
Finite Abstractions for the Verification of
Epistemic Properties in Open Multi-Agent Systems

Francesco Belardinelli
Laboratoire IBISC

Université d’Evry, France
belardinelli@ibisc.fr

Davide Grossi
Department of Computing
Liverpool University, UK
D.Grossi@liverpool.ac.uk

Alessio Lomuscio
Department of Computing

Imperial College London, UK
a.lomuscio@imperial.ac.uk

Abstract

We develop a methodology to model and verify
open multi-agent systems (OMAS), where agents
may join in or leave at run time. Further, we specify
properties of interest on OMAS in a variant of first-
order temporal-epistemic logic, whose characteris-
ing features include epistemic modalities indexed
to individual terms, interpreted on agents appear-
ing at a given state. This formalism notably allows
to express group knowledge dynamically. We study
the verification problem of these systems and show
that, under specific conditions, finite bisimilar ab-
stractions can be obtained.

1 Introduction
Modal temporal-epistemic logic has long been adopted as a
formalism for reasoning about multi-agent systems (MAS).
In its basic setting it consists of either the linear or the
branching version of discrete-time temporal logic, augmented
with knowledge modalities for the agents in the system.
Several properties of MAS (e.g., perfect recall, no learn-
ing, synchronicity) have been axiomatised on the widely
adopted semantics of Interpreted Systems [Fagin et al., 1995].
In the past decade several model checking methodologies
and toolkits that use temporal-epistemic specification lan-
guages have been developed [Penczek and Lomuscio, 2003;
Gammie and van der Meyden, 2004; Lomuscio et al., 2009].

Two key assumptions are made in the basic setting of the
formalism above. Firstly, facts are expressed in propositional
terms. Secondly, the number of agents is finite and given
at design time. As a consequence, the indexes of individ-
ual knowledge operators are constants in a finite set Ag of
agents, while the indexes for group knowledge operators are
finite subsets of Ag. Proposals have been made to over-
come the first limitation by introducing first-order versions
of temporal-epistemic logic both on quantified versions of
Interpreted Systems [Belardinelli and Lomuscio, 2012] and
on Artifact-centric Multi-agent Systems [Belardinelli et al.,
2014]. These approaches surmount the limits of a purely
propositional language by extending the syntax to fully-
fledged first-order formulas. In some cases completeness can
be retained [Belardinelli and Lomuscio, 2012] and verifica-

tion can be performed on finite abstractions [Belardinelli and
Lomuscio, 2013; Belardinelli et al., 2014].

Regarding the second limitation, proposals have been put
forward to consider a set of objects that vary at design time;
the set of agents is normally considered to be finite in each
system run. This is a sensible assumption in many scenarios,
but there are applications of MAS (e.g., e-commerce, smart
grids) where an unbounded number of agents may freely en-
ter and leave the system at run time. There is, therefore,
a need to account for the unbounded and possibly infinite
agents joining in or leaving an open MAS. In this setting it
is still of interest to reason about their evolution and what
they know individually and collectively. For example, in an
auction setting, such as fishmarkets [Rodrı́guez-Aguilar et al.,
1998], different agents attend different auctions at run time.
Nonetheless, all of them, however many they may be, will
eventually know what the reserve price for a particular good
is. Formally, such a temporal-epistemic specification can be
expressed in the proposed formalism as:

AG ∀x(Good(x)→ ∃y AF ∀z KzPrice(y, x)) (1)

(1) intuitively expresses that any good x has always a price
y that will eventually be learnt by all agents z currently at-
tending the auction. A key feature of this specification is that
agents appear as quantifiable terms in the logical language
and appear as such in the indexes of the epistemic operators.
In particular, compare the subformula ∀zKzPrice(y, x)) of
(1), where the quantification domain of ∀z changes depend-
ing on the state, with the standard temporal-epistemic for-
mula

∧
a∈AgKaPrice(y, x), which assumes Ag fixed. In this

paper we propose a formalism accounting for (1); we show
that, while the verification problem is undecidable in general,
bounded MAS admit finite abstractions.

Related Work. A quantified doxastic logic, with modal-
ities indexed by variables, was introduced in [Lomuscio and
Colombetti, 1996]. However, this focused on a 3-valued se-
mantics in view of providing sound axiomatisations. In con-
trast, here we consider a 2-valued semantics and the model
checking problem. Various classes of models and types
of quantifications have been developed recently to account
for Artifact-centric Systems [Belardinelli et al., 2012; 2014;
Hariri et al., 2013]. While our work is influenced by the
techniques introduced therein, none of these contributions
deals with open MAS with a possibly infinite number of

agents. In [Montali et al., 2014] agents appear in the re-
lational structure, but there is no explicit quantification on
them. This feature extends the expressiveness of the frame-
work we propose. There are also similarities with recent work
on parametrised verification of MAS [Kouvaros and Lomus-
cio, 2013b; 2013a]. However, parametrised verification aims
at establishing whether properties hold irrespective of the fi-
nite but unbounded number of agents in the system; here we
deal with an infinite set of agents which we only bound at
a state and not in the whole model. Closer to our approach
is [Belardinelli and Grossi, 2015] which introduces a seman-
tics for dynamic agent networks; however, epistemic opera-
tors are not discussed there.

Scheme of the paper. In Section 2 we formalise open
multi-agent systems in our setting and introduce a novel first-
order temporal-epistemic logic CTLKx. We state the model
checking problem for this setting (Section 2.2) and illustrate
the formal machinery with a use case (Section 2.3). Section 3
contains the main theoretical results on the existence of finite,
bisimilar abstractions. We conclude and point to future work
in Section 4.

