including g. The abstraction is sound in the sense that ev-
ery concrete path can be mapped to an abstract path. To see
this, suppose that g →a g

′. If a ∈ GS , then [g] →a [g′].
If a /∈ GS , then only one agent, say i, participates in the
global transition giving three cases. In the first case, we have
i ∈ Ȧ1,m; then [g]→a [g′]. In the second case, i ∈ Am+1,n

and there is only one agent in Am+1,n at template state g.i
in g; hence [g] →(aτ ,g.i,↓) [g′]. In the third case, we have
i ∈ Am+1,n and there are at least two agents in Am+1,n at
template state g.i in g; so [g] →(aτ ,g.i,↑) [g′]. Thus we get
the following.

Theorem 1. Ŝ(m) |= φ[m] implies S(n) |= φ[m], for any
n > m and any m-indexed formula φ[m].

Following the above, if anm-indexed formula φ[m] is sat-
isfied by Ŝ(m), then we can conclude that the formula is sat-
isfied by every concrete system. However, if Ŝ(m) 2 φ[m],
then we cannot conclude that there is an n > m such that
S(n) 2 φ[m].

Global-Synchronous Simulation and Cutoff
Identification
We now define the notion of gs-simulation between an ab-
stract system Ŝ(c−1) and a concrete system S(c). We show
that if S(c) gs-simulates Ŝ(c− 1), then c is a swarm cutoff.
A cutoff for a swarm is the number of agents that is sufficient
to consider when evaluating a given specification.

Definition 5 (Swarm cutoff). Given an SS S and m ∈ N,
c ∈ N is said to be a swarm cutoff if the following holds:

• If S(c) |= φ[m] then for all n ≥ c.S(n) |= φ[m] and
• If S(c) 6|= φ[m] then for all n ≥ c.S(n) 6|= φ[m]

for any m-indexed formula φ[m].

Therefore the identification of a cutoff c implies that the
PMCP can be solved by model checking all the concrete sys-
tems up to S(c) (Emerson and Kahlon 2000; Clarke et al.
2004; Hanna, Basu, and Rajan 2009; Kaiser, Kroening, and
Wahl 2010; Kouvaros and Lomuscio 2013b). Hence our ver-
ification procedure is as follows: (i) check whether or not
Ŝ(m) |= φ[m]; (ii) if so, then terminate; (iii) otherwise,
starting from (S(m+ 1), Ŝ(m)), iteratively check if there is
a pair of systems in

{(
S(m+ x+ 1), Ŝ(m+ x)

)
: x ≥ 0

}
such that S(m + x + 1) gs-simulates, as defined below,
Ŝ(m + x); (iv) if such a pair (S(c), Ŝ(c − 1)) is found,
for some c > m, then check whether S(m),S(m +
1), . . . ,S(c) |= φ[m] and terminate.

Note that the procedure above may never terminate. In-
deed, in the context of SS cutoffs do not always exist (Kou-
varos and Lomuscio 2013b). Note, also, that sound and in-
complete techniques are typical in parameterised verifica-
tion (Clarke, Talupur, and Veith 2006; 2008; German and

Sistla 1992; Baldan, Corradini, and König 2008) given the
problem’s general undecidability (Apt and Kozen 1986).
Nonetheless incomplete procedures are still of interest as
they solve specific verification problems. As we show below
the alpha algorithm is one of them.

In the following, for a set of actions X , let g →X g′ de-
note that g →a g

′ for some a ∈ X , and let→X∗ denote the
reflexive and transitive closure of →X . We now define the
global-synchronous simulation. A concrete system S(c) is
said to gs-simulate the abstract system Ŝ(c− 1) if S(c) can
simulate Ŝ(c − 1) be means of the abstract states in which
an action in ActA1,m is enabled.

Definition 6 (gs-simulation). S(c) is said to gs-simulate
Ŝ(c − 1) (c > m), denoted Ŝ(c − 1) ≤gs S(c), if there
is a relation ∼gs⊆ Ĝ(c − 1) × L × G(c) such that (ι̂(c −
1), ι, ι(c)) ∈∼gs and whenever (γ, l, g) ∈∼gs we have the
following:

1. γ.i = g.i, for i ∈ A1,m;

2. If γ →X∗ γ
1 →a γ

2, forX = (Âct∪ActAm+1,c−1)\GS
and some a ∈ ActA1,m , then g →Y ∗ g

1 →a g
2, where

Y = ActAm+1,c \GS , and the following hold.

