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ABSTRACT
We present a predicate abstraction technique for the verifi-
cation of multi-agent systems against specifications defined
in the epistemic logic ATLK, interpreted on a three-valued
semantics. We reduce an infinite-state multi-agent program
to a finite model by generating predicates automatically via
SMT calls. We show that if an ATLK specification is ei-
ther true or false in the abstract model, then that is also
the case on the original infinite state model. We introduce
and describe MCMASPA, a toolkit implementing the tech-
nique here described. MCMASPA supports the three-valued
semantics for ATLK, automatically generates program ab-
stractions for a multi-agent system by means of automatic
SMT calls, encodes the corresponding program in BDDs and
reports the result. The experimental results obtained con-
firm that MCMASPA can verify infinite-state multi-agent
systems of interest.

1. INTRODUCTION
Multi-Agent Systems (MAS) are distributed computer sys-

tems where the components, or agents, rationally interact
with one another and the environment in a variety of com-
plex ways [29]. Whereas progress has been made in the
theoretical analysis of MAS, both from a logical and game-
theoretic perspective, we still lack comprehensive method-
ologies for the verification of MAS before deployment. This
is of concern as techniques such as rapid prototyping, which
rely on efficient evaluation, e.g., via verification, have been
shown to be of significant importance in the adoption of
novel paradigms in applications. In addition, the lack of ro-
bust verification methodologies also hinders the adoption of
MAS in safety-critical applications.

The current state of the art for the offline analysis of MAS
consists of a variety of model checking techniques including
BDD-based model checking [11, 27], bounded model check-
ing [26], and symmetry reduction [6]. Existing model check-
ers implement some of these in a variety of forms [24, 17, 11].
One key characteristic that these techniques and implemen-
tations have in common is that they are confined to the anal-
ysis of finite state systems, i.e., the models corresponding to
the MAS descriptions to be analysed only have finitely many
states. This is typically enforced via the input language of

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the toolkit by adopting variable types which can only have
bounded instantiations, e.g., bounded integers. This restric-
tion is appealing as finite state model checking is decidable,
whereas infinite state model checking is in general undecid-
able.

While the limitation given by finite models is not signif-
icant when the MAS can be appropriately abstracted as a
finite state system, most of the MAS programs that are built
generate models that have infinitely many states. Addition-
ally even if a bound for a variable can be found by analysing
all possible executions, the actual range may be difficult
to find for the programmer, who will generally adopt un-
bounded variable types.

Contribution. In this paper we begin to overcome the
limitation of finite states in the practical verification of MAS.
Since verifying infinite states systems is undecidable in gen-
eral, the method we present is sound but not complete. Yet,
we show that in some cases of interest the technique can help
solving the verification problem. The method takes as input
a description of an infinite state MAS and specifications in
the epistemic temporal logic ATLK [2, 14]. A finite model
abstracting the infinite model for the system is then gen-
erated by carrying out abstraction both on the local states
and the actions of the agents. The finite model is defined by
analysing the conditions that appear in the specification to
be checked and in the MAS description. This analysis, which
is entirely automated, results in the generation of Boolean
predicates that are combined with the original MAS descrip-
tion to generate a finite-state MAS description. We show
that if the resulting model checking problem returns either
true or false, this is also the result of the verification problem
for the infinite-state model.

The technique is fully automated and implemented; we
present both the underlying theory for the abstraction as
well as the actual predicate generation and verification. We
carried out the latter by extending the open-source checker
MCMAS [24] to handle the three-valued logic ATLK and im-
plementing the algorithm for generating predicates by means
of SMT calls to the SMT-checker CVC4 [4]. The result-
ing implementation, which we call MCMASPA, constitutes,
to our knowledge, the first predicate abstraction toolkit for
MAS.

Related Work. Epistemic versions of ATL for specify-
ing MAS have attracted considerable attention over the past
few years [14, 25, 5, 1]. The difficulty of validating systems
with large state spaces has long been recognised in verifi-
cation and multi-agent systems. Abstraction has been used
in the context of epistemic logic [9] including in the con-



text of interpreted systems [7]. [20] presents an abstraction
technique for ATL; however, it deals with finite states only,
and, differently from the present contribution, it deals with
complete information only.

Three-valued and multi-valued temporal logic have been
developed in the context of model checking [18, 19] and ab-
straction methodologies have been put forward [15]. These,
however, have not been extended to specifications support-
ing MAS and their automatisation is problematic. Predicate
abstraction techniques for under- and over-approximations
of infinite state systems were originally suggested in the con-
text of temporal logic and modal µ calculus [13, 8]. While
approaches use SMT engines for the generation of the finite
model, they have not been extended to epistemic, nor ATL
specifications.

Closer to the theoretical part of the work here presented
is [21] where the theoretical underpinnings of an abstrac-
tion methodology on three valued semantics for ATLK is
developed. That work, however, does not deal with infinite-
state systems, no methodology for the generation of the fi-
nite models via SMT is given and, consequently, no toolkit
for the actual verification is given.

Predicate abstraction techniques are normally tailored to
temporal logics only. A predicate abstraction for epistemic
logic has recently been proposed in [12]. While that work
is also based on a three-valued logic, the semantics is differ-
ent, and ATL is not supported. Indeed, [12] is tailored to the
verification of service-oriented applications specified by the
GSM language. In contrast we here address MAS modelled
by an extension of ISPL, an existing language for reason-
ing about MAS. Also, a predicate abstraction technique for
ATL only was discussed in [3]. The semantic setting in [3] as-
sumes perfect recall and complete information, following the
original treatment of ATL in [2]. As we remark in the next
section, in principle this semantics is equivalent to the one
we use in this paper; however, while [3] assume determinis-
tic evolutions, we allow for non-deterministic transitions to
account for a significant role by the environment on the sys-
tem. Also, [3] is not concerned with epistemic specifications
as we are here. Lastly, we are not aware of an implementa-
tion based on [3], whereas we here report on an open-source
model checker for MAS supporting predicate-abstraction.

