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Abstract. Artifact-centric systems are a recent paradigm to model and implement
business workflows. They describe data, processes, internal and external agents
and include mechanisms for data hiding and access control. GSM is a language
for the implementation of artifact-centric systems. Since GSM programs have
infinitely many states, their verification is challenging. We here present a predi-
cate abstraction technique that enables us to verify GSM programs against rich
specifications built on an epistemic, first-order variant of the u-calculus. We give
the theoretical underpinnings of the technique and present GSMC, the first model
checker for GSM that implements SMT-based, three-valued abstraction for GSM.

1 Introduction

Artifacts are structures that “combine data and process in an holistic manner” to describe
business interactions, typically in a service-oriented architecture [1]. The data component
is given by the relational databases underpinning the artifacts in a system, whereas the
workflows are described by “lifecycles” associated with each artifact schema. Artifacts
systems define complex workflow schemes based on artifacts. The system’s participants,
or agents, interact with the artifact system by performing events on it.

Differently from services where typically only the process interfaces are advertised,
in artifact-centric systems the data structures are also made public. Due to their ex-
pressiveness and flexibility, Artifact-centric architectures are increasingly being used
in variety of application areas including case management systems [2]. Artifact centric
systems are executed in a hub which provides the functionality for service execution. A
flexible and powerful language for modelling and executing artifact-centric systems is
the Guard-Stage-Milestone programming language (GSM). The open-source design and
runtime engine Acsi Hub [3, 4] is an environment whereby system orchestration and
choreography are executed.

If artifact-centric environments are to fulfil their promise to drive the future genera-
tion of data-intensive services, they need to be verifiable. This should involve not only
the hub itself governing the interactions between artifact calls, but also, and crucially,
the agents implementing the services in the system, as is normally done when reasoning
about services [5]. In addition to providing correctness guarantees and rapid prototyping,
techniques such as model checking can form the underpinnings for the implementation
of automatic service orchestration and choreography [6].



In this paper we develop verification methodologies for artifact-centric systems
implemented in GSM. Since GSM programs include data models, they are infinite
state programs; it follows that traditional model checking methods based on finite-
state machines cannot be applied to them. To address this problem we develop a novel
predicate abstraction methodology [7] for GSM defined on a three-valued semantics to
account for over- and under-approximation of the models. We also present GSMC, the
first model checker for GSM, that implements the technique discussed. We evaluate the
technique on a large industrial scale example.

Related Work. Several techniques for the verification of artifact-centric systems
have been put forward [8—13]. While these provide considerable insight in the decidability
and complexity of the verification problem, they do not provide a concrete verification
technique for actual systems. The first contributions concerning the practical verification
of GSM systems appeared in [14, 15]. These, however, are defined on coarse, user-given
abstractions of GSM models where little data is present and ad-hoc restrictions on
variable ranges are applied to obtain finite state systems. Additionally the specification
language used is limited.

Incomplete verification methodologies operating directly on the source code have
been developed in software verification. The abstraction techniques developed in this
context normally target reachability properties only. However, 3-valued abstraction can
be applied to specifications based on the u-calculus [16].

This paper extends existing work by providing 3-valued abstractions for GSM
programs specified by a first-order version of the epistemic p calculus. This enables
us to specify services not in purely propositional terms as it is traditionally done but,
instead, by referring to the underlying databases.

2 The Guard-Stage-Milestone language and Multi-Agent Systems

While GSM provides a language for the realisation of artifact-centric systems, GSM
on its own is not equipped with constructs for the implementation of external actors
operating on the system. In GSM these are abstracted by events reaching the system.
However, to verify the possible executions of the system we need to represent how
the agents interact with it. Artifact-centric Multi-Agent Systems (AC-MAS) were put
forward in [15] to provide a semantics for GSM and the behaviours of external agents.
We summarise these concepts below but refer to the cited literature for more details.
The Guard-Stage-Milestone (GSM) has recently been put forward as a declarative
language for implementing artifact systems [17]. GSM describes an artifact system I’
that depends on of artifact types that correspond to classes of key business entities. A
system comprises of a number of artifact instances of artifact types. Each type has an
information model, which gives an integrated view of the business data, and a hierarchical
lifecycle model, which describes the structure and evolution of the business process.
The artifact system interacts with its environment via events. The information model is
partitioned into the set of data attributes, which hold business data, and the set of status
attributes, which capture the state of the lifecycle model. Figure 1 illustrates a portion of
the lifecycle of a manufacturing process and represents the core concepts: The boxes
denote stages, which represent clusters of activity designed to achieve milestones (o)
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Fig. 1. A lifecycle model.