2 Open Multi-agent Systems
In this section we present a formalism to reason about open
multi-agent systems (OMAS). A key feature of OMAS is that
agents may join and leave the system at run time. We then put
forward a first-order version of the temporal-epistemic logic
CTLK to reason about OMAS, that allows us to index knowl-
edge operators with variables. We conclude by formulating
the model checking problem for OMAS. Since we wish to ac-
count for possibly infinite domains of objects and agents we
import some basic terminology from related literature [Abite-
boul et al., 1995; Belardinelli et al., 2014].
Definition 1 (Database schema and instance) A database
schema is a finite set D = {P1/q1, . . . , Pn/qn} of predicate
symbols P with arity q ∈ N.

Given a (possibly infinite) interpretation domain X , a D-
instance over X is a mapping D associating each predicate
symbol P to a finite q-ary relation on X , i.e., D(P) ⊆ Xq .

For a database schema D, D(X) is the set of all D-
instances on X; while the active domain adom(D) is the fi-
nite set

⋃
P∈D{u1, . . . , uq ∈ X | 〈u1, . . . , uq〉 ∈ D(P)}

of all individuals occurring in some predicate interpretation
D(P). Further, the primed version of a database schema D
as above is the schema D′ = {P ′1/q1, . . . , P ′n/qn}. Then,
the disjoint union D ⊕ D′ of D-instances D and D′ is the
(D ∪ D′)-instance s.t. (i) D ⊕ D′(P) = D(P), and (ii)
D ⊕ D′(P ′) = D′(P). Hereafter, primed versions and dis-
joint unions are used to account for the temporal evolution of
a database from the previous state D to the next state D′.

2.1 Agents in OMAS
To introduce OMAS, we import some preliminary notions
from [Belardinelli and Grossi, 2015]. Hereafter we assume
a finite number of agent types T0, . . . , Tk. Each agent type
T comprises (i) a local database schema DT , and (ii) a finite
set ActT of parametric actions α(~x). Hence, agents of the
same type share the database schema and available actions.

For every agent type T , AgT , Ag′T , . . . are (possibly infinite)
sets of agent names. In the rest of the paper, the interpretation
domain X contains a set AgT of agent names for each type
T , i.e., X = Ag ∪ U for Ag =

⋃
type T AgT and some other

(possibly empty) set U of elements. We will also consider a
set Con ⊆ X of constants, including names for agents. To de-
scribe the temporal evolution of OMAS, we define protocols
for agent types. To do so, we first introduce isomorphisms on
database instances.

Definition 2 (Instance Isomorphism) Instances D ∈
D(X) and D′ ∈ D(X ′) are isomorphic, or D ' D′, iff for
some bijection ι : adom(D) ∪ Con 7→ adom(D′) ∪ Con,
(i) ι is the identity on Con; (ii) ι is type-preserving, i.e., for
every type T , ι is a bijection from (adom(D) ∪ Con) ∩ AgT
into (adom(D′) ∪ Con) ∩ Ag′T ; and (iii) for every P ∈ D,
~u ∈ Xq , ~u ∈ D(P) iff ι(~u) ∈ D′(P).

Whenever the above holds, we say that ι is a witness for
D ' D′ and write D

ι' D′ to state this explicitly. While
isomorphisms depend on the set Con of constants, in what
follows we consider Con fixed and omit it.

We now introduce the local protocol PrT for a type T .

Definition 3 (Protocols) Given domain X , PrT is a function
fromDT (X) to 2ActT (X), where ActT (X) is the set of ground
actions α(~u), for α(~x) ∈ ActT and ~u ∈ X |~x|.

By Def. 3 the protocol PrT returns a ground action in
ActT (X) for every DT -instance. In the rest of the paper we
assume the following requirement on protocols:

for all instances D,D′ ∈ DT (X), if D
ι' D′ then

α(~u) ∈ PrT (D) iff α(ι(~u)) ∈ PrT (D′) (∗)
So, by requirement (∗) isomorphic states allow “isomorphic”
ground actions. Most OMAS of interest satisfy (∗). For ex-
ample, in an English auction an agent may make a valid bid
as long as the bid is above the current best price.

We now introduce the notion of agent.

Definition 4 (Agents) Given an agent name a ∈ AgT of type
T , an agent is a tuple a = 〈DT ,ActT ,PrT 〉 where DT , ActT ,
and PrT are defined as above.

We assume a finite number of agent types, but we do not
assume a bound on the number of agents of each type in any
concrete instantiation of the system. This is common place
in OMAS, such as in services, auctions, etc., whereby en-
gineers have prior knowledge of the behaviour of the agent
types without knowing how many instances of each type will
be executed at runtime. We provide an example of this in Sec-
tion 2.3. Agents as in Def. 4 are related to the notion of agent
templates introduced in [Kouvaros and Lomuscio, 2013b;
2013a]. However, while the latter assumes that any concrete
run admits a finite number of agents built on these types, we
do not make this assumption here.

In the following an agent is often identified with her name;
therefore we write a = 〈Da,Acta,Pra〉 and omit the type. By
Def. 4 a local state l ∈ Da(U ∪ Ag) encodes the knowledge
of agent a about the elements in U as well as fellow agents
in Ag. Thus, a fundamental difference with the standard ap-
proach to multi-agent systems [Parikh and Ramanujam, 1985;

Fagin et al., 1995; Wooldridge, 2001] is that the agent’s in-
formation is structured as a relational database.

We can now introduce OMAS to represent the interactions
amongst agents, beginning with the notion of global state.