2. THE THREE-VALUED LOGIC ATLK
In this section we summarise the three-valued logic ATLK

on memoryless interpreted systems with incomplete infor-
mation which we adopt here. ATLK is an extension of
ATL [2], the logic designed to express properties of agents’
strategies, that allows also to express epistemic properties
of agents and groups of agents [28]. In this context, several
choices need to be made when combining the need for effi-
cient procedures and expressive specifications. The rational
for the setting we adopt here was discussed in [22].

Let Ag = {1, . . . ,m} be a set of agents and V be a set
of propositional variables. We use the letter Γ to denote
subsets of agents, e.g., Γ ⊆ Ag; by Γ we denote the comple-
mentation of Γ, i.e., Ag \ Γ.

Definition 1 (Interpreted systems). An interpreted
system is a tuple IS = ({Li, Acti, Pi, ti}i∈Ag, I ,Π) such
that:

• for each agent i Li is a possibly infinite set of possible
local states, Acti is a set of possible local actions, Pi :

Li → 2Acti \ {∅} is a local protocol, and ti ⊆ Li ×
ACT × Li is a local transition relation with ACT =
Act1 × · · · ×Actm.

• I ⊆ L1 × · · · × Lm is a set of global initial states,

• Π : L1 × · · · × Lm × V → {tt,ff, uu} is a labelling
function.

Notice that the definition above allows the value of a
propositional variable in a state to be unknown (uu). We
will use this to represent abstract states in which the value
of some propositional variables is not defined. We consider
a possibly non-deterministic transition relation as this will
be the case for the abstract models introduced later.

By t.i we denote the i-th element of a tuple t. We define
models of interpreted systems in the usual way.

Definition 2 (Models). Given an interpreted system
IS = ({Li, Acti, Pi, ti}i∈Ag, I ,Π), its associated model is a
tuple MIS = (S, T , {∼i}i∈Ag, I, Π) such that:

• S ⊆ L1 × · · · × Lm is the set of global states reachable
via T from the set of initial global states I,

• T ⊆ S × ACT × S is a global transition relation such
that T ((l1, . . . , lm), a, (l′1, . . . , l

′
m)) iff for all i ∈ Ag we

have ti(li, a, l
′
i) and a.i ∈ Pi(li),

• ∼i⊆ S2 is such that s ∼i s
′ iff s.i = s′.i, for all i ∈ Ag.

The intended meaning of s ∼i s
′ is that the global states s, s′

are epistemically indistinguishable for agent i [10]. For Γ ⊆
Ag, we define the relation ∼Γ for the common knowledge
operator as the transitive closure of (

⋃
i∈Γ ∼i).

We only consider models such that for all global states
s ∈ S and joint actions a ∈ ACT such that a.i ∈ Pi(s.i) for
all i ∈ Ag, there exists an s′ ∈ S such that T (s, a, s′).

We are interested in two logics with the same syntax,
but different semantics: the two-valued logic ATLK and the
three-valued logic ATLK3v. First, we introduce the common
syntax for the logics ATLK and ATLK3v.

Definition 3 (ATLK language). The set of formu-
las for the logics ATLK and ATLK 3v is defined from V by
the following BNF expression:
ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉Xϕ | 〈〈Γ〉〉(ϕUϕ) | 〈〈Γ〉〉Gϕ | Kiϕ |
CΓ′ϕ
where i ∈ Ag, Γ,Γ′ ⊆ Ag, Γ′ 6= ∅ and q ∈ V.

The formulas Kiϕ,CΓ′ϕ are read as “agent i knows that
ϕ” and “in the group Γ′ it is commonly known that ϕ”, re-
spectively. The reading of the ATL modalities is as follows.
The formula 〈〈Γ〉〉Gϕ stands for “the agents in Γ may be able
to ensure that ϕ holds forever”; the meaning of the “until”
modality U is analogous, and 〈〈Γ〉〉Xϕ can be read as “the
agents in Γ can ensure that ϕ holds at the next state ir-
respective of the actions of the agents in Ag \ Γ”. We use
the standard abbreviations to define 〈〈Γ〉〉Fϕ, that stands for
“the agents in Γ may be able to ensure that ϕ will happen
at some point in the future”, and the Boolean connectives.

The readings above of the ATL modalities was originally
given in [25] and used in several approaches that followed.
There may be applications where the readings are not ap-
propriate; in these cases the logic CTL, which is entirely
subsumed, can be used instead. Our motivation for the work



is to provide support for epistemic modalities under an effi-
cient model checking setting; indeed, the complexity of the
model checking problem in the setting we describe below is
the same as that of CTLK. We refer to [22] for a discussion
on these issues.

Semantics
Assume an interpreted system IS = ({Li, Acti, Pi, ti}i∈Ag,
I ,Π). A (local, memoryless) strategy for an agent i ∈ Γ, or
simply a strategy, is a function fi : s.i → 2Acti \ {∅} such
that for each local state s.i ∈ Li we have fi(s) ⊆ Pi(s.i). We
do not assume perfect recall, i.e., all the strategies depend
on the current local state only.