that represent operational objectives. A guard (o) triggers activities in a stage when a
certain condition is fulfilled. Both milestones and guards are controlled declaratively
through sentries. A sentry of an artifact instance ¢ is an expression x(¢) in terms of
incoming events, guards and milestones, and the status of the instance. In the example
above, the Stage ‘Collecting Parts’ contains ‘Research & Order’, which is triggered by
an external event; upon reaching the milestone ‘parts ordered’ the next stage ‘Receiving’
is activated.

The operational semantics for GSM is based on the notion of a business step (B-step).
This is an atomic unit that corresponds to the effect of processing one incoming event. A
B-step has the form of a tuple o = (X, e, X'), where e is an incoming external event
and X, X are snapshots that capture the current and next state of the information model
respectively.

The programming language GSM [4] provides the construct for the realisation of
GSM systems; the semantics of GSM programs is given in terms of B-steps.

Artifact-Centric Multi-Agent Systems. While GSM models the business artifacts,
agents model the possible interactions that external actors and services may have with the
artifact system. Below we summarise the key elements from [15] where a formalism for
defining the behaviour of the agents, and their access to the artifact system, is described.
The concepts of views and windows are used define which attributes and artifact instances
are visible to an agent; events represent external actions that cause a change in the system.
In the example above, views can be used to hide details like procurement of parts from a
customer, while allowing access to higher level information, e.g., the start and end of
the parts assembling process. textitWindow, instead, can be used to hide orders that do
not belong to a particular customer. While a view v and an event € are simple lists, a
window w; (¢) is a formula that is evaluated for a specific artifact instance ¢ and an agent
i. The instance is exposed to the agent only if w;(¢) evaluates to true. The behaviour of
an agent is given by its protocol p in terms of the visible state of the artifact system, and
the agent’s unique ID and set of private variables var.

We formalise an agent-based GSM system for a set of agents A operating on an
environment given by the artifact system £ through an Artifact-centric Multi-Agent
Systems (AC-MAS)[9]. An AC-MAS P = (S,Z, Act, 7, A), where S C Lg x Ly %

- X L, is the set of reachable global states, T is the initial state, Act = Actg X
Act; x --- x Act, is the set of actions, 7 : S x Act — 2% is the global transition
relation, and A : S — 24F is the evaluation relation for a set of propositions AP. A
global state (Ig,ly,...,l,) € S for the system is given in terms of the snapshot X' of



the artifact system for /g, and the accessible variables of each agent for [1,...,[,. We
also write [;(s) to extract the visible state for agent ¢ from a global state s € S. The
sets of actions Actg and Act; are directly defined by the events the system provides
and the permissions of the agents. The global transition relation 7 (s, «) with s € S and
«a € Act is given by the corresponding B-steps defined by GSM in combination with the
protocols g of the agents, where only one agent can interact with the artifact system at a
time while the others are idle.

The initial state Z is a global state with not artifact instances in X' and with all
private variables set to their initial value. We write s — s’ iff there exists an «, such
that s’ € 7(s, @); in this case s’ a successor of s. A run r from s is an infinite sequence
s¥ — st — ... with s" = 5. We write r[i] for the i-th state in the run and 7 for the set
of all runs starting from s. A state s’ is reachable from s if there is a run from s that
contains s, formally 3r" € r5 : 3i > 0 : r'[i] = s’. Note that portions of the global
state may not be visible to an agent. In line with the standard semantics of epistemic
logic [18], we say that the states s and s are epistemically indistinguishable for agent i,
or s ~; §,iff [;(s) = 1;(s'), i.e., if agent ¢’s local state is the same in s and s’

3 Three-Valued Abstraction for AC-MAS

Predicate abstraction [7] is a technique used to generate sound approximations of
infinite state systems by grouping together system states satisfying certain properties into
abstract states. May transition between abstract states correspond to possible transitions
between some of corresponding concrete states. This leads to an over-approximation
of the possible behaviour that is conservative for safety properties but may lead to
unsound results otherwise. Three-valued abstraction has been employed [19, 16] to
overcome these limitations. In three-valued abstraction a second transition relation (or
must relation) is introduced to encode when a change in the corresponding concrete states
must happen. This allows to concurrently maintain over- and under-approximations that
are conservative for both positive and negative specifications and allows to detect when
a result cannot be determined.

