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ABSTRACT
We develop the theoretical foundations of a predicate ab-
straction methodology for the verification of multi-agent sys-
tems. We put forward a specification language based on
epistemic logic and a weak variant of the logic ATL inter-
preted on a three-valued semantics. We show that the model
checking problem for multi-agent systems in this setting is
tractable by giving a provably correct procedure which ad-
mits a PTime bound. We give a constructive technique
for generating abstract approximations of concrete multi-
agent systems models and show that the truth values are
preserved between abstract and concrete models. We evalu-
ate the effectiveness of the methodology on a variant of the
bit-transmission problem.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model checking

General Terms
Verification

Keywords
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1. INTRODUCTION
With an increasing number of applications of societal im-

portance adopting a multi-agent systems (MAS) approach,
there is an increasing need to verify formally that a MAS de-
sign is correct before deployment. Over the past ten years
a number of approaches have been put forward to verify
MAS by means of model checking [13]. These include ex-
plicit approaches [22, 4], symbolic techniques [20, 44] and
translations into SAT [29, 48]. Most methods that have
been introduced support agent-based specifications giving
prominence to the mental states of the agents, notably their
knowledge [19]. Symbolic approaches are normally consid-
ered to be the most powerful in terms of performance as they
can comfortably verify systems generating 1015 states and
beyond [20, 29, 36]. While these are large models, complex
MAS inevitably produce state-spaces that are considerably
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larger when not infinite. To overcome this difficulty abstrac-
tion techniques have been put forward [18, 15, 14] with some
success.

A considerable limitation of these approaches, however, is
that they address the verification of models of the system
and cannot be extended to the validation of actual MAS
programs. This hinders the automatic applicability of the
methods as any MAS needs first to be modelled before veri-
fication can take place. Techniques targeting the verification
of MAS code directly have been developed [47, 8, 5, 6]. How-
ever, their actual applicability has proven to be very limited
as scalability issues have severely affected their effectiveness
beyond small scenarios. They have also typically supported
only temporal specifications; any agent informational atti-
tude (e.g., beliefs, knowledge, etc.) has so far been treated
as a mere predicate and therefore nested statements cannot
be expressed.

Verifying code correctness is undecidable in general. One
of the leading techniques used in formal verification is pred-
icate abstraction [21]. Predicate abstraction involves auto-
matically generating Boolean predicates in key sections of
the code, typically by means of SMT calls [32], which can
be used to produce abstract models that under-approximate
and over-approximate the concrete models of the actual exe-
cutions. To reason about specifications on over- and under-
approximations temporal specifications are interpreted on
three or four truth values. Abstract models can be refined
(abstract states can be expanded into finer approximations)
if the truth value of a specification is not assessed to true or
false by the approximation considered.

In this paper we intend to lay the theoretical foundations
to develop a predicate abstraction technique for MAS spec-
ified by the strategic-epistemic logic ATLK. This includes
epistemic specifications including common knowledge [19]
and strategy constructs to represent what coalitions of agents
may bring about in the system [2]. As we target the effective
verification of MAS, efficiency is a key desideratum in our
set-up. For this reason we operate in a setting where ATL
operators are interpreted on non-uniform models [37]. This
enables us to obtain a PTime verification procedure albeit
at a cost of a non-standard interpretation of the ATL opera-
tors. In scenarios where the reading of these operators is not
suitable, we can simply use them to encode plain temporal-
epistemic specifications by means of the logic CTLK, the
combination of branching time logic CTL with epistemic
logic [40], which is strictly subsumed by ATLK.

Scheme of the paper. In Section 2 we present and
discuss the syntax and semantics for the novel three-valued



epistemic logic we develop and present an example. In Sec-
tion 3 we define and give a procedure for the model checking
problem in the three-valued setting we investigate. In Sec-
tion 4 we introduce abstract models to approximate the con-
crete models and study preservation results in the semantics
and between models. In Section 5 we introduce a construc-
tive methodology for producing an initial abstraction and
refine the model in case the verification is non-conclusive;
we give an example to illustrate the technique in Section 6.
We conclude in Section 7 where we also discuss related work.

2. THE THREE-VALUED LOGIC ATLK
In this section we put forward our rationale for the choice

of the specification language for MAS that we adopt in this
paper. Following these considerations we introduce a novel
three-valued logic for knowledge and exemplify its use.

2.1 Desiderata for the Specification Language
Differently from reactive systems whose specifications typ-

ically involve temporal properties only, MAS are specified in
terms of their informational states, notably the knowledge
of the agents in the system [19]. The logics most commonly
used [38, 40, 43] combine epistemic modalities with tempo-
ral operators. The assumptions on the underlying tempo-
ral model range from discrete [38] to continuous [35], from
linear [38] to branching [43], from state interpretations to
intervals [33]. Irrespective of the different expressive power
of the various temporal logics used, the rationale in a MAS
setting for including a temporal dimension beside epistemic
operators is clear: temporal logic provides a way for rea-
soning about a changing world and, in combination with
epistemic concepts, it can be used to specify the evolution
of the agents’ knowledge.

The past 10 years have also witnessed a growing atten-
tion to the need of specifying strategic properties arising
from the interaction within a MAS. The logic ATL [2], orig-
inally put forward to reason about the outcome of games,
has been widely adopted in the MAS domain and extended
to reason about what agents can enforce in an exchange [23,
27, 11]. Since ATL strictly subsumes the branching time
temporal logic CTL, it has gradually replaced it in several
model checking approaches to the verification of MAS [2,
23, 45, 30, 10]. Recent techniques have featured specifica-
tion languages even stronger than ATL, including Strategy
Logic [39, 25, 24, 12]. The computational complexity of
the model checking problem against ATL varies greatly; it
ranges from linear complexity in the size of the model to full
undecidability, depending on the assumptions made on the
observability of the global state and the agents’ memory.

While studies on the expressivity and complexity of pow-
erful specification languages make an important contribu-
tion to the area and guide us the in the tradeoff between
expressivity and efficiency, in this line of research we intend
to address the need for the practical verification of MAS.
Towards this end, we need to base our choice of a specifi-
cation language not only on expressivity but also, crucially,
on considerations of optimal efficiency. Indeed, due to the
difficulty of the state explosion problem [13], experimen-
tal results show that even a linear complexity upper-bound
against the model causes severe difficulties even for state-of-
the-art BDD-based model checkers for MAS.