Given a path p = s0s1 . . . , by pi we denote si, the i + 1-
th element of p. Assume Γ ⊆ Ag and an indexed set of
strategies FΓ = {fi | i ∈ Γ}. A set of paths Y is FΓ-
compatible if it is a minimal non-empty set of paths such
that for each path p ∈ Y , position j ≥ 0, joint actions a, a′

and state s′ such that T (pj , a, pj+1), T (pj , a′, s′), and for all
i ∈ Γ, a.i = a′.i and a.i ∈ fi(sj .i), there exists a path p′ ∈ Y
starting with p0 . . . pjs′. Let out(s, FΓ) be the family of all
FΓ-compatible sets of paths starting with s.

Assume an interpreted system IS = ({Li, Acti, Pi, ti}i∈Ag,
I ,Π), its associated model M = (S, T , {∼i}i∈Ag, I, Π) and
a global state s ∈ S. We inductively define the two-valued
satisfaction relation |=2 as follows.

• M, s |=2 q iff Π(s, q) = tt,

• M, s |=2 ¬ϕ iff it is not the case that M, s |=2 ϕ ,

• M, s |=2 ϕ1 ∧ ϕ2 iff M, s |=2 ϕ1 and M, s |=2 ϕ2,

• M, s |=2 〈〈Γ〉〉Xϕ iff for some strategy FΓ, some Y ∈
out(s, FΓ) and all p ∈ Y we have M,p1 |=2 ϕ,

• M, s |=2 〈〈Γ〉〉ϕ1Uϕ2 iff for some strategy FΓ, some
Y ∈ out(s, FΓ) and all p ∈ Y , there is a k ≥ 0 s.t. we
have M,pk |=2 ϕ2 and for all 0 ≤ j < k,M, pj |=2 ϕ1 ,

• M, s |=2 〈〈Γ〉〉Gϕ iff for some strategy FΓ, some Y ∈
out(s, FΓ) and all p ∈ Y , i ≥ 0 we have M,pi |=2 ϕ,

• M, s |=2 Kiϕ iff for all s′ ∼i s we have M, s′ |=2 ϕ,

• M, s |=2 CΓϕ iff for all s′ ∼Γ s we have M, s′ |=2 ϕ.

The definition of the three-valued satisfaction |=3, intro-
duced by [22], is given below. We assume Kleene interpreta-
tion of boolean operators, i.e., ¬uu = uu, ¬tt = ff, ¬ff = tt
and t∧ t′ is tt iff both t, t′ are tt, ff if any of them is ff, and
uu otherwise.

• M, s |=3 q = Π(s, q),

• M, s |=3 ¬ϕ = ¬(M, s |=3 ϕ = ff),

• M, s |=3 ϕ1 ∧ ϕ2 = (M, s |=3 ϕ1 = tt) ∧ (M, s |=3

ϕ2 = tt),

• M, s |=3 〈〈Γ〉〉Xϕ = tt iff for some strategy FΓ, some
Y ∈ out(s, FΓ) and all p ∈ Y , we have M,p1 |=3 ϕ =
tt,

• M, s |=3 〈〈Γ〉〉Xϕ = ff iff for some strategy FΓ, for all
Y ∈ out(s, FΓ) and all p ∈ Y we have M,p1 |=3 ϕ = ff,

• M, s |=3 〈〈Γ〉〉ϕ1Uϕ2 = tt iff for some strategy FΓ, for
some Y ∈ out(s, FΓ), and for all p ∈ Y there is k ≥ 0
s.t. M,pk |=3 ϕ2 = tt and for all j < k, M,pj |=3

ϕ1 = tt,

• M, s |=3 〈〈Γ〉〉ϕ1Uϕ2 = ff iff for some strategy FΓ, for
all Y ∈ out(s, FΓ) and for all p ∈ Y , k ≥ 0 we have
M,pk |=3 ϕ2 = ff or there is j < k s.t. M,pj |=3

ϕ1 = ff,

• M, s |=3 〈〈Γ〉〉Gϕ = tt iff for some strategy FΓ, some
Y ∈ out(s, FΓ) and for all p ∈ Y , i ≥ 0 we have M,pi

|=3 ϕ = tt

• M, s |=3 〈〈Γ〉〉Gϕ = ff iff for some strategy FΓ, for all
Y ∈ out(s, FΓ), and for all p ∈ Y there is i ≥ 0 s.t.
M,pi |=3 ϕ = ff

• M, s |=3 Kiϕ = tt iff M, s′ |=3 ϕ = tt for all s′ ∼i s,

• M, s |=3 Kiϕ = ff iff M, s |=3 ϕ = ff,

• M, s |=3 CΓϕ = tt iff M, s′ |=3 ϕ = tt for all s′ ∼Γ s,

• M, s |=3 CΓϕ = ff iff M, s |=3 ϕ = ff.

In all other cases, the value of a formula is undefined (uu).
While the conditions for the true value are very similar

in both semantics, the condition for the false value is much
more strict in the three valued case. Intuitively, the condi-
tions for the ATL modalities state that“there is a strategy of
agents outside of Γ to prevent a given property” rather than
the weaker “there is no strategy of agents of Γ to achieve a
given property”. It follows that the two semantics do not
coincide. For the epistemic modalities, the condition for the
false value simply requires the formula to be false in the cur-
rent state; such a strong condition is required to guarantee
the soundness of our abstraction technique, provided later
on.

An interpreted system IS satisfies a property ϕ, written
as IS |=2 ϕ, iff for all the initial states s we have M, s |=2 ϕ.
We define IS |=3 ϕ = tt iff for all s ∈ I we have M, s |=3

ϕ = tt, IS |=3 ϕ = ff iff some s ∈ I we have M, s |=3 ϕ = ff,
and IS |=3 ϕ = uu otherwise. Note that in this setting the
strategies can be replaced by agents’ protocols.