To extend this technique to AC-MAS, we introduce the three-valued semantics for the
epistemic p-calculus and replace 7 with 7,,,, the global may transition relation, and Ty,
the global must transition relation, to get P = (S,Z, Act, Tpn, Tar, A). Analogously to

must,

the concrete case, we write s — t (s =% ) for t € 7,,(s,a) (t € Tar(s,a)). Over- and

must

under-approximations for the epistemic relations are denoted as ~; and %} respectively.
This extended definition of AC-MAS allows us to define abstraction formally as:

Definition 1 (Abstraction). Ler P = (S, Z, Act, 7, Tas, A) and P' = (S, ', Act’,
T Thrr A') be AC-MAS over the same set A of agents and sets AP' C AP of proposi-
tions. We say that P’ is an abstraction of P if:

1. s € T' iff there exists s € I, such that s € y(s');

may

PN iff there exist s € y(s') and t € (t'), such that s — t;

2

St / . . must,

3. 825 tiff for each s € y(s') there exists t € y(t'), such that s 5 t;

4. s~y tiff there exist s € y(s'),t € ¥(t') such that s ~; t or there exists v’ such
. ) may

that s' ~5; u' and v’ ~; t';



5.8 % ifffor each s € y(s') there exists t € ~("), such that s *; t, and for each

t € y(t') there exists s € (s'), such that t %} s;
6. pe A(s) iff p € A(s) for each s € y(s');

where ~y : S — 2° is the concretisation function that maps each abstract state s' € S’
. may ! may
to the non-empty set of concrete states Sy C S it represents; —— and — are the
.. . . . musi / mus LRy
may transition relations in P’ and P respectively; ™ and - are the must transition

y must must

. ma . . . /
relations; ~; and ~; are the may epistemic relations; and ~; and ~; are the must
epistemic relations.

May transition relations in the abstract model P’ over-approximate may transition
relations in the concrete model P: whenever there is a may transition between two states
in P, there is is a transition between the corresponding abstract states of P’. Conversely,
must transition relations in the abstract model P’ under-approximate must transition
relations in the concrete model P; they are only created for concrete transitions that are
common to all of the states of P represented by the source abstract state.

We define may and must epistemic possibility relations in the abstract system simi-
larly to the temporal case; however, there are additional constraints due to the nature of
the relations. Specifically, we require both to be equivalence relations. This is achieved
by building the transitive closure for ~;, while relations in *5} that are not symmetric
are removed. By insisting on equivalence relations, we ensure that the usual KT45
axioms [18] for knowledge are satisfied in the abstract model.

Note that if the abstract may epistemic possibility relation were defined analogously
to abstract may transition relations, it would not necessarily be transitive. Therefore,
we define the abstract may epistemic possibility relation as the transitive closure of
this relation. Similarly, if the abstract must epistemic possibility relation were defined
analogously to abstract must transition relations, it would not be necessarily symmetric.
Therefore, we remove the abstract must epistemic possibility relations that are not
symmetric. The labelling of an abstract state is defined so that it is consistent with the
labelling of all the concrete states it represents. The bi-implication ensures that the
abstract labelling function is exact.

We use an extension of the epistemic j-calculus [20] as our specification language.
We use the observational semantics for the epistemic component K; in addition to the
standard p-calculus [21] and define the language £ in BNF notation as follows. Let AP
be a finite set of atomic propositions and ) a set of propositional variables, then:

pu=T|plZ|-p|leNe|Op| Kip | pZo|vZe

where p € AP and Z € V. Here K;p means agent i knows o [18].

The syntactic combinations ;12 and vZ are the least and greatest fix-point operators
respectively. An interpretation p : V — 2° assigns the free propositional variable Z
as a set of states. Any occurrence of Z in ¢ falls within an even number of negations.
Furthermore, we assume that formulas are closed and well-named, i.e., all propositional
variables are bound exactly once in any formula.