From a computational complexity standpoint, the easiest

set up for ATL is complete information, where we to assume
that the strategies of the agents depend on the whole state
and not on their own private state only. In MAS this is
an unrealistic assumption as the agents have access to their
local state only. Unfortunately, incomplete information is
problematic; for example the model checking problem for
incomplete information and perfect recall, i.e., considering
local states as local histories, is undecidable [17]. A notable
set-up studied in the literature consists in considering in-
complete information with local memoryless uniform strate-
gies [28, 27]. Here it is assumed that the agents have access
to their own local states only, but their non-deterministic
strategies are selected consistently along a path. While this
seems an appealing framework, its model checking prob-
lem is ∆2

P complete against an explicit description of the
model [26]. Other sophisticated proposals have been made,
including richer operators for memory and forgetting [9], but
none of these have a PTime bound.

Given the reasons above we here choose to adopt a frame-
work where the agents have incomplete information and do
not admit perfect recall, the strategies are local and not uni-
form. This set up has already been adopted previously in a
two valued setting and referred to as “non-uniform” strate-
gies [45] . As we clarify below, the reading of the modalities
in this context is different from the usual one in ATL and
does not capture the concept of “strict enforcement” typical
of stronger versions of ATL. Our choice to adopt this setting
is due to the fact that it enjoys good expressivity while its
model checking problem is linear in size of both the model
and formula. We regard it as the most expressive combi-
nation between epistemic and strategy operators which still
has a PTime model checking problem. If the reading of the
ATL modalities is not suitable to a particular scenario, we
can use CTL which is strictly subsumed by the fragment we
consider; indeed our technique can more simply be reformu-
lated for the weaker logic CTLK.

Our intention is to lay the foundation for a predicate ab-
straction methodologies where abstractions and their refine-
ments are computed during verification. To do this we adopt
a three-valued semantics where formulas may be true, false,
or undefined at a given state.

2.2 Syntax and Semantics
We put forward a three-valued version of the logic ATLK,

ATLK3v for short, combining ATL modalities with epis-
temic modalities in a three-valued setting. The agents are
assumed to have incomplete information and their strategies
are based on their local states. We do not assume perfect
recall; these systems are often called“memoryless”. While as
described in Section 7 our set-up is different, we follow [34]
for some of the basic definitions.

Let Ag = {1, . . . ,m} be a set of agents and V be a set
of propositional variables. We use the letter Γ to denote
subsets of agents, e.g., Γ ⊆ Ag; by Γ we denote the comple-
mentation of Γ, i.e., Ag \ Γ. We use V to denote the set of
all the literals containing propositional variables from V, i.e.,
V = {q,¬q | q ∈ V}. We begin by introducing the models
we will be using in the rest of the paper.

Definition 1 (Interpreted systems). An interpreted
system is a tuple IS = ({Li, Acti, Pi, ti}i∈Ag, I ,Π) such that
for each agent i:

• Li is a set of possible local states;



• Acti is a set of possible local actions;

• Pi : Li → 2Acti \ {∅} is a local protocol;

• ti ⊆ Li×ACT × 2Li is a local transition relation with
ACT = Act1 × · · · ×Actm;

• I ⊆ L1 × · · · × Lm is a set of global initial states;

• Π : L1 × · · · × Lm → 2V is a labelling function such
that for any variable q and a state s = (l1, . . . , lm) we
either have q 6∈ Π(s) or ¬q 6∈ Π(s).

Observe that our definition of interpreted systems extends
the standard one [19] by admitting that a propositional vari-
able nor its negation may hold at a state. This will form the
basis for giving a three-valued interpretation on interpreted
systems.

For a tuple t = (t1, . . . , tm), by t.i we denote its i-th ele-
ment ti, with i ≤ m. We will use this notation to identify
individual local states and local actions.

For convenience we define models which are defined on
the set of global states reachable from I via T .

Definition 2 (Models). Given an interpreted system
IS = ({Li, Acti, Pi, ti}i∈Ag, I ,Π), its associated model is a
tuple MIS = (S, T , {∼i}i∈Ag, I, Π) such that:

• S ⊆ L1 × · · · × Lm is the set of global states reachable
via T from the set of initial global states I ⊆ S,

• T ⊆ S × ACT × S is a global transition relation such
that T ((l1, . . . , lm), a, (l′1, . . . , l

′
m)) iff for all i ∈ Ag we

have ti(li, a, l
′
i) and a.i ∈ Pi(li),

• ∼i⊆ S2 is such that s ∼i s′ iff s.i = s′.i, for all i ∈ Ag.

We omit IS in the subscript if it is clear from the context,
i.e., we write M for MIS . The intended meaning of s ∼i s′
is that the global states s, s′ are epistemically indistinguish-
able for the agent i [19]. We extend the notion to groups by
defining, for each group Γ, the relation ∼Γ= (

⋃
i∈Γ ∼i)

+,

where + denotes the transitive closure operator. For conve-
nience, we write a ≡Γ a

′ iff for all i ∈ Γ we have a.i = a′.i.
We only consider models such that for all global states

s ∈ S and joint actions a ∈ ACT such that a.i ∈ Pi(s.i) for
all i ∈ Ag, there exists an s′ ∈ S such that T (s, a, s′).

We now introduce the common syntax for the logics ATLK
and ATLK3v.

Definition 3 (ATLK specifications). The set of for-
mulas for the logics ATLK and ATLK 3v is defined from V
by the following BNF expression:
ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉Xϕ | 〈〈Γ〉〉(ϕUϕ) | 〈〈Γ〉〉Gϕ | Kiϕ |
CΓ′ϕ
where i ∈ Ag, Γ,Γ′ ⊆ Ag, Γ′ 6= ∅ and q ∈ V.

We use the standard abbreviations to define 〈〈Γ〉〉Fϕ,EΓϕ
and the Boolean connectives.