Definition 5 (Global States) Given a finite subset A ⊆ Ag
of agents ai = 〈Di,Acti,Pri〉 defined on domain X = U ∪
Ag, for i ≤ n, a global state is a tuple s = 〈l0, . . . , ln〉 of
instances li ∈ Di(X) s.t.

⋃
i≤n adom(li) ∩Ag ⊆ A.

Note that, while we admit an infinite number of agents
in existence, only a finite number of them can be active at
any given time, and different agents can be active at different
times, thus accounting for the openness of the system. Also
by Def. 5, a global state s comprises at least all agents ap-
pearing in its active domain adom(s) =

⋃
i≤n adom(li). For

instance, if agent a appears in the local state lb ∈ Db(X) of
agent b ∈ A, and thus a ∈ adom(s), then a also belongs
to A. By assuming a fixed enumeration of agents, we will
identify global states containing the same local states for the
same agents, possibly in a different order. Further, let ag be
the function that for any global state s = 〈l0, . . . , ln〉 returns
the set ag(s) = {a0, . . . , an} of agents s.t. li ∈ Dai(X) for
i ≤ n. By the requirement above on global states, for ev-
ery state s, adom(s) ∩ Ag ⊆ ag(s). We let G be the set⋃
n∈N(

∏
i≤nDai(X)) of all global states. As a consequence,

G is infinite whenever X is.
To account for the knowledge of agents, we say that states

s = 〈l0, . . . , ln〉 and s′ = 〈l′0, . . . , l′m〉, of possibly different
lengths, are epistemically indistinguishable for agent ai, or
s ∼i s′, iff ai ∈ ag(s), ai ∈ ag(s′), and li = l′i. Since
s and s′ can be tuples of different length, an agent does not
generally know the exact number of active agents at each mo-
ment, nor their identity. Observe that if a /∈ ag(s), then the
set {s′ ∈ G | s′ ∼a s} is empty. That is, if agent a is not
active in state s, then no state is indistinguishable for her. We
elaborate more on this point in Section 2.2.

Finally, we introduce open multi-agent systems.

Definition 6 (OMAS) Given a (possibly infinite) domain
X = Ag ∪ U containing a (possibly infinite) set Ag =
{a0, a1, . . .} of agents ai = 〈Di,Acti,Pri〉, an open multi-
agent system is a tuple P = 〈Ag,U, I, τ〉 where

• I is the set of initial states s0 for some finite ag(s0) ⊆ Ag;
• τ : G × Act(X) 7→ 2G is the global transition function,

where Act is the set of joint (parametric) actions, and
τ(〈l0, . . . , ln〉, 〈α0(~u0), . . . , αn(~un)〉) is defined iff
αi(~ui) ∈ Pri(li) for every i ≤ n.

An OMAS describes all system’s executions from an initial
state s0 ∈ I , according to the global transition function τ ,
which returns the successor states τ(s, α(~u)) ⊆ G given the
current state s and joint ground action α(~u) by all agents in s.
Since the domain X is typically infinite, OMAS are infinite-
state systems in general. Specifically, OMAS are open and
dynamic as global states may be tuples of different length,
comprising different agents. Differently from most literature
on MAS [Parikh and Ramanujam, 1985; Fagin et al., 1995;
Wooldridge, 2001], which assumes that the set of agents is
finite and fully specified at design time, here the successor

states returned by the transition function may contain fewer
or more agents w.r.t. the current state.

We now state a requirement on joint actions in OMAS. To
introduce it, we first extend isomorphisms to global states.
Definition 7 (State Isomorphism) The global states s ∈ G
and s′ ∈ G′ are isomorphic, or s ' s′, iff for some bijection
ι : adom(s) ∪ Con ∪ ag(s) 7→ adom(s′) ∪ Con ∪ ag(s′), for
every aj ∈ ag(s), ι is a witness for laj ' l′ι(aj).

Any function ι as above is a witness for s ' s′, also in-
dicated as s

ι' s′. As for instance isomorphisms, ' is an
equivalence relation, and by Def. 7 isomorphic states are tu-
ples of the same length. In the rest of the paper we impose the
following requirement on the transition functions in OMAS:

for all states s, s′ ∈ G, s
ι' s′ implies that t ∈

τ(s, α(~u)) iff ι(t) ∈ τ(s′, α(ι(~u))) (+)
Similarly to protocols, requirement (+) guarantees that ac-
tions performed with “isomorphic” values in isomorphic
states, also return isomorphic states. In Section 2.3 we will
discuss an OMAS satisfying (+); but similar assumptions are
common place in database theory and the theory of program-
ming languages [Hariri et al., 2013; Deutsch et al., 2007].

We now introduce some useful notation. We define the
transition relation s → s′ on global states iff s

α(~u)−−−→ s′ for
some joint ground action α(~u), i.e., s′ ∈ τ(s, α(~u)). An s-
run r is an infinite sequence s0 → s1 → · · · , with s0 = s.
For n ∈ N, we set r(n) = sn. A state s′ is reachable from
s iff s′ = r(i) for some s-run r and i ≥ 0. Hereafter we en-
force seriality on the transition relation→ by assuming skip
actions. Further, we introduce S as the set of states reach-
able from some initial state s0 ∈ I . Since the domain X
may be infinite, the set S of reachable states is also infinite in
principle. Indeed, OMAS are infinite-state systems in gen-
eral. Finally, we will refer to the global database schema
Ds = D0 ∪ · · · ∪ Dn of a state s = 〈l0, . . . , ln〉, and the
corresponding Ds-instance Ds s.t. Ds(P) =

⋃
i≤n li(P), for

P ∈ Ds. Therefore, we suppose that each agent has a truth-
ful, yet limited, view of the global database Ds. Also, the
disjoint union s ⊕ s′ is defined as state s′′ = 〈l′′0 , . . . , l′′m〉
on ag(s) ∪ ag(s′) s.t. (i) if ai ∈ ag(s) ∩ ag(s′) then l′′i =
li ⊕ l′i; (ii) if ai ∈ ag(s) \ ag(s′) then l′′i = li; and (iii) if
ai ∈ ag(s′) \ ag(s) then l′′i = l′i.