It is shown in [22] that for any ϕ we have that IS |=3

ϕ = tt implies IS |=2 ϕ and IS |=3 ϕ = ff implies IS 6|=2 ϕ.
Remark. No technical contribution is made in this sec-

tion with respect to the state of the art as we follow [22] for
the semantics of the ATLK specifications. Moreover, as far
as the two-valued ATL fragment is concerned, the semantics
here adopted from [22] assumes that the agents are memo-
ryless, have incomplete information of the global state. We
assumed that the resulting models are non-uniform in the
sense of [25]; i.e., agents can execute different actions at
different global states in which their own local state is the
same. This is in contrast with the original semantics for
ATL [2], which stipulates complete information of the state,
and perfect recall. However, it can be shown that two for-
mulations are logically equivalent in the sense that an ATL
formula is true in the setting we here adopt if and only if the
formula is true in the semantics adopted in [2]. It follows
that, for the two-valued fragment, an ATLK formula holds
in an interpreted system under the present semantics if it
holds in the ATLK logic in [16].



We follow [22] in adopting the present modelling as in ap-
plications agents are naturally assumed to have incomplete
information and imperfect recall. Since our specification lan-
guage includes epistemic modalities, whose definition relies
on incomplete information, we find this setting more appro-
priate. Indeed, the modelling language we adopt in Sec-
tion 3 follows this assumption, in line with other modelling
approaches for MAS. However, the computations for evalu-
ating a formula to true or false can in principle equally be
performed by using the semantics in [2, 16].

3. PREDICATE ABSTRACTION OF UISPL
PROGRAMS

Verification engines differ in the input language adopted
to describe the system. Any abstraction methodology needs
to be fine tuned to the language adopted. Here we take
ISPL [24] as the starting point; other choices are possible.
We chose ISPL as it constitutes the input language to MC-
MAS, an open-source symbolic model checker for MAS that
already supports the verification of ATLK, albeit for the
two-valued semantics only.

Like many of its peers, ISPL programs describe finite state
systems by using bounded variable types. Below we intro-
duce Unbounded ISPL (or UISPL for short), an extension
of ISPL with unbounded integers.

Unbounded ISPL
Like ISPL, an UISPL program consists of a declaration of
a number of agents (keyword Agent) and an environment,
the definition of the initial states of the system (keyword
InitStates), and the description of the specifications to be
checked (keywords Evaluation, Groups and Formulae).

An agent definition consists of the following components:
local states, defined by a number of variables (Vars) of type
Boolean, enumeration, and unbounded integer; local actions
(Actions), used to interact with other agents and the envi-
ronment; a local protocol (Protocol), representing the ac-
tions enabled in a given state; and a local evolution function
(Evolution), encoding the change to the local state on the
basis of the current local state and the action performed by
all the agents. Non-deterministic protocols are encoded in
UISPL either by specifying more than one target action or
by giving different actions for overlapping conditions on lo-
cal states. The initial states of the system are defined by
means of a Boolean formula on the agents’ variables, e.g.,
Ag1.pos = 1 or (Ag1.pos < 17 and Ag2.ready = true). No-
tice that every UISPL program can be naturally associated
with its infinite-state interpreted system.

The specifications to be checked are given as a list of
ATLK formulas, followed by the declaration for the propo-
sitions and groups of agents appearing in the specifications.

Abstract models of UISPL programs
It is easy to show that in general verifying an UISPL pro-
gram is undecidable, even if the specification is limited to
safety properties. The approach that we put forward is
sound but not complete. Differently from other approaches
including [3], the predicate abstraction technique that we in-
troduce is modular in the agents. Our choice is motivated by
the need of providing an efficient methodology for verifying
epistemic specifications, which depend on the local states of
the individual agents.

Consider an UISPL program, its associated interpreted
system IS = ({Li, Acti, Pi, ti}i∈Ag, I ,Π) and a tuple of lists

of predicates (~p1, . . . , ~pm), where ~pi = p1
i , . . . , pki

i . Each
predicate is assumed to be a condition on an agent’s state,
e.g., Ag1.pos < 16. The abstract agent i w.r.t. a list of
predicates ~pi is defined as a tuple AgAi = (LA

i , Acti, P
may
i ,

Pmust
i , tmayi , tmusti ), where:

• LA
i is the set (i.e., conjunctions) containing all the

predicates from ~pi,

• the may relation tmayi is such that tmayi (c, a, c′) for ab-
stract states c, c′ and an action a iff there are local
states l, l′ ∈ Li such that l satisfies c, l′ satisfies c′ and
ti(l, a, l

′),

• the must relation tmusti is such that tmusti (c, a, c′) for
abstract states c, c′ and an action a iff for each local
state l ∈ Li satisfying c we have ti(l, a, l

′) for some
state l′ satisfying c′,

• the may protocol Pmay
i is such that Pmay

i (c) is the union
of all Pi(l) for l satisfying c,

• the must protocol Pmust
i is such that a ∈ Pmust

i (c) iff
for every state l satisfying c we have a ∈ Pi(l) and

for every c′ such that ti(l
′, a, l

′
) for some l′ satisfying c

and l
′

satisfying c′, there is a state l satisfying c′ such
that ti(l, a, l).

While the may protocol for an abstract state is simply
the union of the protocols for the corresponding concrete
states, the must protocol is more complex. In the must
protocol, an action a is allowed in c only if for any l1 and l2
satisfying c, the sets of abstractions of successors of l1 and
l2 are the same, i.e., {c′ | ∃l′.ti(l1, a, l′) ∧ l′ satisfies c′} =
{c′ | ∃l′.ti(l2, a, l′) ∧ l′ satisfies c′}.

