
Approximating Perfect Recall when Model Checking Strategic Abilities

Francesco Belardinelli
Laboratoire IBISC, Université d’Evry

France

Alessio Lomuscio
Imperial College London

United Kingdom

Vadim Malvone
Laboratoire IBISC, Université d’Evry

France

Abstract
We investigate the notion of bounded recall in the context
of model checking ATL∗ and ATL specifications in multi-
agent systems with imperfect information. We present a novel
three-valued semantics for ATL∗, respectively ATL, under
bounded recall and imperfect information, and study the cor-
responding model checking problems. Most importantly, we
show that the three-valued semantics constitutes an approxi-
mation with respect to the traditional two-valued semantics.
In the light of this we construct a sound, albeit partial, al-
gorithm for model checking two-valued perfect recall via its
approximation as three-valued bounded recall.

1 Introduction
Alternating-time Temporal Logic (ATL) and its extension
ATL∗ are widely used formalisms to reason about strate-
gic abilities in multi-agent systems (Alur, Henzinger, and
Kupferman 2002). At the heart of ATL is the notion of
the temporal sequence of events that a coalition of agents
can bring about in a system, irrespective of the actions of
other agents outside the coalition. ATL has been extended
in various directions giving raise to even more expressive
formalisms, e.g., by taking into account time (André et al.
2017), bounded resources (Alechina et al. 2015), epistemic
concepts (Ågotnes et al. 2015), and beyond.

A key consideration when using expressive specification
languages, including ATL, is the computational complex-
ity of the resulting model checking problem. In the case of
ATL, this was shown to be PTIME-complete under per-
fect information (Alur, Henzinger, and Kupferman 2002).
Agents in a multi-agent system (MAS), however, typically
operate under imperfect information about the other agents
and the environment. Once imperfect information is as-
sumed, the resulting model checking problem becomes ∆P

2 -
complete under observational semantics (Jamroga and Dix
2006) and it is undecidable under perfect recall (Dima and
Tiplea 2011). The latter case is particularly problematic as
(i) it is a traditionally natural set-up to consider (Meyden
and Shilov 1999), and (ii) it hinders the development of any
verification toolkit.

Recent approaches have attempted to overcome such
problems. For instance, recent works show that if agents

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can only communicate via broadcasting, decidability can be
retained although with high complexity (Belardinelli et al.
2017). Further, hierarchical systems where information is
shared in a strictly pre-determined manner have also been
shown to provide decidable fragments (Berthon et al. 2017).
These and other contributions analyse the verification prob-
lem under perfect recall and imperfect information by re-
stricting the class of MAS.

While we share the objectives that have previously been
pursued in this area, here we make a significant departure
from the approaches above. In particular, rather than as-
suming perfect recall, we explore the verification problem
against the weaker notion of bounded recall. In a nutshell,
under n-bounded recall an agent’s strategy does not depend
on her whole history, but only on her last n steps. This is a
reasonable assumption on the abilities of agents.

Similar notions of resource-bounded strategies have been
previously investigated in the literature. In particular, as we
highlight when discussing the related work in Section 5,
(Vester 2013) introduced strategies as finite-memory trans-
ducers. While related, our treatment is nonetheless different.
Indeed, as we show in Section 5, some finite-memory trans-
ducers cannot be translated polynomially into our bounded
recall strategies and some bounded recall strategies cannot
be polynomially recast as transducers. A further key point
of departure is that our notion of bounded recall is intended
to provide a basis for an iterative verification procedure for
MAS based on a novel three-valued semantics.

Our treatment is also motivated by practical considera-
tions. Firstly, bounded recall is a useful concept when mod-
elling concrete systems, as no real-life MAS can have un-
bounded memory. Secondly, as we show in Section 3, in
cases of interest bounded recall can provide a provably
sound approximation of perfect recall during verification. A
key result that we prove (Corollary 1) states that MAS prop-
erties under perfect recall can be determined by analysing
their bounded recall approximations.