2.2 The Specification Language FO-CTLKx

We now introduce FO-CTLKx, a first-order extension of
the temporal epistemic logic CTLK, as a specification lan-
guage for OMAS. Differently from other quantified temporal-
epistemic logics [Belardinelli et al., 2014], FO-CTLKx fea-
tures an expressive formulation of the epistemic operators
that can be indexed by individual terms. Below we consider
a set Var of individual variables containing a set VarAg of
variables for agents, as well as the database schema D =⋃
type T DT . Terms t, t′, . . . are either variables or constants

in Con.
Definition 8 (FO-CTLKx) The FO-CTLKx formulas are
defined in BNF as follows:
ϕ ::= P (~t) | t = t′ | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ |

EϕUϕ | Kaϕ | Kzϕ

where t, t′ are terms, P ∈ D, a ∈ Con∩Ag, z ∈ VarAg , and
~t is a q-tuple of terms.

The temporal formulas AXϕ and AϕUϕ′ (resp. EϕUϕ′)
are read as “for all runs, next ϕ” and “for every (resp. some)
run, ϕ until ϕ′”. The epistemic formula Ktϕ means that “the
agent denoted by t knows ϕ”. The fact that epistemic modal-
ities are indexed to terms represents a significant difference
w.r.t. standard approaches. Free and bound variables are de-
fined as standard, as well as sets var(φ) (resp. fr(φ), con(φ))
of all variables (resp. free variables, constants) in φ. Notice
that z ∈ fr(Kzφ) and a ∈ con(Kaφ). The same symbols
are sometimes used to refer to individual variables and action
parameters, the context will disambiguate.

To define the satisfaction of an FO-CTLKx formula on an
OMAS, we introduce the notion of an assignment σ : Var 7→
X s.t. for every z ∈ VarAg , σ(z) ∈ Ag. We denote by σxu the
assignment s.t. (i) σxu(x) = u; and (ii) σxu(x

′) = σ(x′) for
every x′ different from x. Also, σ(c) = c for all c ∈ Con.

Definition 9 (Semantics of FO-CTLKx) We define whether
an OMAS P satisfies a formula ϕ in a state s according to as-
signment σ, or (P, s, σ) |= ϕ, as follows (clauses for propo-
sitional connectives are omitted as straightforward):

(P, s, σ) |= P (~t) iff 〈σ(t1), . . . , σ(tq)〉 ∈ Ds(P)
(P, s, σ) |= t = t′ iff σ(t) = σ(t′)
(P, s, σ) |= ∀xϕ iff for all u ∈ adom(s) ∪ ag(s), (P, s, σxu) |= ϕ
(P, s, σ) |= AXϕ iff for all s-runs r, (P, r(1), σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all s-runs r, (P, r(k), σ) |= ϕ′

for some k ≥ 0, and for all j,
0 ≤ j < k implies (P, r(j), σ) |= ϕ

(P, s, σ) |= EϕUϕ′iff for some s-run r, for some k ≥ 0,
(P, r(k), σ) |= ϕ′, and for all j,
0 ≤ j < k implies (P, r(j), σ) |= ϕ

(P, s, σ) |= Kaϕ iff for all s′ ∈ S, s ∼a s′⇒ (P, s′, σ) |= ϕ
(P, s, σ) |= Kzϕ iff for all s′ ∈ S, s ∼σ(z) s′⇒ (P, s′, σ) |= ϕ

A formula ϕ is true at s, or (P, s) |= ϕ, if (P, s, σ) |=
ϕ for all assignments σ; ϕ is true in P , or P |= ϕ, if
(P, s0) |= ϕ for all s0 ∈ I . We remark that Def. 9 adopts
an active domain semantics, where quantifiers range over
the set adom(s) ∪ ag(s) of active individuals and agents.
This is an extension to agents of the standard assumption
in database theory, also used in data-aware systems [Belar-
dinelli et al., 2014; Hariri et al., 2013]. Also, notice that the
active domain may vary at each state. Furthermore, by def-
inition of epistemic indistinguishability, if a /∈ ag(s) then
(P, s, σ) |= Kaϕ, for all formulas ϕ, as for no s′ ∈ S,
s′ ∼a s. In other words, epistemic formulas are vacuously
true for agents not in the active domain of the state consid-
ered. So, for an epistemic formula not to be satisfied, it is
required that an agent in the active domain does not know the
fact in question.

Finally, we state the model checking problem for OMAS
with respect to the specification language FO-CTLKx.

Definition 10 (Model Checking Problem) Given an OMAS
P and an FO-CTLKx formula ϕ, determine whether for every
initial state s0 ∈ I , (P, s0, σ0) |= ϕ for some assignment σ0.

Def. 10 assumes that the transition function τ is given as
a computable function, and that we have finitary descriptions

for the set I of initial states and the domain X . These re-
quirements are normally fulfilled in cases of interest (see Sec-
tion 2.3). Moreover, the specification ϕ is typically an FO-
CTLKx sentence, with no free variables. Hence, the model
checking problem reduces to determine whether P |= ϕ.
Model checking general data-aware systems is known to be
undecidable [Deutsch et al., 2007]. In [Belardinelli et al.,
2012; 2014] this problem is proved decidable for bounded
and uniform systems. However, all these contributions as-
sume that the set of agents is fixed at design time. In [Belar-
dinelli and Grossi, 2015] preliminary results on the verifica-
tion of a particular class of OMAS are presented, but without
considering the epistemic dimension.