The formulas Kiϕ,CΓ′ϕ are read as “the agent i knows
that ϕ” and “in the group Γ′ it is commonly known that ϕ”,
respectively. Their reading is standard [19]. The formula
〈〈Γ〉〉Gϕ stands for “the agents in Γ may be able to ensure
that ϕ holds forever”; the meaning of the “until” modality
U is analogous. This reading is the one given in [45] for
ATL on non-uniform models and differs from some of the
literature on ATL which assumes a definition of strategies

on global histories. While our notion of the ATL modalities
does not generally represent enforcement, this is retained for
the next state operator “X” which can be read as “the agents
in Γ can ensure that ϕ holds at the next state irrespective
of the actions of the agents in Ag \ Γ”. For computational
complexity considerations as well as our previously discussed
need to ground strategies on local states, our requirements
are considerably weaker as we explain below.

Assume an interpreted system IS = ({Li, Acti, Pi, ti}i∈Ag,
I ,Π). A (local memoryless) strategy for an agent i ∈ Γ, or
simply a strategy, is a function fi : s.i→ 2Acti\{∅} such that
for each local state s.i ∈ Li we have fi(s) ⊆ Pi(s.i). Notice
that we do not assume perfect recall, i.e., all the strategies
depend on the current local state only.

Given a path p = s0s1 . . . , by pi we denote si, the i-th
element of p. Assume a set of agents Γ and an indexed set of
strategies FΓ = {fi | i ∈ Γ}. We say that a set of (infinite)
paths X is FΓ-compatible if it is a minimal non-empty set
of paths such that for each path p ∈ X and each position
j ≥ 0 there is a joint action a such that T (pj , a, pj+1), for all
i ∈ Γ, a.i ∈ fi(sj .i), and for all joint actions a′ ≡Γ a and all
states s′ such that T (pj , a′, s′), there exists a path p′ ∈ X
starting with p0 . . . pjs′. Let out(s, FΓ) be the family of all
FΓ-compatible sets of paths starting with s.

We do not assume uniformity [45, 41] in the definition of
paths. In other words we do not require that the action
choice of any agent i ∈ Γ in a path is always the same,
as long as it conforms to the strategy function fi, hence to
agent i’s protocol Pi.

Two-valued semantics.
Having fixed the above we can now provide the definition

for two-valued satisfaction.

Definition 4 (Two-valued Satisfaction). Assume
an interpreted system IS = ({Li, Acti, Pi, ti}i∈Ag, I ,Π), its
associated model M = (S, T , {∼i}i∈Ag, I, Π) and a global
state s ∈ S. We inductively define the two-valued satisfac-
tion relation |=2 as follows.

M, s |=2 q iff q ∈ Π(s)

M, s |=2 ¬ϕ iff M, s 6|=2 ϕ

M, s |=2 ϕ1 ∧ ϕ2 iff M, s |=2 ϕ1 and M, s |=2 ϕ2

M, s |=2 〈〈Γ〉〉Xϕ iff for some strategy FΓ, some X ∈
out(s, FΓ) and all p ∈ X we have
M,p1 |=2 ϕ

M, s |=2 〈〈Γ〉〉ϕ1Uϕ2 iff for some strategy FΓ, some X ∈
out(s, FΓ) and all p ∈ X, there is a
k ≥ 0 s.t. we have M,pk |=2 ϕ2 and
for all 0 ≤ j < k,M, pj |=2 ϕ1

M, s |=2 〈〈Γ〉〉Gϕ iff for some strategy FΓ, some X ∈
out(s, FΓ) and all p ∈ X, i ≥ 0 we
have M,pi |=2 ϕ

M, s |=2 Kiϕ iff for all s′ ∼i s we have M, s′ |=2 ϕ

M, s |=2 CΓϕ iff for all s′ ∼Γ s we have M, s′ |=2 ϕ

An interpreted system IS satisfies a property ϕ, written as
IS |=2 ϕ, iff for all the initial states s we have M, s |=2 ϕ.



Three-valued semantics.
We now introduce the logic ATLK3v. In ATLK3v, a for-

mula at a given state of an interpreted system can be true
(tt), false (ff) or undefined (uu).

Assume an interpreted system IS = ({Li, Acti, Pi, ti}i∈Ag,
I ,Π), its associated model M = (S, T , {∼i}i∈Ag, I, Π) and
a global state s ∈ S. The inductive definition of the three-
valued satisfaction |=3 is given below.

We assume the Kleene semantics for the standard boolean
connectivities.

M, s |=3 q =


tt iff q ∈ Π(s),

ff iff ¬q ∈ Π(s),

uu otherwise

M, s |=3 ¬ϕ =


tt iff M, s |=3 ϕ = ff

ff iff M, s |=3 ϕ = tt

uu otherwise

M, s |=3 ϕ1 ∧ ϕ2 =


tt iff M, s |=3 ϕi = tt for all i ∈ {1, 2}
ff iff M, s |=3 ϕi = ff for any i ∈ {1, 2}
uu otherwise

For the ATL modalities, we adjust the semantics of [34].

M, s |=3 〈〈Γ〉〉Xϕ =



tt iff for some strategy FΓ, some
X ∈ out(s, FΓ) and all p ∈ X,
we have M,p1 |=3 ϕ = tt

ff iff for some strategy FΓ, all X ∈
out(s, FΓ) and all p ∈ X we
have M,p1 |=3 ϕ = ff

uu otherwise

M, s |=3 〈〈Γ〉〉ϕ1Uϕ2 =



tt iff for some strategy FΓ, some
X ∈ out(s, FΓ) and all p ∈ X
there is k ≥ 0 s.t. M,pk |=3

ϕ2 = tt and for all j < k, M,pj

|=3 ϕ1 = tt
ff iff for some strategy FΓ, all X ∈
out(s, FΓ) and all p ∈ X, k ≥ 0

we have M,pk |=3 ϕ2 = ff or
there is j < k s.t. M,pj |=3

ϕ1 = ff
uu otherwise

M, s |=3 〈〈Γ〉〉Gϕ =



tt iff for some strategy FΓ, some
X ∈ out(s, FΓ) and all p ∈ X,
i ≥ 0 we have M,pi |=3 ϕ = tt

ff iff for some strategy FΓ, all X ∈
out(s, FΓ) and all p ∈ X there

is i ≥ 0 s.t. M,pi |=3 ϕ = ff
uu otherwise

Notice that in the cases above the requirements for tt are
very similar to the conditions in the two-valued semantics.
An ATL formula is ff if the complement of the agents in the
modality may be able to ensure the formula is ff.

For the knowledge modalities, we propose the following.