Structure of the paper. In Section 2 we introduce the
notion of bounded recall in the context of interpreted sys-
tems and ATL∗, and compare bounded and perfect recall
from the perspective of verification. In Section 3 we de-
velop a novel three-valued semantics for bounded as well as
perfect recall and study the corresponding model checking
problems. Then, we analyse its formal properties against the



classic version in Section 2. These theoretical results lay the
foundations for a verification procedure, presented in Sec-
tion 4, for model checking MAS under imperfect informa-
tion and perfect recall via iterative checking of bounded re-
call versions of the same MAS in the three-valued semantics
with increasing amount of memory. While the algorithm is
incomplete in general, we show that if a bound on recall is
assumed, it terminates in PSPACE. We discuss the related
work in depth in Section 5 and conclude in Section 6.

2 Classic Bounded Recall
In this section we introduce a two-valued semantics for
ATL∗ under imperfect information and bounded recall.
Then, we study the complexity of the corresponding model
checking problem, and compare it with perfect recall. Here-
after we assume sets Ag = {1, . . . ,m} of indices for agents
andAP of atomic propositions. Given a set U , U denotes its
complement. We denote the length of a tuple v as |v|, and its
ith element either as vi or v.i. Let last(v) = v|v| be the last
element in v. For i ≤ |v|, let v≥i be the suffix vi, . . . , v|v| of
v starting at vi and v≤i the prefix v1, . . . , vi of v starting at
v1. Finally, N+ = N \ {0} is the set of positive naturals.

2.1 Interpreted Systems
We follow the presentation of interpreted systems as given
in (Fagin et al. 1995). We will use these as a semantics for
ATL∗ as originally done in (Lomuscio and Raimondi 2006),
rather than concurrent game structures.

Definition 1 (Agent). Given a set Ag of indices for agents,
an agent is a tuple i = 〈Li, Acti, Pi, ti〉 such that

• Li is the finite set of local states;
• Acti is the finite set of individual actions;
• Pi : Li → (2Acti \ ∅) is the protocol function;
• ti : Li × ACT → Li is the local transition function,

where ACT = Act1 × · · · × Act|Ag| is the set of joint
actions, s.t. for l ∈ Li, a ∈ ACT , ti(l, a) is defined iff
ai ∈ Pi(l).

By Def. 1 an agent i is situated in some local state l ∈ Li,
which represents the information she has about the system.
At any state she can perform the actions inActi according to
protocol Pi. A joint action brings about a change in the state
of the agent, according to transition function ti. Hereafter
we identify an agent index i with the corresponding agent.

Given set Ag of agents, a global state s ∈ G is a tu-
ple 〈l1, . . . , l|Ag|〉 of local states, one for each agent in Ag.
Notice that an agent’s protocol and transition function de-
pend only on his local state, which might contain strictly
less information than the global state. In this sense agents
have imperfect information about the system. A history h ∈
G+ is a finite (non-empty) sequence of global states. For
n ≥ 1, Gn denotes the set of histories of length n, and
G<1+n =

⋃
1≤m≤n Gm is the set of histories of length at

most n. Hereafter, G<ω denotes the set of all finite histories,
i.e., G<ω = G+.

For every agent i ∈ Ag, we define an indistinguishability
relation ∼i between global states based on the identity of

local states, that is, s ∼i s
′ iff si = s′i (Fagin et al. 1995).

This indistinguishability relation is extended to histories in
a synchronous, pointwise way, i.e., histories h, h′ ∈ G+ are
indistinguishable for agent i ∈ Ag, or h ∼i h

′, iff (i) |h| =
|h′| and (ii) for all j ≤ |h|, hj ∼i h

′
j .

Definition 2. An interpreted system (IS) is a tuple M =
〈Ag, s0, T,Π〉, where

• Ag is the set of agents;
• s0 ∈ G is the (global) initial state;
• T : G × ACT → G is the global transition function such

that s′ = T (s, a) iff for every i ∈ Ag, s′i = ti(si, a);
• Π :G×AP→{tt,ff} is the labelling function.

An interpreted system describes the interactions of a
group Ag of agents, starting from initial state s0, accord-
ing to transition function T . Notice that T is defined on state
s for joint action a iff ai ∈ Pi(si) for every i ∈ Ag.

2.2 ATL on Bounded Recall
We make use of the Alternating-time Temporal Logic
ATL∗ (Alur, Henzinger, and Kupferman 2002) to reason
about the strategic abilities of agents in interpreted systems.

Definition 3 (ATL∗). State (ϕ) and path (ψ) formulas in
ATL∗ are defined as follows, for q ∈ AP and Γ ⊆ Ag:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | (ψUψ)

Formulas in ATL∗ are all and only the state formulas.