2.3 Use Case: Knowledge in open MAS networks
We now illustrate the formalism introduced by means of an
example on agent networks. In [Belardinelli and Grossi,
2015] it is shown how a non-probabilistic variant of the SIR
network diffusion model (see [Jackson, 2008, Ch. 7]) can
be formally verified against first-order, purely temporal spec-
ifications. In the SIR model a group of agents connected in
a network structure goes through three different stages dur-
ing an ‘epidemic’ involving the spread of diseases, ideas, in-
formation, or similar social phenomena. First, each agent is
susceptible to be infected; she may actually get infected at a
certain point depending on whether any of her neighbors in
the network are also infected; then an agent will eventually
recover. OMAS can be used to encode open and dynamic
SIR models, also incorporating the epistemic aspects of dif-
fusion. The specification language FO-CTLKx allows us to
express properties of SIR models concerning: (i) how knowl-
edge influences diffusion through the network; and (ii) how
knowledge itself spreads within the system.

Let a binary predicate N denote the network structure, so
N(x, y) means that agents x and y are connected; while the
unary predicates Sus, Inf and Rec denote the properties of be-
ing susceptible, infected, and recovered respectively. As ex-
amples of the first group of properties consider the following
formulas:

AG ∀x, y(Kx(Inf(y) ∧N(x, y))→ AF¬N(x, y)) (2)
AG ∀x(KxSus(x)→ AFAG∀y(N(x, y)→ Rec(y))) (3)

Formula (2) states that it is always the case that if an agent x
knows that she is connected to an infected agent y, then she
will part at some point in the future. Formula (3) states that
it is always the case that if an agent x knows she is suscep-
tible, then eventually she will always be connected only to
recovered agents.

We stress the fundamental difference between a quantified
formula ∀xKxφ, which express dynamically the joint knowl-
edge of φ for all active agents in a given state s, and the stan-
dard, static epistemic formula Eφ =

∧
a∈AgKaφ. Actually,

for Eφ to be a formula, the set Ag of agents has to be finite
and specified at design time. Moreover, a formula such as
AG ∀xKxφ refers to the knowledge of a possibly different
group of active agents at each time.

As examples of the second group of properties above con-

sider the following formulas:

AG ∀x(Rec(x)→ AF ∃yKyRec(x)) (4)
AG ∀y(Inf (y)→ (AF ∀x(N(x, y)→ KxInf (y)))) (5)

Formula (4) states that it is always the case that if an agent is
recovered, then this fact won’t be ignored, i.e., someone will
know it. Formula (5) states that it is always the case that if
some agent y is infected, then all agents that are connected to
y will eventually know this fact. We stress once more that to
express epistemic properties, such as (2)-(5) above, in open
MAS we do need epistemic modalities indexed by terms and
quantification, as the set Ag of agents is infinite in general.

In the next section we develop techniques to model check
OMAS against such first-order temporal-epistemic specifica-
tions.

3 Bisimulation
In Section 2 we stated that model checking OMAS against
FO-CTLKx specifications is undecidable in general. To sin-
gle out semantical fragments with a decidable model check-
ing problem, we first introduce a notion of bisimulation and
show that bisimilar OMAS satisfy the same FO-CTLKx for-
mulas. The results presented in this section build upon pre-
vious work in the literature [Belardinelli et al., 2012; 2014;
Belardinelli and Grossi, 2015]. However, the present set-
ting differs, as we consider open MAS, where agents can join
and leave at run time, and our specification language contains
term-indexed epistemic modalities.

In the rest of the paper we let P = 〈Ag,U, I, τ〉 and
P ′ = 〈Ag′, U ′, I ′, τ ′〉 be OMAS and assume that s =
〈l0, . . . , ln〉 ∈ S and s′ = 〈l′0, . . . , l′n〉 ∈ S ′. According to
Def. 7 isomorphic states have the same relational structure,
but to account also for values assigned to free variables we
introduce the following notion.
Definition 11 (Equivalent assignments) Given states s ∈ S
and s′ ∈ S ′, and a formula φ, assignments σ : Var 7→ X and
σ′ : Var 7→ X ′ are equivalent for φ (w.r.t. s and s′) iff for
some bijection γ : adom(s) ∪ ag(s) ∪ Con ∪ σ(fr(ϕ)) 7→
adom(s′) ∪ ag(s′) ∪ Con ∪ σ′(fr(ϕ)), (i) the restriction
γ|adom(s)∪ag(s)∪Con is a witness for s ' s′; and (ii) σ′|fr(ϕ) =
γ ◦ σ|fr(ϕ).

Equivalent assignments preserve agent types, the
(in)equalities in ϕ, as well as the active elements in s
and s′, modulo renaming.

Bisimulations are known to preserve the satisfaction of
modal formulas in a propositional setting [Blackburn et al.,
2001, Ch. 2]. We now investigate under which conditions
this is true of OMAS as well.
Definition 12 (Simulation) A relation R ⊆ S × S ′ is a sim-
ulation iff R(s, s′) implies (i) s ' s′; (ii) for every t ∈ S, if
s → t then for some t′ ∈ S ′, s′ → t′, s ⊕ t ' s′ ⊕ t′, and
R(t, t′); and (iii) for every t ∈ S , a ∈ ag(s), if s ∼a t then
for some t′ ∈ S ′, s′ ∼a t′, s⊕ t ' s′ ⊕ t′, and R(t, t′).