(a) If a /∈ GS , then (γ2, l, g2) ∈∼gs;
(b) If a ∈ GS , then h →(Ai∪AEi∪AE)∗ g1, where h

is as g1 but h.i = l for some i ∈ A1,c, and
(γ2, g2.i, g2) ∈∼gs.

As previously discussed, the abstract system may over
approximate the concrete systems, i.e., it may be the case
that not every abstract path can be mapped to a concrete
path. In other words, if a specification does not hold in
the abstract system, then no conclusions can be drawn on
whether the specification holds in the arbitrary case. How-
ever, we can still verify an SS by identifying the systems
for which the abstract system captures precisely the con-
crete behaviours. These systems have the following prop-
erties: given enough agents, a concrete instantiation of the
system exhibits the “maximal” behaviour encoded in its ab-
stract system; additionally, every bigger system admits the
abstract behaviour as well. That is, we are interested in sys-
tems in which ACTL∗K\X specifications are satisfied on
a relatively small instantiation (the cutoff) and remain so
even if we add further agents to the system. Note that not
all swarm systems have the aforementioned properties. Still,
some systems of practical importance do. For example, in
the case of the AA we expect that a robot will be infinitely
often connected irrespective of the number of its peers as
long as this number is greater than or equal to α.

Following the above observations, if Ŝ(c − 1) ≤gs S(c),
for a CSS S(c), then conditions 1 and 2(a) of the gs-
simulation entail that every abstract path can be mapped to
a concrete path in S(c). Condition 2(b) entails that an ab-
stract path can always be mapped to a concrete path in any
CSS S(c′), for c′ > c. Consequently, these guarantees en-
tail that S(c) is a cutoff; therefore any behaviour exhibited
by S(c) is not invalidated in a bigger CSS. We now describe
the conditions of the gs-simulation in detail (see Figure 3).



2(a) γ l g

γ1 g1

γ2 l g2

2(b) γ l g

γ1 g1

γ2 l1 g2

∼gs ∼gs

Sequence of actions by agents not in
A1,m

A or AE action by an agent in A1,m

∼gs ∼gs

∼gs ∼gs

Sequence of actions
by agents not in A1,m

An agent that is at template state l in g can
move to a template state l1 at which a is enabled

a ∈ GS a ∈ GS

∼gs ∼gs

Figure 3: Conditions 2(a) (left) and 2(b) (right) of the gs-simulation. Thick arrows indicate the LHS of each condition whereas
regular arrows indicate the RHS.

Condition 1 insists on the equality of the template lo-
cal states of the agents that φ[m] refers to in related global
states. Condition 2 insists on the simulation of ActA1,m ac-
tions: whenever the abstract system can reach a state en-
abling an ActA1,m action, the concrete system can reach a
state enabling the same action. Note that a relation satisfy-
ing only requirements 1 and 2a (where 2a is also defined for
GS actions) can be used to show that S(c) stuttering simu-
lates Ŝ(c − 1), denoted Ŝ(c − 1) ≤ss S(c). The latter can
be used to show that S(n) ≤ss S(c) for any n ≥ c. That
is, if φ[m] is satisfied by S(c), then φ[m] is satisfied by ev-
ery S(n) for n ≥ c. This is because if S(n) ≤ss S(c), then
S(c) |= φ[m] implies S(n) |= φ[m] (Lomuscio, Penczek,
and Qu 2010). However, to show that c is a cutoff we also
need to show that S(c) ≤ss S(n) for every n ≥ c. The
difficulty in showing this is the potential blockage of global-
synchronous transitions in a bigger system. As the enabling
of a global synchronous action depends on the local state of
every agent in the system, it is not necessarily the case that
the extra agents in a bigger system can reach a local state en-
abling the GS action. This means that S(n) may not be able
to simulate the ActA1,m actions taken in S(c). Following
this observation, condition 2b of gs-simulation is defined to
prevent the blockage of global-synchronous actions.