To evaluate a formula ¢, we compute sets of states such that a state s satisfies ¢
if s € [} a state s refutes ¢ if 5 € [[(p]];f)’p . In addition to satisfaction (tt) and
refutation (ff), we write L to express that the truth value is unknown. We define the



three-valued semantics for £ in line with [16] and extend it by the epistemic operator
K as follows:

Definition 2 (Three-Valued Semantics). Let P be AC-MAS. The three-valued seman-
tics of ¢ € L in P for an environment p, denoted [[@ﬂéw’p , is defined by a mapping
S — {tt,ff, L} such that:

tt, if s € [o]h "
[el3 7 (s) = < ff, if s € [o]5*

L, otherwise

The sets []5* € S and []}* C S for ¢ € L over P are defined as:

[Tle” = [TIE" =
[pli” = {8 €S:pe(s)} [pI%* = {8 €S:p¢ Als)}
[Z]¢" = p(Z) 215" = p(Z)
[[_‘QD]]M = [[‘P]]Z?p [[_‘<P]]ff7 = [[‘P]]n’
o1 Al ” = [l ? Nlpalk” L1 Awelf? = [orli” U [al
Dl ? = az([e]”) [Delf? = ex([e]f )

H,LLZ QO]]P r = lfp()\g IIQDH’P p[Z»—>g]) H,LLZ 90]]73 P gfp()\g [[SD]]'P P[Z»—)g])
[[VZ'QO]]n r= gfp()\g.ﬂgo]]zt)’p[ZHg]) [[VZ.(p]]ff’p = lfp(Ag[Sﬁﬂ;’;’p[ZHg])
Kl = axi([e]i) Kol = exi(llf ") U Iolf *

where for X C S:az(X) = {s | Vs :s = s = X} ex(X) = {s| I : s ™5
sSANXYaz(X)={s|Vs :s~; s = X} andexl( )={s |3 : s~ s ANX}
Intuitively, ax returns states whose may successors are all in X . In contrast, ex computes
all states for which at least one must transition exists. Similarly, ax; and ex; are the
corresponding operators for the epistemic relations for a given agent i and give the set of
the respective indistinguishable states. The definition for [K; cp]]g’p allows for a tighter
under-approximation since agents do not know ¢ in states where ¢ is false.

An AC-MAS P satisfies a formula ¢, or [P |i ¢] = tt, if all its initial states are
in [¢]7*. An AC-MAS P refutes o, or [P \é | = ff, if at least one initial state is in

[¢]=*. Otherwise we say [P }i ] = L. Note that the abstraction for AC-MAS models
P as defined above is consistent, i.e., [¢]y N @] = O for any ¢ € L. Therefore the set
[l can be computed as S\ ([¢] 4 * U []5 ).

Abstracting GSM. To instantiate the theory above, we now outline a methodology
for constructing abstract AC-MAS models from concrete GSM programs. This process
includes abstracting the data to build a finite model using predicates, as well as the
computation of the temporal and epistemic may and must relations. Observe that GSM
programs only regulate the evolution of the artifact-centric system in the presence of
external events and do not include a description of the agents’ behaviour with the system.
To account for the evolution of both we combine GSM programs with procedural agent
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descriptions, thereby obtaining a GSM-MAS program. We do not present the agents
descriptions here; we simply assume that they define the local states for the agents and
define their evolution, both in terms of the actions performed on the artifact-centric
system (or events) and the changes to their local state in the presence of actions. By
GSM-MAS we refer to the combined programs consisting of the GSM code and the
agents descriptions. It can be checked that AC-MAS provide a semantics for GSM-MAS
programs.

Given a GSM-MAS program P and a specification ¢ as input, we generate an
abstract P’ such that if checking P’ |= ¢ returns either frue or false, then the same result
also applies to P; if P’ |= ¢ returns undefined, then no conclusion can be drawn on P
and the abstraction needs to be refined.

States in the abstract system are represented by predicates, which are Boolean
variables that represent the validity of expressions in the concrete system. Predicates are
selected by analysing the GSM-MAS program and the specification to be verified. In
doing so we retain the status attributes of the lifecycles, as these are already Boolean, but
replace the potentially unbound data attributes. To capture key conditions in the system,
binary relations (=, #, <, <, >, >) or quantifications over sets of data (3, V) are selected
by syntactically analysing the GSM-MAS program to get an initial set of predicates p;.

In contrast to classical approaches, which build abstractions locally to single ex-
ecution blocks, the declarative nature of GSM-MAS programs and the quantification
over artifact instances results in predicates that are shared between instances or agents.
While predicates that are local to an artifact instance or agent can be treated as instance
variables, shared predicates need to be treated carefully to avoid incorrect abstractions
for the local states of the agents. Building the abstract state using data predicates along
with the original status attributes guarantees that the abstract system retains the same
structure, while maintaining an over-approximation of the data space of the concrete
system.