As customary, a formula 〈〈Γ〉〉Φ is read as ‘the agents in
coalition Γ have a strategy to achieve Φ’. The meaning of
LTL operators ‘next’X and ‘until’ U is standard (Baier and
Katoen 2008). Operators [[Γ]], F and G can be introduced as
usual.

Formulas in the ATL fragment of ATL∗ are obtained
from Def. 3 by restricting path formulas ψ as follows, where
ϕ is a state formula and R is the release operator 1:

ψ ::= Xϕ | (ϕUϕ) | (ϕRϕ)

In the rest of the paper we consider two other relevant
fragments of ATL∗: the existential and universal fragments.

Definition 4. Let q ∈ AP and Γ ⊆ Ag. State (ϕ) and path
(ψ) formulas in the existential fragment EATL∗ of ATL∗
are defined as follows:

ϕ ::= q | ¬q | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉ψ
ψ ::= ϕ | ψ ∨ ψ | ψ ∧ ψ | Xψ | (ψUψ) | (ψRψ)

State formulas (ϕ) in the universal fragment AATL∗ of
ATL∗ are defined as follows:

ϕ ::= q | ¬q | ϕ ∨ ϕ | ϕ ∧ ϕ | [[Γ]]ψ

whereas path formulas (ψ) are defined as for EATL∗.

1Notice that the release operator R can be defined in ATL∗

as the dual of until U (indeed, it does not appear in the syntax of
Def. 3), while it must be assumed as a primitive operator in ATL.



By Def. 4 in the existential (resp. universal) fragment for-
mulas are only of the form 〈〈Γ〉〉ψ (resp. [[Γ]]ψ) or boolean
combinations thereof.

Since the behaviour of agents in interpreted systems de-
pends only on their local state, we assume agents em-
ploy uniform strategies (Jamroga and van der Hoek 2004;
Lomuscio and Raimondi 2006). That is, they perform the
same action whenever they have the same information.
Moreover, we assume that agents have some bounded re-
call of the local states visited during an execution. This is
formalised as follows.
Definition 5 (Uniform Strategy with Bounded Recall). For
n ∈ N+∪{ω}, a uniform strategy with n-bounded recall for
agent i ∈ Ag is a function fni : G<1+n → Acti such that
for all histories h, h′ ∈ G<1+n, (i) fni (h) ∈ Pi(last(h).i);
and (ii) h ∼i h

′ implies fni (h) = fni (h′).
By Def. 5 any strategy for agent i has to return actions that

are enabled for i. Also, whenever two histories are indistin-
guishable for i, then the same action is returned. Notice that
for n = 1 we obtain memoryless (or imperfect recall) strate-
gies; whereas for n = ω we have memoryfull (or perfect
recall) strategies.

Given an IS M , a path p is an infinite sequence s1s2 . . .
of states. For a set Fn

Γ = {fni | i ∈ Γ} of strate-
gies, one for each agent in coalition Γ, a path p is Fn

Γ -
compatible iff for every j > 0, pj+1 = T (pj , a) for
some joint action a ∈ ACT such that for every i ∈ Γ,
ai = fni (p1, . . . , pj) for j ≤ n, ai = fni (pj−n, . . . , pj)
otherwise. Hence, for n ∈ N+, n-bounded recall strategies
take into account at most the n previously visited states.
This modelling choice is meant to account for agents with
finite memory of past events (Ågotnes and Walther 2009;
Vester 2013). In particular, any actual implementation of
MAS with some sort of recall can only employ bounded
recall, for some bound determined by the system’s mem-
ory capacity. Finally, let out(s, Fn

Γ ) be the set of all Fn
Γ -

compatible paths starting from s.
We can now assign a meaning to ATL∗ formulas on IS

based on a semantics with two truth values: ff and tt.
Definition 6 (Satisfaction). Let n ∈ N+ ∪ {ω}. The two-
valued satisfaction relation |=2

n for an IS M , state s, path p,
and ATL∗ formula φ is defined as follows:

(M, s) |=2
n q iff Π(s, q) = tt

(M, s) |=2
n ¬ϕ iff (M, s) 6|=2

n ϕ
(M, s) |=2

n ϕ ∧ ϕ′ iff (M, s) |=2
n ϕ and (M, s) |=2

n ϕ
′

(M, s) |=2
n 〈〈Γ〉〉ψ iff for some Fn

Γ , for all p ∈ out(s, Fn
Γ ),

(M,p) |=2
n ψ

(M,p) |=2
n ϕ iff (M,p1) |=2

n ϕ
(M,p) |=2

n ψ ∧ ψ′ iff (M,p) |=2
n ψ and (M,p) |=2

n ψ
′

(M,p) |=2
n Xψ iff (M,p≥2) |=2

n ψ
(M,p) |=2

n ψUψ
′ iff for some k ≥ 1, (M,p≥k) |=2

n ψ
′,

and for all j,
1 ≤ j < k implies (M,p≥j) |=2

n ψ

Def. 6 is parametric in n for bounded recall. For n = 1
and n = ω we obtain respectively the logics ATL∗ir and
ATL∗iR for imperfect information and imperfect (resp. per-
fect) recall (Schobbens 2004). We say that formula ϕ is

true in an IS M (for n-bounded recall), or M |=2
n ϕ, iff

(M, s0) |=2
n ϕ.

Further, we observe that Def. 6 corresponds to the ob-
jective interpretation of ATL∗, whereby formulas 〈〈Γ〉〉ψ
are evaluated against all paths p ∈ out(s, Fn

Γ ) compatible
with current state s and joint strategy Fn

Γ . This is a well-
established semantical account in logics for strategies (Jam-
roga and van der Hoek 2004), which has found applications
in MAS verification (Busard et al. 2015). Our results can be
extended with minor modification to the subjective interpre-
tation of strategy operators, according to which in state s one
considers all paths starting from some state s′, epistemically
consistent with s.

2.3 Model Checking Bounded Recall
We now analyse the model checking problem for bounded
recall within the two-valued semantics, defined as follows.

Definition 7 (Model Checking). Given an IS M , a formula
φ, and a bound n ∈ N+ ∪ {ω}, the model checking prob-
lem (for n-bounded recall) concerns determining whether
M |=2

n φ.

We immediately state that model checkingATLwith per-
fect recall (i.e., for n = ω) and imperfect information is un-
decidable.

Theorem 1. The model checking problem forATL on two-
valued semantics with perfect recall and imperfect informa-
tion is undecidable.

Proof sketch. In (Dima and Tiplea 2011) it is proved
the undecidability of model checking ATL with perfect re-
call and imperfect information over concurrent game struc-
ture (CGS). Then, the result follows from the fact that IS
and CGS can be translated polynomially one into the other.
Specifically, every IS M = 〈Ag, s0, T,Π〉 induces a CGS
GM = 〈Ag,AP, S, s0, {Acti}i∈Ag, T,Π〉 that satisfies ex-
actly the same formulas in ATL∗. For the other direction,
given a CGS G satisfying some mild conditions (which are
fulfilled by the CGS used in the undecidability proof of
(Dima and Tiplea 2011)), we can extract a setAgG of agents,
inducing an IS MG such that G and MG satisfy the same
formulas in ATL∗.

As an immediate consequence of Theorem 1, model
checking ATL∗ with perfect recall and imperfect informa-
tion is also undecidable.

In contrast we show that model checking ATL∗ with
bounded recall and imperfect information is decidable.

Theorem 2. For n ∈ N+, the model checking problem for
ATL∗ (resp. ATL) under n-bounded recall and imperfect
information is inEXPTIME. Moreover, for a fixed n ∈ N+,
the same model checking problem is PSPACE-complete
(resp. ∆P

2 -complete).

Proof sketch. First, we sketch the decision procedure in
EXPTIME for formulas of type 〈〈Γ〉〉ψ, where in particular
ψ is anLTL formula. To decide 〈〈Γ〉〉ψ, we first inflate the IS
M to a model M ′ whose states are sequences of states in M
of length n. This procedure determines an exponential blow-
up. Then, we guess an n-bounded strategy Fn

Γ and prune



Algorithm MC(M, 〈〈Γ〉〉ψ, n) :

1 M ′ = Inflate(M,n) ;
2 sΓ = GuessStrat(M ′,Γ) ;
3 Prune M ′ a c c o r d i n g t o sΓ , o b t a i n i n g M ′′ ;
4 re turn MC CTL∗(M ′′, Aψ) ;