A state s′ simulates s iff R(s, s′) holds for some simula-
tion R. In particular, similar states are isomorphic by condi-
tion 12.(i) above. Simulations can then be extended to bisim-
ulations.

Definition 13 (Bisimulation) A relation B ⊆ S × S ′ is a
bisimulation iff both B and B−1 = {〈s′, s〉 | 〈s, s′〉 ∈ B}
are simulations.

Two states s and s′ are bisimilar, or s ≈ s′, iff B(s, s′)
holds for some bisimulation B. Notice that ≈ is the largest
bisimulation and an equivalence relation on S ∪ S ′. Finally,
the OMASP andP ′ are bisimilar, orP ≈ P ′, iff (i) for every
s0 ∈ I , s0 ≈ s′0 for some s′0 ∈ I ′, and (ii) for every s′0 ∈ I ′,
s0 ≈ s′0 for some s0 ∈ I .

In [Belardinelli et al., 2014] it is shown that, differently
from the propositional modal case, in data-aware systems
bisimilarity does not preserve first-order temporal-epistemic
formulas. Nonetheless, we prove that uniform OMAS admit
FO-CTLKx-preserving bisimulations.

Definition 14 (Uniformity) An OMAS P is uniform iff for
every s, t, s′ ∈ S, t′ ∈ G, (i) if s → t and s ⊕ t ' s′ ⊕ t′
then s′ → t′; and (ii) for every a ∈ ag(s), if s ∼a t and
s⊕ t ι' s′ ⊕ t′ then s′ ∼ι(a) t′.

Intuitively, uniformity expresses a fullness condition on
OMAS: a uniform OMAS allows all “isomorphic” transi-
tions. We discuss uniformity in more depth in Section 3.

We finally prove that FO-CTLKx formulas cannot distin-
guish between bisimilar and uniform OMAS, as longs as spe-
cific cardinality constraints on the interpretation domains are
satisfied.

Theorem 1 Consider bisimilar and uniform OMAS P and
P ′, bisimilar states s ∈ S and s′ ∈ S ′, an FO-CTLKx
formula ϕ, and assignments σ and σ′ equivalent for ϕ w.r.t. s
and s′. If

1. for every s-run r, for every k ≥ 0, (i) |X ′| ≥
|adom(r(k)) ∪ ag(r(k)) ∪ adom(r(k + 1)) ∪ ag(r(k +
1)) ∪ Con ∪ σ(fr(ϕ))| + |var(ϕ) \ fr(ϕ)|, and (ii)
|Ag′T | ≥ |agT (r(k))∪agT (r(k+1))∪Con∪σ(fr(ϕ))|+
|var(ϕ) \ fr(ϕ)| for every type T ;

2. for every s′-run r′, for every k ≥ 0, (i) |X| ≥
|adom(r′(k))∪ag(r′(k))∪adom(r′(k+1))∪ag(r′(k+
1)) ∪ Con ∪ σ′(fr(ϕ))| + |var(ϕ) \ fr(ϕ)|, and (ii)
|AgT | ≥ |agT (r′(k)) ∪ agT (r

′(k + 1)) ∪ Con ∪
σ′(fr(ϕ))|+ |var(ϕ) \ fr(ϕ)| for every type T ;

then (P, s, σ) |= ϕ iff (P ′, s′, σ′) |= ϕ.

As a consequence of Theorem 1, bisimilar states satisfy
the same FO-CTLKx formulas for equivalent assignments,
whenever cardinality constraints (1) and (2) are satisfied.

We now apply Theorem 1 to the model checking problem
for OMAS. First of all, we introduce bounded OMAS.

Definition 15 (Bounded OMAS) An OMAS P is b-
bounded, for b ∈ N, iff for all s ∈ S, |adom(s) ∪ ag(s)| ≤ b.

An OMASP is bounded iff it is b-bounded for some b ∈ N.
We remark that bounded OMAS are still infinite-state systems
in general. Hereafter let sups∈S{|adom(s)∪ag(s)|} be equal
to ∞ whenever the OMAS P is unbounded. Similarly for
sups∈S{|agT (s)|}.

Corollary 2 Consider bisimilar and uniform OMAS P and
P ′, and an FO-CTLKx formula ϕ. If

1. |X ′| ≥ 2 sups∈S{|adom(s) ∪ ag(s)|} + |con(φ)| +
|var(ϕ)| and |Ag′T | ≥ 2 sups∈S{|agT (s)|}+|con(φ)|+
|var(ϕ)| for every type T ;

2. |X| ≥ 2 sups′∈S′{|adom(s′) ∪ ag(s′)|} + |con(φ)| +
|var(ϕ)| and |AgT | ≥ 2 sups′∈S′{|agT (s′)|} +
|con(φ)|+ |var(ϕ)| for every type T ;

then P |= ϕ iff P ′ |= ϕ.

Corollary 2 shows that an infinite-state OMAS P can in
principle be verified by model checking a bisimilar system
P ′, as long as X ′ is sufficiently large for P ′ to bisimulate P .

In the next section we show that finite abstractions can in-
deed be defined for bounded OMAS, thus allowing for the
verification of properties, such as (2)-(5) in Section 2.3, but
first we briefly discuss uniform OMAS.

Discussion: Uniformity The notion of uniformity was put
forward in [Belardinelli et al., 2012] to prove the decidability
of model checking data-aware systems. In [Belardinelli et al.,
2014] uniformity is related to genericity in databases [Abite-
boul et al., 1995]. Intuitively, in uniform systems trasitions
depend on the logical form of data, rather than on the actual
data content. It has been argued that the class of uniform
systems covers most cases of interest [Hariri et al., 2013;
Deutsch et al., 2007].