Since several concrete states correspond to an abstract state, temporal changes in
the abstract system can only approximate the corresponding changes in the concrete
data. Rather than giving the full procedure, instead we here compute the may and must
transition relations on a simple example. Consider the abstraction of a non-negative
integer counter with a single integer variable x that is initialised to 0 and gets incremented
by 1 at each step using the assignment  := x + 1. If we base our abstract states on



the predicates p : x < 3 and ¢ : x = 3, we have three possible abstract states, which
are shown in Figure 2. Between the abstract states pg and pq we have a may transition
because the concrete system can transition to a state that is in pg. There is no must
transition, however, because from a state in pg the concrete system can also transition
to a state that is still in pg. In contrast, all concrete states in pq transition to pg, which
means that we have both may and must transitions.

In line with existing literature in epistemic logic [18], the agents’ knowledge is
computed on the basis of the equality of their local components. In our case, however, the
agents’ local states are given by private variables, but also their view v and the window w.
In the labelling algorithm for computing the sets in which an epistemic formula holds, the
existential pre-image ~; (X)) of the set of global states X with respect to the appropriate
epistemic relation (~ or ¥} is computed by existential quantification of variables outside
of the view, and restriction to the window. The pre-image can be directly used to compute
[Kielg " since 5 ([e]”) = exi([elf?) = {s | 3" : s %} s A [io] ). This is
not the case for [K;@] ", where = (X) = {s | 3s' : s =} s/ A X}; in this case we
first compute the pre-image of [[Lp]}g”’ and then take its complement.

To build the abstract epistemic relations, views and windows have to be defined
in terms of the predicates for the abstract states. The window w can be expressed as a
formula using relations between variables. Since we build our set of predicates using
exactly those relations, we can build a direct mapping to an abstract function w’. In other
words, the abstract and concrete window functions represent the exact same states and
w(y(x)) = w'(x) for any abstract state .

The abstraction of the view v is less straightforward, however, as predicates may
use sets of variables that do not coincide with v, and in the case of shared predicates
may even relate to different instances and agents. This implies that an agent may be
able to determine the value of a predicate only for some states. To avoid computing v’
depending on the state, we compute two Sets Vpay and vy that give correct over- and
under-approximations of the epistemic relation.

For the over-approximation ~j;, we select only the local predicates for Vmay that
exclusively refer to visible variables in v. This ensures that an agent can distinguish two
states in the abstract system only if it has enough visibility in the concrete system to
determine the value of the predicates. We exclude shared predicates since one or more
of the referenced instances might be outside the window w and thus the predicate may be
unknown. Note that fewer predicates in v result in a larger set ~; (X), thereby ensuring
that an over-approximation is generated. This set is then restricted to the set [,y of
reachable states computed with ——, which represent the states possibly reachable in the
abstract model.

must

For the must transitions ~;, we need to ensure under-approximation; we stipulate
that s ~; ¢ if for each of the concrete states in s there is a concrete state in ¢ such that
there is an epistemic relation for agent ¢ between them. Intuitively, this means that we
need to consider every predicate for vy, that encodes at least one variable visible in
the concrete system. Note, however, that this may not be sufficient as, if the predicates
are not independent of each other, they may allow to infer information about a value
even if it is not visible to the agent. Consider the example in Figure 3 withp : x = 1

and ¢ : x > y with the visible variable y. In the concrete system, (z,y) = (1,1) is



must

distinguishable from (0, 0), but not from (0, 1). To compute ~; with visible predicate
q and only quantify p would result in a transition between pg and pg, which is not a
proper under-approximation because of the missing epistemic relation between (0, 0)
and (1, 1) in the concrete system. To ensure a correct under-approximation is generated,
we transitively select all predicates that share the variables with predicates already in
Umuse and also include shared predicates. Finally, we restrict ~; by Rus, computed by

—, which corresponds to the set of states that are known to be reachable in the concrete
system.

4 Implementation and Experimental Results

GSMC is an open source model checker that implements the technique described
above [22]. It is operated via a command line application written in C++ that uses the
CUDD library [23] for BDD operations and the SMT solver CVC4 [24] to help compute
the abstractions. GSMC uses binary decision diagrams (BDDs) to represent the sets of
states and the transition relations of the abstract model.