M, s |=3 Kiϕ =


tt iff M, s′ |=3 ϕ = tt for all s′ ∼i s
ff iff M, s |=3 ϕ = ff

uu otherwise

M, s |=3 CΓϕ =


tt iff M, s′ |=3 ϕ = tt for all s′ ∼Γ s

ff iff M, s |=3 ϕ = ff

uu otherwise

As above, note that the condition for tt is similar to the
one for the two-valued case. However, an epistemic formula
is ff if the nested formula’s valuation at the present state
is ff. A weaker alternative, compatible with the two-valued
semantics, is to assign M, s |=3 Kiϕ = ff iff there is a state
s′ ∼i s such that M, s′ |=3 ϕ = ff. Such definition, however,
would not enable us to ensure the transfer of the value ff
from the abstract to concrete model (Theorem 11 below),
an essential part of our abstraction technique.

We assign IS |=3 ϕ = tt iff for all s ∈ I we have M, s |=3

ϕ = tt, IS |=3 ϕ = ff iff there is s ∈ I such that M, s |=3

ϕ = ff, and IS |=3 ϕ = uu otherwise.
We now exemplify the above definitions.

Example 1. Let Ag = {1, 2}. Consider the interpreted
system IS = ({Li, Acti, Pi, ti}i∈Ag, I ,Π) such that

• L1 = {l=, l 6=}, L2 = {ε},

• P1(l=) = P1(l6=) = P2(ε) = Act1 = Act2 = {a1, a2},

• t1 = {(l, (ai, aj), l=) | l ∈ L1∧i = j}∪{(l, (ai, aj), l 6=) |
l ∈ L1 ∧ i 6= j}, t2 = {(ε, (ai, aj), ε) | i, j ∈ {1, 2}},

• I = {(l=, ε)}, Π((l=, ε)) = {q} and Π((l6=, ε)) = {¬q}.

q ¬q
(a1, a2), (a2, a1)

(a1, a1), (a2, a2)

(a1, a1), (a2, a2) (a1, a2), (a2, a1)

Consider the formula 〈〈1〉〉Xq and the initial state (l=, ε)
indicated in the figure by the incoming arrow. It can be
checked that agent 1 cannot enforce q in the next state as
agent 2 can use a different action from that of agent 1.
Therefore we have IS 6|=2 〈〈1〉〉Xq and not IS |=3 〈〈1〉〉Xq =
tt. Similarly, regardless on the choice of the agent 2, if
the agent 1 selects the same action at the initial state, then
the next state is (l=, ε). So it is not the case that IS |=3

〈〈1〉〉Xq = ff, and therefore IS |=3 〈〈1〉〉Xq = uu.
We have IS 6|=2 〈〈1〉〉Xq; so it is not the case that agent

1 may ensure q at the next state. We also have IS |=3

〈〈1〉〉Xq = ff; so it is not the case that agent 2 has a strategy
to avoid q.

Consider the formula K2q at the initial state. Since both
states of the model are indistinguishable for agent 2, we have
IS 6|=2 K2q and not IS |=3 K2q = tt. However, since the
initial state (l=, ε) satisfies q, it is not the case that IS |=3

K2q = ff; therefore we have IS |=3 K2q = uu.

Note that in the setting we consider the strategies in both
two-valued semantics and three-valued semantics can be re-
placed by agents’ protocols.

3. CHECKING MAS AGAINST ATLK3V

We give a definition of the model checking problem against
ATLK3v specifications and present a polynomial time algo-
rithm to solve it. We phrase this as a decision procedure.

Definition 5 (Model checking problem). Given an
interpreted system IS, an ATLK specification ϕ and b ∈
{tt,ff, uu}, the three-valued model checking problem involves
establishing whether IS |=3 ϕ = b.

We put forward Algorithm 1 to compute the truth value
of a formula ϕ given a state s in an interpreted system IS.



Algorithm 1 The model checking procedure for verifying
an IS against ATLK3v specifications.

1: procedure verify(IS, ϕ)
2: (Stt, Sff)← label(IS, ϕ)
3: if ∀s ∈ I.s ∈ Stt then return tt

4: if ∃s ∈ I.s ∈ Sff then return ff

5: return uu
6: procedure label(IS, ϕ)
7: if ϕ = q then
8: Stt ← {s | q ∈ Π(s)}, Sff ← {s | ¬q ∈ Π(s)}
9: else if ϕ = ϕ1 ∧ ϕ2 then

10: (S1
tt, S

1
ff)← label(IS, ϕ1)

11: (S2
tt, S

2
ff)← label(IS, ϕ2)

12: Stt ← S1
tt ∩ S2

tt, Sff ← S1
ff ∪ S2

ff

13: else if ϕ = 〈〈Γ〉〉Xϕ′ then
14: (S′tt, S

′
ff)← label(IS, ϕ′)

15: Stt ← preimage(IS,Γ, S′tt)
16: Sff ← preimage(IS,Γ, S′ff)
17: else if ϕ = 〈〈Γ〉〉(ϕ1Uϕ2) then
18: (S1

tt, S
1
ff)← label(IS, ϕ1)

19: (Stt, Sff)← label(IS, ϕ2)
20: repeat
21: S′tt ← Stt

22: Stt ← preimage(IS,Γ, Stt) ∩ S1
tt

23: Stt ← Stt ∪ S′tt
24: until Stt = S′tt
25: repeat
26: S′ff ← Sff

27: Sff ← preimage(IS,Γ, Sff) ∪ S1
ff

28: Sff ← Sff ∩ S′ff
29: until Sff = S′ff
30: else if ϕ = 〈〈Γ〉〉Gϕ′ then
31: (Stt, Sff)← label(IS, ϕ′)
32: repeat
33: S′tt ← Stt

34: Stt ← preimage(IS,Γ, Stt) ∩ Stt

35: until Stt = S′tt
36: repeat
37: S′ff ← Sff

38: Sff ← preimage(IS,Γ, Sff) ∪ S′ff
39: until Sff = S′ff
40: else if ϕ = Kiϕ

′ then
41: (S′tt, Sff)← label(IS, ϕ′)
42: Stt ← S \ {s | ∃s′.s′ ∼i s ∧ s′ 6∈ S′tt}
43: else if ϕ = CΓϕ

′ then
44: (S′tt, Sff)← label(IS, ϕ′)
45: Stt ← S \ {s | ∃s′.s′ ∼Γ s ∧ s′ 6∈ S′tt}
46: return (Stt, Sff)

Propositional variables are labelled immediately with true
and false. From those and by means of pre-image computa-
tions states are labelled with true and false for the relevant
ATL and epistemic modalities, whenever possible.