Example 1. Consider an agent 1 consisting of L1, Act1,
P1, t1 defined as follows:

• L1 = {s1, s2, s3, s4} are the local states,

• Act1 = {a} is the set containing the only possible ac-
tion for the agent 1,

• P1(l) = {a} for each l ∈ L1 is the protocol that allows
the agent 1 to use the action a in all the states,

• t1 = {(s1, a, s3), (s1, a, s4), (s2, a, s3), (s3, a, s3), (s4, a, s4)}
is the transition relation.

Assume the predicates p1
1 = s1 ∨ s2 and p2

1 = s3. The set
LA

1 consists of three states: c12 = p1
1∧¬p2

1, c3 = ¬p1
1∧p2

1 and
c4 = ¬p1

1 ∧ ¬p2
1 Notice that p1

1 ∧ p2
1 is not satisfiable. Then

we have

Pmay
1 (c) ={a} for every c ∈ LA

1

Pmust
1 (c12) =∅
Pmust

1 (c) ={a} for every c ∈ {c3, c4}

Pmust
1 (c12) = ∅ follows from the fact that both s1, s2 sat-

isfy c12, but only one of them is connected via a to a state
satisfying c3.

The transition relations are as follows:
tmay1 = {(c12, a, c3), (c12, a, c4), (c3, a, c3), (c4, a, c4)} and
tmust1 = {(c12, a, c3), (c3, a, c3), (c4, a, c4)}.



A global state s = (l1, . . . , lm) satisfies a tuple of clauses
(c1, . . . , cm) if s.i satisfies ci for each i ∈ A. We can now
define the concept of abstract models.

Definition 4 (Abstract Interpreted Systems). The
abstract interpreted system of an interpreted system IS w.r.t. a
tuple (~p1, . . . , ~pm) is a tuple ISA = ({AgAi }i∈Ag, I

A,ΠA),
where:

• for each i, AgAi is the abstract agent i w.r.t. ~pi,

• ΠA is such that for any state b, q ∈ V and t ∈ {tt,ff}
we have ΠA(b, q) = t iff Π(s, q) = t for all the states s
satisfying b,

• IA = {b | ∃s ∈ I.s satisfies b}.

The model associated to the predicate abstraction ISA is
a tuple MA

IS = (SA, {TA
Γ }Γ⊆Ag, {∼A

i }i∈Ag, IA, ΠA), where
SA, {∼A

i }i∈Ag, IA, ΠA are derived as in Definition 2 and
for each Γ ⊆ Ag we have TA

Γ (b, a, b′) iff

• for each i ∈ Γ, a.i ∈ Pmust(b.i) and tmusti (b.i, a, b′.i),
and

• for each i 6∈ Γ, a.i ∈ Pmay(b.i) and tmayi (b.i, a, b′i).

In the following we also refer to abstract interpreted systems
as predicate abstractions of a given interpreted system.

So, to construct TA
Γ we force the agents in Γ to adhere to

both their must protocol and transition relation but, more
liberally, we let the protocols and transitions for the agents
in Ag \Γ to be selected from their respective may relations.

We now extend the notion of FΓ-compatibility as follows.
A set of paths in MA is FΓ-compatible if it is a minimal
non-empty set of paths such that for each path p ∈ ISA,
position j ≥ 0, joint actions a, a′ and state s′ such that
TΓ(pj , a, pj+1), TΓ(pj , a′, s′), and for all i ∈ Γ, a.i = a′.i and
a.i ∈ fi(sj .i), there exists a path p′ ∈ ISA starting with
p0 . . . pjs′. Having defined FΓ-compatible paths, the two-
valued and three-valued semantics for the ATL modalities
can be given analogously to those in Section 2.

Theorem 5. Assume an interpreted system IS and let
ISA be its predicate abstraction. For any ATLK property ϕ,
ISA |=3 ϕ = tt implies IS |=3 ϕ = tt and ISA |=3 ϕ = ff
implies IS |=3 ϕ = ff.

Proof. Let M be the model of IS and MA be the model
of ISA constructed as above. Consider a state s of M and
let b be the state of MA such that s satisfies b. We prove
by induction on ϕ that MA, b |=3 ϕ = tt implies M, s |=3

ϕ = tt and MA, b |=3 ϕ = ff implies M, s |=3 ϕ = ff. The
proof follows from the construction of the abstract system.

Basic cases. Assume ϕ = q. If MA, b |=3 q = tt, then
all the states s′ satisfying b are such that MA, s′ |=3 q = tt,
and in particular MA, s |=3 q = tt. Similarly, if MA, b |=3

q = ff, then all the states s′ satisfying b are such that MA, s′

|=3 q = ff, therefore MA, s |=3 q = ff.
Boolean cases are straightforward and therefore omitted.
ATL cases. Assume ϕ = 〈〈Γ〉〉Xψ. Consider the case

when MA, b |=3 ϕ = tt. There is a joint action aΓ for the
agents in Γ such that for any joint action aΓ for the agents

in Γ and any state b′ such that TΓ(b, (aΓ, aΓ), b′) we have
MA, b′ |=3 ψ = tt. Consider the states s, s′ such that we
have T (s, (aΓ, aΓ), s′), and s satisfies b and s′ satisfies b′. For

i ∈ Γ, since a.i ∈ Pi(b.i), we have tmusti (b.i, (aΓ, aΓ), b′.i). For
any i 6∈ Γ, we have tmayi (b.i, (aΓ, aΓ), b′.i) by the definition of
the function tmayi . So TΓ(b, (aΓ, aΓ), b′) and, by the inductive
assumption, M, s′ |=3 ψ = tt and M, s |=3 ϕ = tt.