GSMC operates directly on GSM programs developed in the Acsi Hub [4], a web-
based application that supports the design and implementation of artifact systems. By
using the Acsi Hulb, users can design business artifacts with GSM lifecycles through a
design editor and then immediately deploy these programs on an execution engine. The
description of the agents and specification properties are supplied in plain text files.

GSMC supports specifications written in a temporal-epistemic logic with quantifi-
cation over artifact instances. The language, called Instance Quantified CTLK [15], or
IQ-CTLK, extends the usual epistemic branching time logic CTLK and has the following
syntax:

pu=plop|eVe | EXe|EGe | E(eUp) | Kip [Vz:Re |3z : Re

where R is the name of an artifact type and p is an atomic proposition over the agents’
private data and the attributes of active instances that are specified in terms of instance
variables bound by the quantification operators. The quantified instance variables range
over the active instances of a given artifact type R in the state where the quantification is
evaluated and must be bound.

We introduce a bound on the number of instances that can be generated and use
an overflow flag that indicates if the bound was reached during a run. The bound in
the number of instances restricts the possible behaviour of the system and may lead to
loss of soundness or completeness when the limit is reached. The bound can be revised
before any execution. Any IQ-CTLK formula to be verified is first rewritten into a CTLK
formula by replacing the quantification operators as follows:

Vo= /\ created(t) — ¢ dz:p= \/ created(t) N
verl’ el

where the expression created(t) checks if instance ¢ was created. This is required since
the new formula ranges over the actual instances, which are created dynamically at
run-time, and the number of active instances is not a priori known. The CTLK formula is



then translated to an epistemic p-calculus formula using the fixed point characterisation
of CTL [25]; the resulting specification is checked on the abstract model.

In the rest of the section we evaluate the tool. Both use cases are complete Acsi
Hub applications. We verify the temporal-epistemic properties of the systems and discuss
performance of the implemented techniques. All tests were conducted on a 64-bit Fedora
17 Linux machine with a 2.10GHz Intel Core i7 processor and 4GB RAM.

Evaluation: The Order-to-Cash scenario. This is an application in which a seller
schedules the assembly of a product based on a confirmed purchase order from a buyer
that requires several components, that are sourced from different suppliers. When the
product is assembled, a carrier ships the order to the buyer. The buyer can cancel a pur-
chase order at any time before the delivery. We refer to [17] for more details. The GSM
program consists of a single-artifact Acsi Hulb application with 10 data attributes, 9
stages, 11 milestones, and 12 events. We model a collection of components by introduc-
ing an integer counter. The process is considered complete when 3 components have
arrived. The following three agent roles interact with the artifact system: 1) a Buyer who
creates an artifact instance that represents the order; 2) a Seller who fulfils the order; and
3) a Carrier who ships the finished product to the Buyer.

We constructed several GSM-MAS with different numbers of agents and bounds on
artifact instances. We report on the verification of these systems against four temporal-
epistemic specifications. In the following Diogenes is an agent of role Buyer. The
first specification, Property 1, states that Diogenes knows that the product might be be
received via any of his orders as long as these are not cancelled, i.e., that there is no
deadlock in processing the order:

AG Vz : CustomerOrder((x.Buyerld # Diogenes N\ ~Diogenes.Cancelled)
— Kbpiogenes EF' x.Received) (1)
Property 2 states that Diogenes may come to know that a product is received for an

order with a different owner. This can be used to ascertain whether the orders are private
to the buyers:

EF 3x : CustomerOrder(x.Buyerld # Diogenes N Kpiogenes X.Received) 2)

Property 3 encodes the ability of an agent to deduce information it can not directly
observe by checking whether Diogenes always knows there are 3 PurchaseOrders
collected in all of his orders when the milestone Ready is achieved:

AG Yz : CustomerOrder((x.Ready N\ x.Buyerld = Diogenes)
— Kbpiogenes (x.PurchaseOrders = 3)) (3)
The last specification, Property 4, encodes the ownership of the order. It implies
that an agent other than Diogenes can cancel an order that belongs to Diogenes. This is
done by using a private variable, which is true only if Diogenes executed the Cancelled

event. We thus require that an order that belongs to Diogenes cannot be cancelled if this
variable is false:

EF 3x : CustomerOrder(x.Buyerld = Diogenes A x.Cancelled
A Diogenes.cancelled # 1) (4)



Table 1. Performance for different numbers of artifact instances ¢ and agents.