For brevity, Algorithm 1 assumes that we have the relation
∼Γ to compute CΓ; this can be obtained by means of fix-
point computation. The procedure preimage(IS, Γ, S′) used
in Algorithm 1 returns a set SX of states from which Γ can
enforce S′ in one step. Formally, s ∈ SX iff there is a joint
action a ∈ ACT and a state s′ such that T (s, a, s′) and for
all a′ ≡Γ a and for all s′′ if T (s, a′, s′′), then s′′ ∈ S′.

The algorithm can be shown to be correct.

Theorem 6. Consider an interpreted system IS, a state
s, an ATLK specification ϕ and (Stt, Sff) = VERIFY(IS, ϕ).
We have that IS, s |=3 ϕ = tt iff s ∈ Stt and IS, s |=3 ϕ = ff
iff s ∈ Sff .

Proof. The proof is by induction on ϕ. The basic case
and the Boolean cases are immediate. We prove the case for
ϕ = 〈〈Γ〉〉Xϕ; the others can be shown similarly.

Assume ϕ = 〈〈Γ〉〉Xϕ and let (Stt, Sff) = Verify(IS, ϕ).
For each state s ∈ Stt there is a ∈ ACT and a state s′ ∈ S
s.t. T (s, a, s′) and for all a′ ≡Γ a and all s′′ s. t. T (s, a′, s′′),
we have IS, s′′ |=3 ϕ = tt by the inductive hypothesis. Con-
sider any strategy FΓ = {fi | i ∈ Γ} such that a.i ∈ fi(s)
for all i ∈ Γ. There is a set X ∈ out(s, FΓ) s.t. p ∈ X and
all each path of X starts with ss′′ for some s′′ satisfying ϕ.
Therefore IS, s |=3 ϕ = tt.

If IS, s |=3 ϕ = tt, then there is a strategy FΓ and a FΓ-
compatible set X ∈ out(s, FΓ) such that for all p ∈ X we
have IS, p1 |=3 ϕ = tt. As X is FΓ-compatible, there is a
joint action a such that T (p, a, p1) for some path p ∈ X,
and for all joint actions a′ ≡Γ a and states s′′ such that
T (s, a′, s′′) we have IS, s′′ |=3 ϕ = tt. Therefore, by the
inductive hypothesis, we have s ∈ Stt.

From the above it follows, correctly, that IS, s |=3 ϕ = uu
if neither s ∈ Stt nor s ∈ Sff . Note that all operations in Al-
gorithm 1 are either basic set operations or existential preim-
age computations. It is known that these can be efficiently
implemented on BDD-based symbolic model checking [13].

Algorithm 1 can also be used to provide an upper bound
for the verification problem.

Theorem 7. Three-valued model checking interpreted sys-
tems with imperfect information and memoryless local strate-
gies against ATLK specifications is decidable in PTime.

Proof Sketch. For each subformula ϕ′ of ϕ, the func-
tion Label(IS, ϕ′) is run only once in the algorithm. Each
of the fixed-point computations in the algorithm terminates
after at most |S| steps. The function preimage(IS, Γ, S′) can
be computed in polynomial time simply by checking all the
states. Therefore, the computing time is polynomial.

The results in this section give a provably correct polynomial
time algorithm for the verification of ATLK3v formulas. Not
only is the algorithm attractive from a computational point
of view, but it is amenable to symbolic implementation for
efficient verification. In the next section we take this one
step further and define methodologies to reduce the explicit
model to more compact models.

4. ABSTRACTIONS
While the procedure put forward in the previous section

is linear in the size of the model, verifying MAS still suf-
fers from the state-space explosion, i.e., the fact that the
models grow exponentially in the number of variables and
agents in the system. To deal with this we use an abstrac-
tion methodology to reduce the size of the models consid-
ered. As we show below, this reduction generates an ab-
stract model which depends on the specific characteristics
of the interpreted system considered and the specification
being checked.

First we recall the definitions below from [34]. A func-
tion f is decomposable if for any x1, . . . , xm we have that
f((x1, . . . , xm)) = (f.1(x1), . . . , f.m(xm)), for some func-
tions f.i, i = 1, . . . ,m.



Definition 8 (State abstraction). Consider an in-
terpreted system IS = ({Li, Acti, Pi, ti}i∈Ag, I ,Π). A state
abstraction function is a surjective and decomposable func-
tion σ : S → Sσ, such that for each agent i and any two
local states l, l′ ∈ Li, if σ.i(l) = σ.i(l′), then Pi(l) = Pi(l

′),
for some set Sσ of abstract global states.

Given a state abstraction function σ, the state abstraction
of IS w.r.t. σ is the interpreted system ISσ = ({Lσi , Actσi ,
Pσi , t

σ
i }i∈Ag, Iσ,Πσ) such that Πσ(sσ) =

⋂
s∈σ−1({sσ}) Π(s),

Iσ = σ(I) and, for each agent i,

• Lσi = σ.i(Li),

• Actσi = Acti,

• Pσi (lσ) =
⋃
l∈σ.i−1({lσ}) Pi(l),

• tσi (lσ, a, l′σ) iff for some l, l′ such that σ.i(l) = lσ and
σ.i(l′) = l′σ we have ti(l, a, l

′).

Example 2. Consider an interpreted system with states
s1 labelled by {q, r} and s2 labelled by {¬q, r} such that
σ(s1) = σ(s2) = sσ. Then, r ∈ Πσ(sσ) as both s1 and s2

are labelled by r, but neither q ∈ Πσ(sσ) not ¬q ∈ Πσ(sσ).
Therefore, ISσ, sσ |=3 r = tt and ISσ, sσ |=3 q = uu.

The application of a state abstraction function results in
the reduction of the number of states in an interpreted sys-
tem, thereby generating an abstract one. One important
requirement of the state abstraction function is that it can
only merge states with the same protocol. In many applica-
tions this may be a significant limitation. To alleviate the
impact of this, we provide a further abstraction function,
called action abstraction. The goal of the action abstraction
function is to reduce the number of actions and therefore
the number of possible protocols in the system.