If MA, b |=3 ϕ = ff, then there is a joint action aΓ for

Γ such that for any joint action aΓ for Γ and any state b′

such that TΓ(b, (aΓ, aΓ), b′) we have MA, b′ |=3 ψ = ff. Con-
sider states s, s′ such that we have T (s, (aΓ, aΓ), s′), s sat-

isfies b and s′ satisfies b′. For i ∈ Γ, since a.i ∈ Pi(b.i),
we have tmusti (b.i, (aΓ, aΓ), b′.i). For any i 6∈ Γ, we have
tmayi (b.i, (aΓ, aΓ), b′.i) by the definition of the function tmayi .
So TΓ(b, (aΓ, aΓ), b′) and, by the inductive assumption, M, s′

|=3 ψ = ff and M, s |=3 ϕ = ff.
The remaining ATL cases can be shown similarly.
Epistemic cases. Consider ϕ = Kiψ. Assume MA, b |=3

ϕ = tt. Then for any b′ ∼i b, M
A, b′ |=3 ψ = tt. Consider

any state s′ ∼i s. By definition, there is bs
′

such that s′

satisfies bs
′

and bs
′
∼i b, and so MA, bs

′
|=3 ψ = tt, and,

by inductive assumption, M, s′ |=3 ψ = tt. Since s′ was an
arbitrary state, we have M, s |=3 Kiψ = tt.

Assume MA, b |=3 ϕ = ff. Then we have MA, b |=3 ψ = ff,
and, by the inductive assumption, M, s |=3 ψ = ff, and
therefore M, s |=3 ϕ = ff.

The case for common knowledge is similar.

Verification of abstract models
We now give algorithms to compute, for an IS and a given
specification ϕ, a pair of BDDs: one representing a set of
states where the value of ϕ is tt and one representing a set
of states where the value of ϕ is ff (Algorithm 1).

For atomic expressions, the BDDs can be computed using
an SMT solver. Observe that for each Γ, a BDD representing
TΓ can be computed in a straightforward way. This is used
in the function preimage, which is then used for all the ATL
modalities. The procedures for epistemic modalities are as
in [22] and therefore omitted. The remaining procedures
are similar to the procedures in [22], but here they work
on BDDs rather than sets, and use two kinds of transition
relations and protocols (this is reflected in the definition of
TΓ).

The verification process works as follows: firstly, we gen-
erate the list of predicates. This can be done in several ways;
we show one in the next section. Secondly, we generate the
abstract model and compute BDDs representing the sets of
states where the value of the given specification is tt and
ff. If the value is tt in all the initial states, then we return
tt; if it is ff in some of the initial states, then we return
ff; otherwise, we return uu. In the latter case the value of
the specification cannot be determined on the basis of the
abstraction constructed above.

4. THE MODEL CHECKER MCMASPA

We now describe the model checker MCMASPA, which ex-
tends the open-source model checker MCMAS [24] by sup-
porting the three-valued semantics for ATLK and the predi-
cate abstraction methodologies described above. MCMASPA

is implemented in C++ and uses the SMT solver CVC4 [4].
MCMASPA takes as an input an infinite state MAS en-

coded as an UISPL program and uses the predicate abstrac-
tion technique described in the previous sections to gener-
ate an abstract, finite state system. The abstract system is
then verified against the given ATLK specification by means



Algorithm 1 The model checking procedure for verifying
an IS against ATLK3v specifications.

1: procedure checkFormula(IS, ϕ)

2: if ϕ is atomic then

3: return checkAtomic(IS, ϕ)

4: else if ϕ = ¬ϕ′ then

5: (Stt, Sff)← checkFormula(IS, ϕ′)

6: return (Sff , Stt)

7: else if ϕ = ϕ1 ∧ ϕ2 then

8: (S1
tt, S

1
ff)← checkFormula(IS, ϕ1)

9: (S2
tt, S

2
ff)← checkFormula(IS, ϕ2)

10: return (S1
tt ∩ S2

tt, S
1
ff ∪ S2

ff)

11: else if ϕ = 〈〈Γ〉〉Xϕ′ then

12: return checkATLX(IS,Γ, ϕ′)

13: else if ϕ = 〈〈Γ〉〉(ϕ1Uϕ2) then

14: return checkATLU(IS,Γ, ϕ1, ϕ2)

15: else if ϕ = 〈〈Γ〉〉Gϕ′ then

16: return checkATLG(IS,Γ, ϕ′)

17: else

18: return checkEpistemic(IS,Γ, ϕ)

Algorithm 2 Auxiliary procedures for checkFormula. The
function Primed changes the variables in the BDD for S so
they correspond to the third parameter of TΓ.

1: procedure checkAtomic(IS, ϕ)

2: Stt ← ∅, Sff ← ∅
3: for each abstract state b do

4: if b ∧ ¬ϕ is unsatisfiable then

5: Stt ← Stt ∪ {b}
6: else if b ∧ ϕ is unsatisfiable then

7: Sff ← Sff ∪ {b}
8: return (Stt, Sff)

9: procedure preimage(IS, Γ, S)

10: Result = compose(TΓ, P rimed(S))

11: for each i 6∈ Γ do

12: Result = ∀ai.Result
13: for each i ∈ Γ do

14: Result = ∃ai.Result
15: return Result

of symbolic verification on the three-valued semantics for
ATLK. If the result of this check is either true or false, by
the result of the previous section, it follows that this is also
the case for the original MAS.

MCMASPA generates a list of predicates in parallel for
each agent based on the declarations in the UISPL file. As
stated earlier, the technique, differently from other predi-
cate abstraction methodologies, is modular with respect to
the agents in the system. For each agent i, we build the list
of predicates based on the agent’s protocol, the specification
to be checked, and the evaluation of the atoms in the sys-
tem. Specifically, for each atomic expression in the protocol
or evaluation for i, or any expression in the specifications

Algorithm 3 Procedures for handling ATL modalities.