3 agents 15 agents
#. #may #must MB s  #may #must MB S

1 091e2045e2 55 021.65 e35.89 e2 69 2.1
2223e3527€2 78 09132 e61.55 e5106 4.6
3534e4545e3 93 4.81.03 e93.83 e7 124 319
4 1.28¢e6546¢e4 112 255799¢el119.02 €9 233 168.8
5 3.10e75.42e5 172 90.4 6.05¢e14 2.05 el2 463 596.2
6 7.57e8 5.36 e6 273 257.2 4.53 e17 4.57 el4 898 2014.2

We first verified the properties in the abstract system and measured the number of
may and must reachable states, memory used, and CPU time required. GSMC evaluated
Property 1 to be unknown, Properties 2 and 4 to be false, and Property 3 to be true in
the abstract model. Table 1 reports the performance for a system with 1 agent per role
and a system of 15 agents (6 Buyers, 5 Sellers, and 4 Carriers). We observe that there
is an order of magnitude of difference in the number of may and must reachable states;
this implies that there are specifications, such as Property 1, that cannot be determined.
However, the tool is still able to find answers to the other three properties. The results are
in line with our expectations, confirming the correctness of the GSM program against
said specifications.

For a comparison we disabled the predicate abstraction feature and verified the
same Order-to-Cash system under the same conditions. In this case GSMC evaluated
Properties 1 and 3 to be frue and Properties 2 and 4 to be false in the model, which is
consistent with the abstraction results. Note that the previously unknown Property 1 is
returned as true when predicate abstraction is disabled.

Table 2 presents the performance of the tool executed on the same machine, under
the same conditions. By comparing this table to Table 1, we see that verification of the
concrete model initially outperforms abstraction. This is because there is a constant
overhead from building the may and must temporal transitions by calls to the SMT solver.
However, as the model grows we clearly see the benefits of the abstraction methodology
as it reduces the number of states to be considered. For example, for 15 agents and 5
instances we have over two orders of magnitude reduction in the number of states to be
considered and an order of magnitude reduction in the verification time.

Although the tool does not support automatic refinement for the abstraction methodol-
ogy, by manually adding the predicates x. PurchaseOrders = 0, x. PurchaseOrders =
1, and x. PurchaseOrders = 2 we could refine the abstract model in such a way that
may and must reachable state spaces become equal to those of the concrete model. In
doing so Property 1 is no longer returned as unknown but true; this is in line with the
results obtained by verifying the concrete system.

The second evaluation scenario focuses on the management of research programs.

The scenario consists of three conceptual entities modelled as business artifacts:
CallForProposals represents the annual call of a funding program; Project encodes one



Table 2. Performance for different settings of the concrete system.

3 agents 15 agents
#, #states MB s #states MB s

1 1.17e2 27 0.1 292 e3 31 0.2
2371e3 52 0.7 416 e6 70 49
3 1.16e5 64 59 582¢e9 84 655
4 3.67e6 96 42.18.01el2 222 360.2
5 1.18e8 195 176.7 1.09 e16 539 1419.6
6 3.83e9 3755005 N/A N/A NA

project which starts as a proposal and, if successful, becomes a funded research project;
ReviewBoard governs the assembling of a review board for a specified research topic and
the reviews of all competing proposals. We focus on three roles: the Program Manager
initiates the process and confirms the board; the Program Staff Member supervises
projects on behalf of the funding agency, the Project Leader is responsible for a particular
proposal. The scenario was implemented in the Acsi Hub. We refer to [26] for detail.

The GSM program for this scenario is a significantly larger application than the
Order-to-Cash, as it consists of 45 stages, 56 milestones, and 19 events. For this reason
we here report only the interactions between the agents and the ReviewBoard artifact
type only, i.e., the types CallForProposals and Project are not analysed here. We also
restrict the number of agents to one per role. Nevertheless, GSMC builds the transition
relations for the whole GSM program.

An artifact instance is created when the agent Manager decides to set up a re-
view board. When the Manager confirms the assembled board, the lifecycle of the
ReviewBoard instance terminates. The agent Staff carries out several administration task,
including assembling and updating the review board. Both Manager and Staff can access
all artifact instances. In contrast, the agent Leader cannot observe any of them. Agents do
not set specific payloads; this implies we can examine all the possible non-deterministic
behaviours.