Figure 1: Algorithm to decide ATL∗ Model checking.

model M ′ of all transitions that cannot occur by following
Fn

Γ . Finally, in the pruned model thus obtained we check the
CTL∗ formula Aψ. The whole procedure is outlined in Fig-
ure 1. Notice that, since we use a polynomial oracle to guess
Fn

Γ , we need to consider the inflated model M ′ exponential
in n. Further, model checkingCTL∗ is in PSPACE (Clarke,
Emerson, and Sistla 1986). Then, the whole procedure is in
EXPTIME. In the case of a general formula ϕ in ATL∗,
we call the procedure above a polynomial number of times
in the size of ϕ, so the procedure is again in EXPTIME.

On the other hand, if we consider ATL∗ with bound n as
fixed, we obtain a PSPACE upper bound. This is because
an n-bounded strategy, with n fixed, can be guessed in poly-
nomially many steps, and therefore by using only polyno-
mially many memory cells. As for the lower bound with n
fixed, since every formula ψ in LTL is equivalent to 〈〈∅〉〉ψ
in ATL∗ and model checking LTL is PSPACE-hard, the
result follows.

As regards the upper bound for ATL with a fixed n, we
can adapt the proof of ATL∗ described above. Specifically,
we substitute the subroutine for model checking CTL∗ with
the one for CTL, which is in PTIME (Clarke, Emerson,
and Sistla 1986). Then, the whole procedure is polynomial
with calls to anNP oracle. As a result, the overall complex-
ity is in ∆P

2 . As for the lower bound with n fixed, we can
use the same reduction to SNSAT2 as in (Jamroga and Dix
2006).

We remark that for a fixed n ∈ N+, the complexity
of model checking ATL and ATL∗ with n-bounded re-
call (and imperfect information) is the same as for the
imperfect recall case, i.e., for n = 1 (Schobbens 2004;
Jamroga and Dix 2006). Moreover, we provided tight com-
plexity results only for a fixed n. Indeed, here we are mainly
interested in the fact that, differently from the perfect infor-
mation case, the model checking problem for bounded recall
is decidable, irrespectively of its complexity.

The decidability results above can be the basis of a partial
model checking procedure for perfect recall consisting in in-
creasing the bound n on the memory of agents. However,
as the following demonstrates, increasing memory only pre-
serves rather limited fragments ofATL∗ and may, therefore,
only be of limited interest.
Lemma 1. Let m,n ∈ N+ ∪{ω} be such that m ≤ n; let ψ
be an existential and φ an universal formula inATL∗. Then,

(M,p) |=2
m ψ ⇒ (M,p) |=2

n ψ (1)

(M,p) 6|=2
m φ ⇒ (M,p) 6|=2

n φ (2)

Proof sketch. The proofs for (1) and (2) are both by in-
duction on the structure of the formula. We only consider the

case for (1) where the main operator is the strategic modal-
ity. The other cases are immediate and thus omitted.

(1) By Def. 6 (M, s) |=2
m 〈〈Γ〉〉ψ iff for some Fm

Γ , for all
p ∈ out(s, Fm

Γ ), (M,p) |=2
m ψ. Given Fm

Γ we construct a
set Fn

Γ of strategies as follows: for every agent i ∈ Γ and his-
tory h ∈ G<1+n, define fni (h) = fmi (h(|h|−m), . . . , h|h|)
for m < |h|, fni (h) = fmi (h) otherwise. Notice that each
fni so defined is uniform, provided that fmi is. Given such
Fn

Γ , we obtain out(s, Fn
Γ ) = out(s, Fm

Γ ). In particular, for
all p ∈ out(s, Fn

Γ ), (M,p) |=2
n ψ by induction hypothesis,

and therefore (M, s) |=2
n 〈〈Γ〉〉ψ.