1: procedure checkATLX(IS, Γ, ϕ)

2: (S′tt, S
′
ff)← checkFormula(IS, ϕ)

3: Stt ← preimage(IS,Γ, S′tt)

4: Sff ← preimage(IS,Γ, S′ff)

5: return (Stt, Sff)

6: procedure checkATLU(IS, Γ, ϕ1, ϕ2)

7: (S1
tt, S

1
ff)← checkFormula(IS, ϕ1)

8: (Stt, Sff)← checkFormula(IS, ϕ2)

9: repeat

10: S′tt ← Stt

11: Stt ← Stt ∪ (preimage(IS,Γ, Stt) ∩ S1
tt)

12: until Stt = S′tt

13: repeat

14: S′ff ← Sff

15: Sff ← Sff ∩ (preimage(IS,Γ, Sff) ∪ S1
ff)

16: until Sff = S′ff
17: return (Stt, Sff)

18: procedure checkATLG(IS, Γ, ϕ)

19: (S′tt, S
′
ff)← checkFormula(IS, ϕ)

20: repeat

21: S′tt ← Stt

22: Stt ← preimage(IS,Γ, Stt) ∩ Stt

23: until Stt = S′tt

24: repeat

25: S′ff ← Sff

26: Sff ← preimage(IS,Γ, Sff) ∪ S′ff
27: until Sff = S′ff
28: return (Stt, Sff)

for the atoms dependent only on i, we tentatively add this
expression to the list of predicates. If the expression is not
equivalent to an existing predicate or to its complement, we
add the expression to the list. The SMT solver CVC4 is em-
ployed to check these equivalences. The process terminates
when all the expressions have been analysed.

Example 2. Consider the property

Ag1.counter ≤ 0∧ Ag1.v < Ag2.v ∧〈〈Γ〉〉XAg1.counter > 0

The resulting list of predicates from this formula for Ag1
consists only of a single predicate Ag1.counter ≤ 0. The
predicate Ag1.counter > 0 is not included as it is the nega-
tion of Ag1.counter ≤ 0. The predicate Ag1.v < Ag2.v is
also omitted as it refers to a different agent.

Then, CVC4 is employed to generate the may relation.
Due to the computational cost of SMT queries on several
variables, MCMASPA employs various heuristics to reduce
the computation time. First, we test whether the straight-
forward translations of the transitions in the UISPL pro-
gram, where each condition is either replaced by the cor-
responding predicate or omitted, result in valid may tran-
sitions. Then, for each abstract state, we execute a query
whose results represent the remaining transitions in the ab-
stract model. This is the most time-consuming step of the



Figure 1: n tunnels version of the scenario.

C1 C2

Cn . . .

verification procedure. The may protocol is computed in the
straightforward way.

While the process to generate the may transition relation
and protocol is relatively straightforward, to generate the
must protocol, queries involving universal quantifiers are re-
quired. Solving these queries is undecidable in general; the
SMT solver we employed was unable to answer any queries
that would be of practical use. We therefore used an ap-
proximation and defined the must protocol on the basis of
the may relation and protocol as follows. For each abstract
state and action, if there is exactly one possible may tran-
sition from this state and action, we add this action and
state to the must protocol. The must protocol obtained is a
subset of the must protocol previously described; it follows
that the preservation theorem still holds in this case. The
must relation is defined accordingly.

When the abstract model has been defined, the atoms
in the specifications are replaced appropriately in view of
the predicates introduced and the finite-state model is veri-
fied by using the symbolic three-valued labelling procedure
described in the previous section except for one exception.
Instead of using the computationally expensive procedure
checkAtomic, instead we check whether the given atomic
condition was used to generate the list of predicates. If it
was, all the states satisfying the corresponding predicate are
returned; if they are not satisfying its negation, then the
predicate is removed as redundant; otherwise, the empty set
is returned. This does not influence the soundness of the
algorithm.

5. EXPERIMENTAL EVALUATION
To evaluate the methodology we report the experimental

results obtained on a infinite-state variation of the widely-
studied, epistemic version of the train-gate-controller bench-
mark [14]. In the revised version we consider, there are two
trains travelling in the opposite direction on two separate
circular tracks. The tracks merge into several critical sec-
tions (tunnels) where only one train can be present at any
given time. The operation at each of the tunnels is governed
by a controller (see Fig. 1). At each time step each train ei-
ther stays in the same section of the track or requests access
to the next tunnel. If the request is granted by the con-
troller, it moves to next part of the track. Each controller
keeps track of which train has crossed its junctions more
times, so that, if it chooses to do so, it may prioritise one
over the other.

We modelled the scenario above in UISPL by consider-
ing an agent for each of the trains and each of the tunnel
controllers. Each controller is equipped with an unbounded
integer variable recording how many times each of the train
has been given priority to cross the junction. Since there is

no bound on this number, even the model with one tunnel
has an unbounded number of states. For evaluation purposes
we considered several versions of the scenario by scaling the
number of the tunnels. All UISPL programs used can be
accessed from [23].

To evaluate the scenario we considered the following spec-
ifications.