To see this, consider (γ, l, g) ∈ Ĝ(c − 1) × L × G(c)
such that (γ, l, g) ∈∼gs, and consider g′ ∈ G(n) such that
g′.i = g.i for each i ∈ A1,c and g′.i = l for each i ∈
Ac+1,n. Now suppose that γ →X∗ γ

1 →a γ2 for some
a ∈ GS . Condition 2 gives g →Y ∗ g

1 →a g
2. Then, as no

GS action is performed in the path from g to g1, S(n) can
reach a state g′1 from g′ (by performing the same sequence
of actions in the path from g to g1) such that g′1.i = g1.i
for each i ∈ A1,m and g′1.i = l for each i ∈ Ac+1,n. Then
condition 2b implies that every agent in Ac+1,n can reach
the template local state of some agent in A1,c in g′1 thereby
enabling the action a. Given this we obtain the following.

Theorem 2. If Ŝ(c− 1) ≤gs S(c), then c is a swarm cutoff.

The above is our main theoretical result. If the gs-
simulation can be established on a given SS S for an m-
indexed formula φ[m], then by Theorem 2 the PMCP can
simply be solved by checking the finite number of concrete
systems S(m), . . . ,S(c).

4 Analysing the Alpha Algorithm
We implemented the technique described in the previ-
ous section into a novel version of the experimental
toolkit checker MCMAS-P (Kouvaros and Lomuscio 2013b;
MCMAS-P 2014). MCMAS-P takes as input an SS and its
corresponding abstract SS described in PISPL (Kouvaros
and Lomuscio 2013b). We chose PISPL as the input lan-
guage as it provides all the essential features, including tem-
plates, that we require to describe a swarm. Given an SS S
and an m-indexed specification φ[m] to check, MCMAS-P

constructs the abstract system Ŝ(m) and encodes it symbol-
ically. The underlying model-checker MCMAS (Lomuscio,
Qu, and Raimondi 2009) is called to verify the abstract sys-
tem against the φ[m]. Following this test, if φ[m] is satisfied
by Ŝ(m), we can then conclude (via Theorem 1) that φ[m]
holds on a concrete system of any size. If, however, φ[m] is
not satisfied by Ŝ(m), then the cutoff procedure is invoked.
For each step x = 0, 1, 2, . . ., the procedure encodes sym-
bolically the concrete system S(m+x+ 1) and the abstract
system Ŝ(m+ x). The BDD encodings of the transition re-
lations are used in a depth-first strategy to check the condi-
tions of the gs-simulation. Upon a successful termination of
the cutoff procedure, MCMAS is called to verify the concrete
systems S(m), . . . ,S(c), for a cutoff c, against the specifi-
cation φ[m]. The results of these checks enable the user to
conclude, by means of Theorem 2, whether or not the spec-
ification holds for a system of any size.

We encoded the swarm system SAA of the alpha algo-
rithm in PISPL and constructed its abstract system ŜAA. We
chose an instance of alpha algorithm where we instantiated
the sensor range to the value 1 and the alpha parameter to 2.
We also fixed the environment to be a 5×5 square grid. This
instance is of particular interest given its failure to satisfy
the connectedness property, as previously shown in (Dixon
et al. 2012), when three robots constitute the swarm. How-
ever, given the nature of swarms, connectedness may emerge
when additional agents are present and may continue to be
exhibited in any bigger system. Thus, we proceeded to in-
vestigate whether the connectedness property (expressed by
the 1-indexed formula φAA = ∀{v}KvGFconv) is satisfied
in the presence of additional agents.

To do this we invoked the verification procedure with in-
put SAA, appropriately encoded in PISPL, and ŜAA. The
procedure first established that ŜAA(1) does not satisfy



#Robots #States Time (s) Memory (KiB) φAA ?

1 423 1 12016112 No
3 (Cutoff) 177243 15 29925984 No

5 2.76× 1034 197 50101616 No
7 TIMEOUT TIMEOUT TIMEOUT TIMEOUT

Table 1: Verification results for the alpha algorithm.