By Lemma 1 adding memory preserves the truth of exis-
tential formulas as well as falsehood of universal formulas.
However, it is not difficult to find counterexamples to the
extensions of (1) and (2) even in ATL.
Lemma 2. Letm,n ∈ N+∪{ω} be such thatm < n. There
exists formulas ϕ and ϕ′ = ¬ϕ in ATL such that

(M,p) |=2
m ϕ and (M,p) 6|=2

n ϕ (3)

(M,p) 6|=2
m ϕ′ and (M,p) |=2

n ϕ
′ (4)

Proof sketch. We only provide a sketch of proof for
(4) with m = 1 and n = 2. Consider a revisited version
of a game of matching pennies in which Player 1 chooses
first head or tail and Player 2 can see the choice, i.e., they
end up in two different and distinguishable states. But af-
ter that, there is another step in which the coin is hidden
from Player 2, i.e., there are two indistinguishable states for
Player 2. Let ϕ′ = 〈〈{2}〉〉Fw. Player 2 has no 1-bounded
recall strategy to win the game, but she has a 2-bounded re-
call, and therefore an n-bounded recall strategy, for every
n ∈ N+ ∪ {ω}. This line of reasoning can be generalised to
all m,n ∈ N+ ∪ {ω} with m < n, as depicted in Figure 2.

By Lemmas 1 and 2 any naive attempt to approximate per-
fect recall by increasing bounded recall is severely restricted
in two ways. Firstly, Lemma 1 holds only for the existen-
tial and universal fragments of ATL∗. Secondly, only the
truth of existential formulas is preserved by adding memory,
whereas negative results can only be lifted for the univer-
sal fragment. In the next section we present a three-valued
semantics to overcome these difficulties. Before this, we ex-
emplify the formal machinery introduced so far on an exam-
ple.
Example 1. Alice wants to buy a gift for her son’s birth-
day, but she is unable to buy it herself. So, she asks her
friend Bob to buy a toy (t) and some wrapping paper (p).
But Bob is a playful guy. He buys t and p, but then sug-
gests they play a game. First, Bob puts t and p in two differ-
ent rooms (r1 and r2), one in front of the other. Then, Bob
puts Alice blindfolded in between the doors. Alice can go
either forward (f ) or backward (b); her goal (g) is to enter
both rooms to get both t and p. This scenario is modeled
as the interpreted system M in Figure 3. More formally, we
have an ISM = 〈Ag, s0, T,Π〉, whereAg = {Alice,Bob},
G = {s0, s1, s2, s3, s4, s5, s6, s7}, ActAlice = {b, f, I},
ActBob = {1, 2, I}, the global transition function is given
as in Figure 3, Π(s3, p) = tt, Π(s4, t) = tt, Π(s5, t) = tt,



s1

s2 s3

s14 s15

sn4 sn5

s6
w s7 s8

s9
w

Player2

Player2

(head, I) (tail, I)

(H1, I) (H1, I)

(H2, I) (H2, I)

(Hn, I) (Hn, I)

(I, head) (I, tail) (I, head) (I, tail)

Figure 2: The IS M for a revisited version of matching pen-
nies game. Here, we consider the general setting in which
there are n steps of hiding before the choice of Player2.

Π(s6, p) = tt, Π(s7, g) = tt, and all atoms are false in any
other state. We remark informally that if Alice only does f
or b, she cannot get both objects. But if she chooses first
one action and then the other, then she gets both t and p.
The IS M is useful to describe the power of bounded-recall
strategies. In particular, Alice has no memoryless strategy to
achieve her goal, as she is supposed to perform two differ-
ent actions in her initial state. However, she has a 2-bounded
recall strategy to win the game. More formally, we have that
(M, s0) |=2

n 〈〈Alice〉〉(Fp ∧ F t ∧ Fg) is true for n ≥ 2 and
false otherwise.

3 Three-valued Bounded Recall
In Section 2 we remarked that model checking ATL∗ un-
der imperfect information and perfect recall is undecidable
in general (Dima and Tiplea 2011). Moreover, naively ap-
proximating perfect recall through bounded recall leads to
the weak results in Lemmas 1 and 2.

To tackle these issues, in this section we lay the theoreti-
cal foundations of a partial model checking procedure based
on a three-valued semantics. The procedure is partial as in
some cases it returns “undefined” (uu) as truth value. On the
other hand, differently from Lemma 1, the satisfaction of all
ATL∗ formulas is preserved by adding memory.

3.1 Three-valued ATL on Bounded Recall
We start by providing the three-valued satisfaction relation
for ATL∗.

s0

s3
p

s4
t

s1

s2
s6
p

s5
t

s7
gAlice

(I, 1)

(I, 2)

(I, I)

(I, I)

(f, I)(b, I)

(I, I)

(f, I)(b, I)

(I, I)

(I, I)

(I, I)

(I, I)

Figure 3: The IS M for the purchase gift game, where the
actions 1 and 2 represents the choice of Bob to put Alice in
front of room r1 or r2, respectively. Moreover, s1 and s2 are
indistinguishable to Alice and I stands for the idle action.