Definition 9 (Action abstraction). Consider an in-
terpreted system IS = ({Li, Acti, Pi, ti}i∈Ag, I ,Π). An ac-
tion abstraction function is a surjective and decomposable
function α : ACT → ACTα, for some set ACTα of ab-
stract joint actions.

Given an action abstraction function α, the action ab-
straction of IS w.r.t. α is an interpreted system ISα =
({Lαi , Actαi , Pαi , tαi }i∈Ag, Iα,Πα) such that Iα = I, Πα = Π,
and, for each agent i, all l, l′ ∈ Li and all aα ∈ ACTα,
we have Lαi = Li, Act

α
i = α.i(Acti), Pαi (l) = α.i(Pi(l))

and tαi (l, aα, l′) iff there is a ∈ ACT s.t. α.i(a) = aα and
ti(l, a, l

′).

In other words the application of an action abstraction
function results in the reduction of the number of actions in
an interpreted system, thereby generating an abstract one.
A full abstraction is obtained by combining the action ab-
straction with the state abstraction.

Definition 10 (Abstractions). Consider an inter-
preted system IS = ({Li, Acti, Pi, ti}i∈Ag, I ,Π). An ab-
straction function is a pair δ = (α, σ), where α is an ac-
tion abstraction function of IS and σ is an state abstraction
function of ISα.

Given an abstraction function δ = (α, σ), the abstraction
of IS w.r.t. δ is the interpreted system ISδ, i.e., the state
abstraction of ISα w.r.t. σ.

We can show that the truth values tt and ff are preserved
from abstract model to concrete model if the abstract model
is obtained from the concrete model by using the abstraction
function above.

Theorem 11. Let δ = (α, σ) be an abstraction function
for an interpreted system IS . Then, for any state s ∈ S

1. If Mδ
IS , σ(s) |=3 ϕ = tt, then MIS , s |=3 ϕ = tt.

2. If Mδ
IS , σ(s) |=3 ϕ = ff, then MIS , s |=3 ϕ = ff.

Proof Sketch. The proof is by induction on ϕ. We only
present the key cases here; the others can be shown similarly.

Case of ϕ = q. If Mδ
IS , σ(s) |=3 q = tt, then q ∈ Πδ(s).

By definition q ∈
⋂
s′∈σ−1(σ(s)) Πα(σ(s′)), and so q ∈ Πα(s).

Since Πα = Π, q ∈ Π(s), we conclude that MIS , s |=3 q = tt.
If Mδ

IS , σ(s) |=3 q = ff, then ¬q ∈ Πδ(s). By similar
considerations we can conclude that ¬q ∈

⋂
s′∈σ−1(s) Πα(s′),

so ¬q ∈ Πα(s) = Π(s) and MIS , s |=3 q = ff.
Case of ϕ = ¬ϕ′. If Mδ

IS , σ(s) |=3 ¬ϕ′ = tt, then
Mδ
IS , σ(s) |=3 ϕ′ = ff. By the inductive assumption MIS , s
|=3 ϕ′ = ff, and therefore MIS , s |=3 ¬ϕ′ = tt. Similarly, if
Mδ
IS , σ(s) |=3 ¬ϕ′ = ff, then MIS , s |=3 ¬ϕ′ = ff.
Case of ϕ = 〈〈Γ〉〉ϕ1Uϕ2. Assume that Mδ

IS , σ(s) |=3 〈〈Γ〉〉
ϕ1Uϕ2 = tt and let F δΓ = {fδi | i ∈ Γ} be a strategy such
that for some X ∈ out(σ(s), F δΓ) and for all pδ ∈ X, there is
k ≥ 0 s.t. Mδ

IS , p
k |=3 ϕ2 = tt and for all 0 ≤ j < k we have

Mδ
IS , p

j |=3 ϕ1 = tt.
Let FΓ = {fi | i ∈ Γ} where fi(l) = α−1(σ.i−1(fδi (σ.i(l))))

(notice that α−1 and σ.i−1 are the counter-images). One
can show using the inductive hypothesis that there exists
X ∈ out(s, FΓ) such that for all p ∈ X there is k ≥ 0 s.t.
MIS , p

k |=3 ϕ2 = tt and for all 0 ≤ j < k, MIS , p
j |=3

ϕ1 = tt. It follows that MIS , s |=3 〈〈Γ〉〉ϕ1Uϕ2 = tt.
Case of ϕ = Kiϕ

′. Assume thatMδ
IS , σ(s) |=3 Kiϕ

′ = tt.
Observe that if s1 ∼i s2, then σ(s1) ∼i σ(s2). Since for all
sγ ∼i σ(s) we have that Mδ

IS , s
γ |=3 ϕ′ = tt, then clearly

for all s′ ∼i s we have MIS , s
′ |=3 ϕ′ = tt, and therefore

MIS , s |=3 Kiϕ
′ = tt.

If Mδ
IS , σ(s) |=3 Kiϕ

′ = ff, then Mδ
IS , σ(s) |=3 ϕ′ = ff, so

MIS , s |=3 ϕ′ = ff and thus MIS , s |=3 Kiϕ
′ = ff.

In this section we have shown that constructions previ-
ously put forward in [34] for reasoning about ATL specifica-
tions with local strategies can be adapted to our present set-
ting where epistemic modalities are also present and strate-
gies are interpreted uniformly on the model.

5. MODEL CHECKING MAS
VIA ABSTRACTION REFINEMENT

While in the previous section we presented the under-
lying principles of three-valued abstraction on interpreted
systems, here we give a constructive methodology for gen-
erating and refining the abstract models from the concrete
model. Our proposed algorithm for checking whether an in-
terpreted system IS satisfies a specification ϕ is given by
Algorithm 2.

The procedure verify-abs first constructs an initial ab-
straction and performs a finite number of refinement steps
until one of two conditions holds: either no further refine-
ment can be performed (the refinement function returns the
identity) and the specification ϕ is undefined on the abstract
model, or ϕ is calculated to be either ff or tt. Observe that



Algorithm 2 The verification procedure.

1: procedure verify-abs(IS, ϕ)
2: δ ← δIIS(ϕ), result← uu
3: while δ 6= (id, id) and result = uu do
4: result←verify(ISδ, ϕ)
5: δ ←refine(IS, δ, ϕ)

6: return result

the procedure verify-abs uses verify which operates on the
three valued semantics.