• Train A knows that it may never be able to leave its
initial position:

KTraina〈〈Traina〉〉GTraina.pos = s0

• Train A knows that together with the controller it may
eventually be able to enter the first tunnel:

KTraina〈〈Traina, Controller〉〉FTraina.pos = s1

• The controller may be able to guarantee that train A
enters the tunnel at least as many times as train B:

〈〈Controller〉〉GController.counter ≥ 0

• Train B may not be able to force Train A into the
tunnel:

¬〈〈Trainb〉〉F Traina.pos = s1

We ran the tool against the specifications above for dif-
ferent number of controllers on an IntelR© CoreTM i7-2600
CPU (3.40GHz, 8 cores) running Linux Kernel 3.11.0-20-
generic. MCMASPA generated appropriate predicates in
each of these cases on the basis of the atoms presented in
the specification and the UISPL programs. The resulting
finite-state descriptions were verified and the specifications
were found to hold, as expected. Table 1 reports the time
required to generate the abstraction, and the time required
to verify the abstract model. Observe that most of the com-
putation time was devoted to computation of the abstract
system rather than verification itself. The memory footprint
of the checker was between 11MB and 30MB.

We found that MCMASPA was unable to resolve the truth
value of the specification expressing that there is a joint
strategy for a controller and Train A to reach a state where
the counter equals 10:

〈〈Controller, T raina〉〉F Controller.counter = 10

This is because all the states of the controller with counter ∈
{1, . . . , 9} are abstract into a single state with no successors
w.r.t. the must relation; therefore the value of the formula in
the abstract model cannot be determined. As we remarked
earlier the technique is sound but cannot be complete; while
we may improve the technique to resolve this particular spec-
ifications, there are bound to be formulas whose value the
tool will not be able to determine.

The train gate controller scenario focuses on MAS with
many agents having a single integer variable. For further
benchmarking we now discuss a protocol with two agents
only, but which are described by several integer variables.

To do so we consider a simple protocol in which an agent
S intends to communicate n integers to an agent R in the
presence of a perfect communication line. To communicate
the value vi of the ith number, S uses vi times the action
sendi. When all the numbers are sent, S loops using the
action done forever.



Table 1: Train Gate Controller: verification time

Tunnels States Abstract Verify
1 6 0.3s <0.1s
2 36 0.6s 0.1s
3 128 2.0s 0.14s
4 400 5.2s 0.2s
5 1152 13s 0.23s
6 3136 31s 0.3s
7 8192 78s 0.36s
8 20736 198s 0.4s
9 51200 489s 0.55s
10 123904 1477s 0.9s

Both agents are implemented by using n integer variables
and an enumeration variable status that may either be equal
to busy (representing states where the transmission is in
progress), or done (representing the end of the protocol).
The initial values of the integer variables of S are chosen ran-
domly; the values for R’s variables are initialised to 0. Both
status values are initially set to busy. The protocols and
evaluations can be implemented in UISPL in the straight-
forward way.

We used MCMASPA to verify the following epistemic spec-
ification: whenever R’s status is equal to done, then R knows
that S’s status is equal to done. This can be encoded in
ATLK as

〈〈∅〉〉G(R.status = done⇒ KRS.status = done)

MCMASPA reported the specification to hold in all cases
considered. The computation times are presented in Table 2.
Similarly to the train gate controller example, the numbers
of states and verification times increase exponentially with
the number of integer variables. The verification time grows
slightly slower than in the Train Gate Controller case; one
of the reasons for this is that here we have a fixed number
of possible actions, and therefore the transition relation is
smaller.

We also attempted to verify the protocol’s termination by
checking the specification

〈〈R,S〉〉FR.status = done

In this case MCMASPA reported the formula to be unde-
fined. In the simplest case, with one number being trans-
mitted, this is because the checker considers the abstraction
where all the positive values of the number are abstracted
into a single state. From this state the only allowed action
is send0, resulting in a loop. On the abstract model it there-
fore cannot be shown that any further state will be reached.
Doing so would require refining the model, which we leave
for further work.

6. CONCLUSIONS
In this paper we have proposed a technique for the verifica-

tion of infinite-state MAS by means of predicate abstraction.
The specification language we support is based on epistemic
logic; we provide support for a weak form of ATL at no extra
computational cost, but the logic CTL is fully supported by
the technique.

The formalism we put forward shares some of the fea-
tures present in [22], notably the three-valued approach to

Table 2: Number Transmission: verification time

Integers States Abstract Verify
2 6 0.55s <0.1s
4 56 2.29s <0.1s
6 240 7.01s 0.11s
8 992 20.8s 0.15s
10 4032 57.2s 0.21s
12 16256 154s 0.33s
14 65280 406s 0.53s
16 261632 1031s 0.96s
18 1047552 2717s 1.9s
20 4192256 5903s 3.7s

ATLK. Yet it differs from it in several respects. Firstly, we
here employ a more general semantics that comprises a may
and must relation. Secondly, the notion of state abstraction
is more general here as we can collapse states with differ-
ent protocols. Thirdly, [22] assumes finite-state systems and
provides no details as to how generate finite models from a
MAS program. In contrast in this work we have provided
a methodology to do so by creating appropriate Boolean
predicates by means of SMT calls and use these to define an
abstract, finite-state program for the MAS.

Regarding the evaluation of the technique the checker that
we released uses UISPL, an extension of MCMAS’s original
input language ISPL, to model MAS with unbounded integer
values. We have shown that the checker can verify infinite
state models automatically. We are not aware of any other
model checker for MAS supporting infinite states nor em-
ploying predicate abstraction. While no comparison can be
made, the experimental results obtained demonstrate the
tool’s performance is relatively robust with respect to the
number of unbounded variables present in the program.

In future work we plan to introduce further optimisations
in the generation of SMT calls so that more complex pro-
grams can be verified. We also intend to introduce a method-
ology for action abstraction so that particular types of MAS
programs can be more effectively abstracted. The method-
ology that we studied here is independent of the input lan-
guage; while we here defined and adopted UISPL, in the
future we plan to support other input languages. We see
these as steps to achieve the long-term goal to move from
the verification of ad-hoc MAS models to the verification of
actual MAS code.
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