We now analyse uniformity in the context of OMAS
through the following result.

Lemma 3 Suppose that an OMAS P satisfies the following:

for s0 ∈ S, s′0 ∈ S ′, s0 ' s′0 implies s0 ∈ I iff
s′0 ∈ I (?)

Then, P is uniform.

The proof of Lemma 3 makes essential use of conditions
(∗) and (+) on protocols and transition functions respectively.
Thus, requirements (i) and (ii) in Def. 14 can be substituted
by closure (?) of initial states under isomorphism. The latter
condition is quite natural, as we are mainly interested in the
relational structure of data, not the actual data content. In
the final section we assume that all OMAS satisfy (?) and are
therefore uniform.

3.1 Finite Abstraction
We now show that an infinite OMAS can in principle be ver-
ified by checking a finite abstraction. The main result is The-
orem 5, which ensures that boundedness and closure under
uniform initial states (?) are sufficient to obtain finite bisimi-
lar abstractions, thus preserving FO-CTLKx formulas.

We first define the notion of abstract agents.

Definition 16 (Abstract agents) Let a = 〈D,Act,Pr〉 ∈
AgT be an agent of type T defined on a domainX = U ∪Ag.
Given a set X ′ = U ′ ∪ Ag′ of elements, the abstract agent
a′ ∈ Ag′T is the tuple 〈D,Act,Pr′〉 on X ′ s.t. Pr′ is the
smallest function defined as
• if α(~u) ∈ Pr(l), l′ ∈ D′(X ′) and l′

ι' l, then α(ι(~u)) ∈
Pr′(l′).

Given a set AgT of agents, let Ag′T be the set of the corre-
sponding abstract agents. Notice that Ag and Ag′ are used to
denote both the set of agent names and of agents; the context

will disambiguate. The abstract agent a′ in Def. 16 is indeed
an agent of type T , as defined in Def. 4, since a and a′ share
the same database schema and actions. Moreover, protocol
Pr′ is well-defined whenever Pr is, and it satisfies condition
(∗) on protocols by definition. We now present abstractions.

Definition 17 (Abstractions) Let P = 〈Ag,U, I, τ〉 be an
OMAS, and Ag′ the set of abstract agents defined on X ′ as in
Def. 16. The OMAS P ′ = 〈Ag′, U ′, I ′, τ ′〉 is an abstraction
of P iff (i) I ′ = {s′0 ∈ G′ | s′0 ' s0 for some s0 ∈ I}, and
(ii) τ ′ is the smallest function defined as follows

• if s
α(~u)−−−→ t in P , s′, t′ ∈ G′, and s ⊕ t ' s′ ⊕ t′ for

some witness ι, then s′
α(ι(~u))−−−−→ t′.

The abstraction P ′ in Def. 17 is an OMAS as it complies
with Def. 6. Moreover, condition (+) on transition functions
is satisfied. Notice that, by varying X ′ we can obtain abstrac-
tions of different cardinalities, in particular finite abstractions.

Next, we explore the relationship between an OMAS and
its abstractions. By the next result every abstraction is uni-
form, independently from the concrete OMAS.

Lemma 4 Every abstraction P ′ of an OMAS P is uniform.
Moreover, if P is uniform and X ′ = X , then P ′ = P .

By the next result there exists a bisimilar abstraction for
every bounded OMAS, provided that the former is built over
a sufficiently large domain. Hereafter we suppose that, for
a bound b ∈ N, Nb is the maximum numbers of param-
eters contained in any parametric joint actions, i.e., Nb =
b ·max{α(~x)∈ActT ,type T}{|~x|}.
Theorem 5 Consider a bounded OMAS P over an infinite
domain X , an FO-CTLx formula ϕ, and a domain X ′ ⊇
con(ϕ). If (i) |X ′| ≥ 2b + |con(ϕ)| + max{|var(ϕ)|, Nb},
and (ii) for every type T , |Ag′T | ≥ 2b + |con(ϕ)| +
max{|var(ϕ)|, Nb}, then there exists a bisimilar abstraction
P ′ of P over X ′. In particular, P |= ϕ iff P ′ |= ϕ.

Notice that each Ag′T and X ′ in Theorem 5 might as well
be finite. So, by using a sufficient number of abstract agents
and values, we can in principle reduce the model checking
problem for infinite-state OMAS to the verification of a finite
abstraction. Specifically, we obtain the following corollary to
Theorem 5.

Corollary 6 Given a bounded OMAS P over an infinite do-
mainX , and an FO-CTLx formula ϕ, there exists an abstract
OMAS P ′ over a finite domainX ′ s.t. ϕ holds in P iff it holds
in P ′.

As a consequence of Corollary 6, we can in principle ver-
ify an infinite-state, bounded OMAS, by model checking its
finite, bisimilar abstraction.

4 Conclusions
In this paper we tackled an ongoing problem in the formal
verification of multi-agent systems, namely the verification
of open MAS where agents may enter and leave the system at
run time. A notable feature of our proposal concerns the rich
specification language FO-CTLKx, which includes epistemic
operators indexed by individual terms. As we discussed, the

latter are key to express relevant properties of OMAS. Fur-
ther, we analysed the model checking problem within this set-
ting, showing that it can be addressed through finite bisimilar
abstractions, under some natural conditions.

An open problem not tackled in the present contribution
and left for future work is the development of methodolo-
gies for generating finite abstractions, so that effective model
checking procedures can be provided. This is a major chal-
lenge for the verification of open MAS.

References
[Abiteboul et al., 1995] S. Abiteboul, R. Hull, and V. Vianu.