Theorem 12 (Correctness). Let IS be an interpreted
system and ϕ be an ATLK specification. If verify-abs(IS, ϕ)

= tt, then IS |= ϕ; if verify-abs(IS, ϕ) = ff, then IS 6|= ϕ.

Proof Sketch. Observe from the constructions given be-
low that all refinements are abstractions as per Definition 10;
Refine can only be invoked a finite number of times (see
below). The results therefore follow by Theorem 11 and
Theorem 6 by observing that if MIS , s |=3 ϕ = tt, then
MIS , s |=2 ϕ and If MIS , s |=3 ϕ = ff, then MIS , s 6|=2 ϕ.
These two facts can be checked by induction on ϕ.

We now constructively define the initial abstraction δIIS(ϕ)
and the procedure Refine used above.

Assume an interpreted system IS = ({Li, Acti, Pi, ti}i∈Ag,
I ,Π). Let αΓ

IS be the action abstraction function α for IS
that unifies actions of all the agents not in Γ, e.g., for every
agent i ∈ Γ we define αΓ

IS .i(ai) = ai, and for every i 6∈ Γ we
let αΓ

IS .i(ai) = ε. Consider an action abstraction function α

and a set of literals V . Let σα,VIS denote the state abstrac-
tion function σ for ISα that unifies all the possible states
that agree on the labelling by variables in V , i.e., for each
agent i ∈ Ag, σα,VIS .i(l) = σα,VIS .i(l′) iff Pαi (l) = Pαi (l′) and
Π(l)∩V = Π(l′)∩V , where Π(l) =

⋂
s∈S,s.i=l Π(s). Finally,

define A(ϕ) as the set of agents in ϕ and V(ϕ) as the set of
propositional variables in ϕ.

Definition 13 (Initial abstraction). Let IS be an
interpreted system, ϕ be an ATLK specification. The initial
abstraction function for IS is the pair δIIS(ϕ) = (αIIS , γ

I
IS),

where αIIS = α
A(ϕ)
IS and γIIS = σ

αIIS ,V(ϕ)

IS . The initial ab-
straction of IS is the abstraction of IS w.r.t. δIIS(ϕ).

So the initial abstraction function groups together all the
actions of the agents not referred to in the specification ϕ;
all states with the same labelling and the same protocol are
then further collapsed. Clearly any initial abstraction is an
abstraction as in Definition 10; so Theorem 11 applies.

We conclude by presenting Algorithm 3 giving the refine-
ment procedure Refine which takes as input an interpreted
system IS, an abstraction function δ, a specification ϕ and

returns an abstraction function δ′. Intuitively if ISδ
I
IS(ϕ)

|=3 ϕ = uu, then δ′ refines δ by separating the states for
which the value of some subformula is uu.

In the procedure the set Sub(ϕ) stands for the set of all
the subformulas of ϕ (including ϕ itself) and � is any linear
order on Sub(ϕ) such that if ψ is a subformula of ψ′, then
ψ � ψ′. Let the set uuIS(δ, ϕ) be the set of subformulas of
ϕ that in at some abstract state of ISδ corresponding to at
least two concrete states have the unknown value.

As shown, refine computes the set ΦIS((α, σ), ϕ). If this
is not empty, the smallest element ψ is considered and all

Algorithm 3 The refinement procedure.

1: procedure refine(IS, δ = (α, σ), ϕ)
2: if ΦIS((α, σ), ϕ) 6= ∅ then
3: α′ ← α
4: Φuu = min≤(uuIS((α, σ), ϕ))
5: (Stt, Sff) = Label(ISσ,Φuu)
6: Suu ← {s ∈ S | σ(s) 6∈ Stt ∪ Sff}
7: for i ∈ Ag, li ∈ Li do
8: if ∃s ∈ Suu s.i = li then
9: if ∃s, s′ ∈ Suu.∃i ∈ Ag.σ.i(s.i) = σ.i(s′.i)

∧Π(s.i) = Π(s′.i) then
10: σ′.i(li)← (σ.i(li),Π(li))
11: else σ′.i(li)← li

12: else σ′.i(li)← σ.i(li)

13: else if α 6= id then

14: α′ ← id, σ′ ← σ
α′,V(ϕ)
IS

15: else α′ ← id, σ′ ← id

16: return (α′, σ′)

the abstract states sδ in which the value of ψ is uu are split.
When this operation can no longer be performed the action
abstraction function is refined. Since all sets considered are
finite, the procedure terminates.

6. THE BIT TRANSMISSION PROTOCOL
In this section we consider a variation of the bit trans-

mission protocol and show how the technique put forward
so far can be used to verify it. We assume the system to
be composed of three agents: a sender S, whose goal is to
send 32 bits to a recipient R, who receives the bits and once
all of these have been copied sends an acknowledgement to
the sender; and the communication channel CC that con-
trols whether messages are dropped. We refer to its original
formulation and analysis for more details [19, 42].

We model the protocol as an interpreted system IS as
follows. We take the communication channel agent as mod-
elled by a single state (LCC = {ε}) and four allowed actions,
ActCC = PCC(ε) = {−,←,→,↔} intuitively corresponding
to the direction in which communication is performed. The
local transition function is defined as standard tSS(ε, a, ε) for
all the joint actions a.

The sender S is modelled through 232 regular local states,
one for each possible message to be sent, and two special
states: ⊥ denoting an internal problem and X representing
a state when the message was delivered. The actions of S
are of the form bv

i , where i ∈ {0, . . . , 31} and v ∈ {0, 1}. An
action bv

i corresponds to sending the information that “the
value of i-th bit is v”. Formally, we consider the local states
LS = {0, 1}32 ∪ {⊥,X}, the local actions ActS = {bv

i | i ∈
{0, . . . , 31} ∧ v ∈ {0, 1}}, a fully non-deterministic protocol
PS(s) = ActS for all states S of the model, and a local
transition function tS(s, (aS, aCC, aR), s′) iff

• s = s′ and s ∈ {⊥,X}, or

• aCC ∈ {→,↔}, aR = ack, s′ = X, or

• s = b0b1 . . . b31, aS = bvi , v = bi, s
′ = s, and either

aCC 6∈ {→,↔} or aR 6= ack, or

• s = b0b1 . . . b31, aS = bvi , v 6= bi, s
′ =⊥.