The first two specifications we analyse concern the simple reachability of stages and
milestones. Property 5 states that there is an instance of the ReviewBoard artifact type in
which eventually the stage SendProposalsToReviewers is open:

EF 3z : ReviewBoard(x.SendProposalsToReviewers) (5)

Property 6 encodes that there is an instance of ReviewBoard in which eventually the
milestone ReviewsTerminated is achieved. This means that an instance will terminate:

EF 3z : ReviewBoard(x.ReviewsTerminated) (6)

The next two specifications demonstrate the use of 3-valued abstraction on sets of
data. These formulas cannot be verified on concrete systems as sets of data cannot be
represented on concrete models. Property 7 states that there is an instance of ReviewBoard



Table 3. Performance results for 1 instance of the ReviewBoard artifact type.

Operation Result Memory Time
Computation of 7, and T/ v’ 395MB 33.16s
Computation of Ryqy and Ry v© 364MB  3.06s
Property 5 v’ 280MB 1.21s
Property 6 v’ 284MB 1.02s
Property 7 v' 278MB 0.80s
Property 8 v 272MB 0.92s
Property 9 v’ 312MB 1.54s
Property 10 X 320MB 2.22s

in which eventually the the active reviewers is equal to the specified number of reviewers
required:

EF 3z : ReviewBoard(x.Reviewers.size() = x.ReviewBoardSize) @)

Property 8 states that there is an instance of ReviewBoard in which eventually the set of
active reviewers contains a reviewer called Diogenes:

EF 3z : ReviewBoard(x.Reviewers.exists(FirstName = Diogenes)) )

The last two specifications concern reasoning about the knowledge of the agents. Prop-
erty 9 says that agent Manager knows there is a path where eventually the milestone
ReviewsTerminated is achieved:

Kuanager (EF 3z : ReviewBoard(x.ReviewsTerminated)) 9)

Finally, Property 10 encodes that agent Leader knows there is a path where eventually
the milestone ReviewsTerminated is achieved:

Kieader (EF Jx : ReviewBoard(x.ReviewsTerminated)) (10)

The data attributes of the concrete model are represented by 10 predicates in the
abstract model. The abstract model is then encoded by GSMC into BDDs by using 142
Boolean variables. As the construction of the transition relations requires three distinct
sets of Boolean variables, there are 426 Boolean variables in total. The may reachable
state space of the model spans over approximately 7.1 x 10? states, and its construction
requires 30 iterations. The must reachable state space has 8.4 x 107 states and it is built
in 12 iterations. The total time for the verification was 43.88s and the memory usage
peaked at 395MB.

Table 3 presents the performance of the individual operations undertaken by GSMC,
as well as the verification results. The first row reports the construction of the transition
relations, the second row shows the construction of may and must reachable state spaces,
and the remaining rows give the performance for the properties verified in this section.
Properties 5 to 9 are frue in the model. Property 10 is false in the model since the agent
Leader cannot observe the ReviewBoard lifecycle.



5 Conclusions

Artifact-centric systems have been put forward as an intuitive paradigm to model ap-
plications for businesses and services. Differently from process models, artifact-centric
systems give equal prominence to both the process model (i.e., the lifecycles) and that
information model (i.e., the data structures). GSM has been introduced as a programming
framework for artifact-centric systems and recently adopted as part of the OMG Case
Management Model and Notation standard [27]. This suggests its use may increase
considerably in the future.

In this paper we introduced a methodology for the verification of GSM systems.
The technique extends state-of-the-art methods in verification by providing a predicate
abstraction methodology to GSM. In addition to catering for GSM programs directly, we
support first-order quantification to refer to the data referenced by artifacts. Differently
from any other mainstream predicate abstraction technique we also support operators
expressing the knowledge of the agents in the system.

We implemented the technique in GSMC, the first model checker for GSM that
supports GSM’s information model. The checker supports GSM’s infinite models and
automatically generates, via SMT calls, finite abstract models that can be efficiently
encoded as BDDs and then verified. To evaluate the efficiency of the approach we
have discussed the experimental results obtained by using the checkers on sophisticated
use-cases generated by third-parties in the EU project ACSI. The approach as currently
implemented does not support recursion in the GSM programs. In the future we plan to
add partial support for basic recursive data types and automatic refinement.
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