φAA. Indeed, ŜAA is able to simulate the concrete system
of 3 agents, where, as described in (Dixon et al. 2012),
2 agents may initially go East and the remaining agent may
initially go West. In this case the pair of agents initially go-
ing East are afterwards always connected, in forward mode,
and moving East, whereas the agent initially going West is
afterwards is never connected, in coherence mode, and mov-
ing East. Following this, the verification procedure contin-
ued to establish that ŜAA(2) ≤gs SAA(3), thereby iden-
tifying a cutoff equal to 3. Finally, the procedure checked
whether SAA(x) |= φAA, for x ∈ {1, 2, 3}, returning true
in the case of x = 2 and false in all other cases. The case
of most interest is the cutoff case (x = 3) which allows
us to conclude that the alpha algorithm does not satisfy the
connectedness property for any system with greater than 2
robots.

The simulation test took approximately 9 minutes and
required 65 MB of memory on an Intel Core i7 machine
clocked at 3.4 GHz, with 7.7 GiB cache, running 64-bit Fe-
dora 20, kernel 3.16.6. Model checking the cutoff system
against φAA required approximately 15 seconds. In com-
parison, traditional model checking techniques would not be
able to solve the problem as they would have to consider an
unbounded number of concrete systems. Additionally, any
conclusion that can be drawn by traditional approaches is
necessarily limited to the specific case investigated. But as
we build bigger systems the verification step quickly be-
comes intractable, as shown in Table 1.

5 Conclusions
In this paper we presented a novel approach for the veri-
fication of robot swarms independently of the number of
robots in the swarm. Specifically, we put forward a sound
methodology for identifying cutoffs with respect to expres-
sive temporal-epistemic specifications. In many cases this
allows us to check swarms of arbitrary size by checking sys-
tems of a limited number of components. The implementa-
tion that we presented was used to show that the Alpha al-
gorithm for swarms is indeed not correct with respect to its
intended specifications. This was shown in the absence of a
collision avoidance mechanism. Collision avoidance mech-
anisms cannot be investigated by our methodology as it as-
sumes a finite environment only. We leave this for future
work.

Related work. A number of proposals have previously
been put forward to verify swarms via model check-
ing (Konur, Dixon, and Fisher 2012; Dixon et al. 2012;
Winfield et al. 2005). These approaches attempt to analyse a
swarm by verifying concrete instances of the system. While

these techniques can validate the properties of the particular
swarm under analysis, no guarantees can be drawn in princi-
ple on the behaviour of the swarm when a different number
of agents is present. In contrast, the methodology here put
forward aims to verify the system irrespective of the number
of agents present in the swarm.

Parameterised model checking techniques for a fragment
of the specification language here considered have previ-
ously been studied in the context of the analysis of network-
ing protocols (Emerson and Namjoshi 1995; 1995; Aminof
et al. 2014) and cutoff detection techniques have been dis-
cussed in the context of parameterised model checking for
reactive systems (Clarke, Grumberg, and Browne 1989;
Emerson and Kahlon 2000; Clarke et al. 2004; Emerson and
Kahlon 2000; Hanna, Basu, and Rajan 2009). In particu-
lar (Emerson and Namjoshi 1996; Clarke, Talupur, and Veith
2008; German and Sistla 1992; Sun et al. 2009) use counter
abstraction, as we do here, to represent any concrete sys-
tem of arbitrary size by means of an abstract counter system.
All these approaches differ from the one here put forward in
that they focus on the particular network topology analysed,
e.g., rings. Instead, we here base our analysis on the way
the synchronisation between the agents of the system can
happen. Additionally they are limited to temporal properties
only, whereas we here consider temporal-epistemic specifi-
cations. Because of this it is difficult to compare the results
even for the fragment of temporal logic that all approaches
include.

In previous work (Kouvaros and Lomuscio 2013a; 2013b)
we introduced a generic methodology for the verification of
unbounded multi-agent systems. However, the abstraction
methodologies we used there are entirely different; specif-
ically, (Kouvaros and Lomuscio 2013a) does not consider
pairwise synchronisation whereas (Kouvaros and Lomuscio
2013b) assumes that an agent’s action can be performed at
exactly one local state. As a result, robot swarms cannot be
analysed in either of these approaches.

While this paper is related to the techniques we discussed,
we are not aware of any work in the literature that would en-
able us to draw conclusions on the properties of the swarm
independently of the number of agents present. Much re-
mains to be investigated in this line. Most importantly the
conditions we assumed on the models enable us to inves-
tigate only a small fraction of all possible swarm systems.
In future work we plan to investigate the conditions under
which some of these restrictions can be overcome.
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