The receiver R is modelled by considering 332 states, LR =
{0, 1, ?}32, and two actions, ActR = {ε, ack}. The proto-
col function is such that PR(s) = {ack} if s ∈ {0, 1}32

and PR(s) = {ε} otherwise. The transitions are given by
tR(b0b1 . . . b31, (b

v
i , aCC, aR), b′0b

′
1 . . . b

′
31) iff

• aCC ∈ {→,↔}, b′i = v and for all j 6= i, b′j = bj , or

• aCC 6∈ {→,↔} and for all j, b′j = bj .

The set of global initial states is given by I = {0, 1}32 ×
{ε} × {?32}, representing the fact that S starts with any
message to be sent and R has not copied any bit yet.

We use the propositional variable ACK to label the states
where the state of R is X, fail to mark the states where
the state of R is ⊥, Svi to denote the states of the form
(b0b1 . . . b31, ε, lR), where bi = v, and Rvi to indicate the
states of the form (lS, ε, b0b1 . . . b31) where bi = v.

By considering the global transition function from the ini-
tial state, we can compute the set of reachable global states
S for the model M associated to the interpreted system IS
here described. The size of S can be estimated as 432 ≈ 1019.
This is beyond what any modern symbolic model checker
would normally be able to compute.

We can use the logic ATLK defined earlier to state speci-
fications of the protocol. For instance we may be interested
to check whether S and CC may be able to ensure that
eventually R knows the value v of the i-th bit, for some
i ∈ {0, . . . , 31} and v ∈ {0, 1}:

Φ1 = (Svi → 〈〈{S,CC}〉〉FKRRvi )

Intuitively we would expect Φ1 to be satisfied. Naturally, S
is not on his own able to ensure the delivery of the messages.
Indeed, we would expect the specification

Φ2 = 〈〈{CC}〉〉G¬ACK

to be satisfied as without any fairness assumption CC could
simply block all messages.

Lastly, we may want to check whether S and CC may be
able to guarantee that the whole message is delivered:

Φ3 = 〈〈{S,CC}〉〉FACK

We illustrate the use of the abstraction technique above on
the interpreted system IS and the specifications Φ1,Φ2,Φ3.

The initial action abstraction for Φ1 collapses all the ac-
tions of R. The state abstraction generates an interpreted
system with four states only: S1 = {(sS1 , ε, sR1 ), (sS1 , ε, s

R
2 ),

(sS2 , ε, s
R
1 ), (sS2 , ε, s

R
2 )}. The initial states I are (sS1 , ε, s

R
1 )

and (sS2 , ε, s
R
1 ). It is easy to check that verify(IS1,Φ1) re-

turns tt on this small system. By Theorem 6 we can deduce
that M |= Φ1.

The initial abstraction for Φ2 results in an interpreted
system IS2 with two global states only S2 = {s, s′} such that
s satisfies ACK and s′ satisfies ¬ACK. The state s′ is the
only initial state; the transitions in the system are: t(s′, a, s′)
for all the possible joint actions a, and t(s′, (aS, aCC, aR), s)
for all the actions such that aCC ∈ {−,⇒}. Clearly, we
have that verify(IS2,Φ2) = tt which, as above, enables us
to conclude that M |= Φ2.

Verifying Φ3 leads us to the same initial abstraction IS3 =
IS2. The procedure Label(IS,Φ3) returns ({s}, ∅); so ver-

ify(IS3,Φ3) = uu. Verify-Abs therefore calls for the refine-
ment of IS3 by means of the Refine procedure that splits
the abstract states into the concrete states, resulting in an

interpreted system IS4. The procedure determines that the
smallest subformula whose value cannot be determined is
Φ3 itself and that its value is unknown at s′. Therefore, the
procedure splits the abstract state s′ into concrete states
leading to the interpreted system IS4. It can be checked
that Verify(IS4,Φ3) = tt. As before, it therefore follows
that M |= Φ3. Even after the refinement takes place on
the resulting IS4 all the states satisfying v are abstracted
into one abstract state only; so IS4 has 232 − 1 fewer states
than the concrete model. It can be shown that no smaller
abstraction would allow determining the truth value of Φ3.

In summary, the abstraction refinement here put forward
enabled us to determine the value of ATLK specifications on
models that would be too large to verify by means of any
state-of-the-art model checker.

7. CONCLUSIONS AND RELATED WORK
In this paper we have developed the theoretical under-

pinnings for a predicate abstraction methodology for verify-
ing MAS against epistemic specifications. We put forward
a temporal-epistemic specification language which includes
some features expressing a weak form of strategic reasoning;
we gave a three-valued semantics so that this can be used
in an abstraction setting and showed that, differently from
other approaches, its model checking problem has PTime
complexity. The initial abstraction and the refinement steps
are given constructively and can be computed automatically;
the scenario we discussed demonstrates potential significant
gains of the technique.

Abstractions preserving epistemic properties of MAS have
previously been introduced [14, 3, 31, 18]. However, all of
these rely on ad-hoc constructions in which human inter-
vention is required to generate the abstract model. Addi-
tionally, none of them is intended for three-valued model
approximations as we do here. Much closer to our approach
is instead [34] which markedly differs from the present in-
vestigation by addressing ATL specifications only. In con-
trast, we here show that these can be extended to the epis-
temic case. In addition to its increased expressivity, the
present setup also offers a very attractive PTime complex-
ity for the model checking problem, whereas this is ∆P

2 in
the case of [34]. This is essential for our future work in
which we plan to investigate the verification of MAS when
these are given by compact representations such as reactive
modules [1] and ISPL [36]. In this case our technique is
expected to have a PSPACE bound, whereas we would ex-
pect the technique from [34] to become doubly-exponential
making any concrete application problematic.

Further ahead we intend to apply these ideas to limited
classes of agent programs. Verification methods for MAS
programs have of course been discussed prominently in the
literature [16, 47, 5, 46, 7]. Even if these results have proven
useful, the performance of these is limited due to the state-
space explosion. One of the most promising techniques to
overcome this is predicate abstraction. We see the devel-
opment of MAS-oriented underpinnings as a necessary step
before predicate abstraction methodologies for MAS can be
implemented.
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