Foundations of Databases. Addison-Wesley, 1995.
[Belardinelli and Grossi, 2015] Francesco Belardinelli and

Davide Grossi. On the formal verification of diffusion
phenomena in open dynamic agent networks. In Proceed-
ings of the 14th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS15), 2015.

[Belardinelli and Lomuscio, 2012] Francesco Belardinelli
and Alessio Lomuscio. Interactions between Knowledge
and Time in a First-Order Logic for Multi-Agent Systems:
Completeness Results. Journal of Artificial Intelligence
Research, 45:1–45, 2012.

[Belardinelli and Lomuscio, 2013] Francesco Belardinelli
and Alessio Lomuscio. Decidability of model check-
ing non-uniform artifact-centric quantified interpreted
systems. In Rossi [2013].

[Belardinelli et al., 2012] Francesco Belardinelli, Alessio
Lomuscio, and Fabio Patrizi. An Abstraction Technique
for the Verification of Artifact-Centric Systems. In Proc. of
the 13th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’12), pages 319 –
328, 2012.

[Belardinelli et al., 2014] Francesco Belardinelli, Fabio Pa-
trizi, and Alessio Lomuscio. Verification of agent-based
artifact systems. Journal of Artificial Intelligence Re-
search, 51:333–77, 2014.

[Blackburn et al., 2001] P. Blackburn, M. de Rijke, and
Y. Venema. Modal Logic, volume 53 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University
Press, 2001.

[Deutsch et al., 2007] Alin Deutsch, Liying Sui, and Victor
Vianu. Specification and Verification of Data-Driven Web
Applications. J. Comput. Syst. Sci., 73(3):442–474, 2007.

[Fagin et al., 1995] R. Fagin, J.Y. Halpern, Y. Moses, and
M.Y. Vardi. Reasoning About Knowledge. The MIT Press,
1995.

[Gammie and van der Meyden, 2004] P. Gammie and
R. van der Meyden. MCK: Model checking the logic
of knowledge. In Proceedings of 16th International
Conference on Computer Aided Verification (CAV’04),
volume 3114 of LNCS, pages 479–483. Springer-Verlag,
2004.

[Hariri et al., 2013] B. Bagheri Hariri, D. Calvanese, G. De
Giacomo, A. Deutsch, and M. Montali. Verification of

relational data-centric dynamic systems with external ser-
vices. In R. Hull and W. Fan, editors, PODS, pages 163–
174. ACM, 2013.

[Jackson, 2008] M. O. Jackson. Social and Economic Net-
works. Princeton University Press, 2008.

[Kouvaros and Lomuscio, 2013a] Panagiotis Kouvaros and
Alessio Lomuscio. Automatic verification of parame-
terised multi-agent systems. In Maria L. Gini, Onn She-
hory, Takayuki Ito, and Catholijn M. Jonker, editors, In-
ternational conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’13, Saint Paul, MN, USA, May
6-10, 2013, pages 861–868. IFAAMAS, 2013.

[Kouvaros and Lomuscio, 2013b] Panagiotis Kouvaros and
Alessio Lomuscio. A cutoff technique for the verification
of parameterised interpreted systems with parameterised
environments. In Rossi [2013].

[Lomuscio and Colombetti, 1996] Alessio Lomuscio and
Marco Colombetti. QLB: A quantified logic for belief.
In Jörg P. Müller, Michael Wooldridge, and Nicholas R.
Jennings, editors, Intelligent Agents III, Agent Theories,
Architectures, and Languages, ECAI ’96 Workshop
(ATAL), Budapest, Hungary, August 12-13, 1996, Pro-
ceedings, volume 1193 of Lecture Notes in Computer
Science, pages 71–85. Springer, 1996.

[Lomuscio et al., 2009] A. Lomuscio, H. Qu, and F. Rai-
mondi. Mcmas: A model checker for the verification of
multi-agent systems. In A. Bouajjani and O. Maler, edi-
tors, CAV, volume 5643 of Lecture Notes in Computer Sci-
ence, pages 682–688. Springer, 2009.

[Montali et al., 2014] Marco Montali, Diego Calvanese, and
Giuseppe De Giacomo. Verification of data-aware
commitment-based multiagent system. In Ana L. C.
Bazzan, Michael N. Huhns, Alessio Lomuscio, and Paul
Scerri, editors, International conference on Autonomous
Agents and Multi-Agent Systems, AAMAS ’14, Paris,
France, May 5-9, 2014, pages 157–164. IFAAMAS/ACM,
2014.

[Parikh and Ramanujam, 1985] R. Parikh and R. Ramanu-
jam. Distributed processes and the logic of knowledge.
In Logic of Programs, pages 256–268, 1985.

[Penczek and Lomuscio, 2003] Wojciech Penczek and
Alessio Lomuscio. Verifying Epistemic Properties of
Multi-agent Systems via Bounded Model Checking.
Fundamenta Informaticae, 55(2):167–185, 2003.

[Rodrı́guez-Aguilar et al., 1998] Juan A. Rodrı́guez-
Aguilar, Francisco J. Martı́n, Pablo Noriega, Pere Garcia,
and Carles Sierra. Towards a test-bed for trading agents
in electronic auction markets. AI Communications,
11(1):5–19, 1998.

[Rossi, 2013] Francesca Rossi, editor. IJCAI 2013, Proceed-
ings of the 23rd International Joint Conference on Arti-
ficial Intelligence, Beijing, China, August 3-9, 2013. IJ-
CAI/AAAI, 2013.

[Wooldridge, 2001] Michael Wooldridge. Introduction to
Multiagent Systems. John Wiley & Sons, Inc., 2001.