Definition 8 (Satisfaction). Let n ∈ N+ ∪ {ω}. The three-
valued satisfaction relation |=3

n for an IS M , state s, path p,
ATL∗ formula φ, and v ∈ {tt,ff} is defined as in Fig. 4. In
all other cases the value of φ is undefined (uu).

Notice that all clauses for the three-valued semantics mir-
ror the corresponding two-valued clauses, with a notable ex-
ception: for 〈〈Γ〉〉ψ to be false we require the existence of a
joint strategy for the complement coalition Γ that enforces
ψ to be false. Similar conditions have previously been pro-
posed (Lomuscio and Michaliszyn 2014). It is a stronger re-
quirement than the usual clause on the coalition Γ not being
able to enforce ψ. However, it has the advantage of being
preserved when adding memory, as it will become appar-
ent in Lemma 5. Further, as for the two-valued semantics,
we normally refer to the cases for n = 1 and n = ω as
imperfect, resp. perfect, recall. Also notice that, as regards
the Boolean operators, our semantics correspond to Kleene’s
three-valued logic.

We say that formula ϕ is true (resp. false) in an IS M
(for n-bounded recall), or (M |=3

n ϕ) = tt (resp. ff), iff
((M, s0) |=3

n ϕ) = tt (resp. ff); otherwise ϕ is undefined.
Again, we observe that Def. 8 is an objective, three-valued
interpretation of ATL∗. The corresponding subjective se-
mantics can be obtained with minor modification, but it is
beyond the scope of the present contribution.

We immediately prove that the three-valued notion of sat-
isfaction in Def. 8 is an extension of the two-valued relation
in Def. 6.
Lemma 3. For every n ∈ N+ ∪ {ω}, formula φ in ATL∗,

((M, s) |=3
n φ) = tt ⇒ (M, s) |=2

n φ (5)

((M, s) |=3
n φ) = ff ⇒ (M, s) 6|=2

n φ (6)

Proof sketch. The proofs for both (5) and (6) are by si-
multaneous induction on the structure of the formula. We
present the case for (6) where the main operator is the strate-
gic modality. The cases for the other operators are immedi-
ate.

(6) By Def. 8 ((M, s) |=3
n 〈〈Γ〉〉ψ) = ff iff for some

Fn
Γ̄

, for all p ∈ out(s, Fn
Γ̄

), ((M,p) |=3
n ψ) = ff . Fix

such a Fn
Γ̄

. By induction hypothesis we obtain that for all
p ∈ out(s, Fn

Γ̄
), (M,p) 6|=2

n ψ. In particular, for every



((M, s) |=3
n q) = v iff Π(s, q) = v

((M, s) |=3
n ¬ϕ) = v iff ((M, s) |=3

n ϕ) = ¬v
((M, s) |=3

n ϕ ∧ ϕ′) = tt iff ((M, s) |=3
n ϕ) = tt and ((M, s) |=3

n ϕ
′) = tt

((M, s) |=3
n ϕ ∧ ϕ′) = ff iff ((M, s) |=3

n ϕ) = ff or ((M, s) |=3
n ϕ
′) = ff

((M, s) |=3
n 〈〈Γ〉〉ψ) = tt iff for some Fn

Γ , for all p ∈ out(s, Fn
Γ ), ((M,p) |=3

n ψ) = tt
((M, s) |=3

n 〈〈Γ〉〉ψ) = ff iff for some Fn
Γ̄ , for all p ∈ out(s, Fn

Γ̄ ), ((M,p) |=3
n ψ) = ff

((M,p) |=3
n ϕ) = v iff ((M,p1) |=3

n ϕ) = v
((M,p) |=3

n ¬ψ) = v iff ((M,p) |=3
n ψ) = ¬v

((M,p) |=3
n ψ ∧ ψ′) = tt iff ((M,p) |=3

n ψ) = tt ((M,p) |=3
n ψ
′) = tt

((M,p) |=3
n ψ ∧ ψ′) = ff iff ((M,p) |=3

n ψ) = ff ((M,p) |=3
n ψ
′) = ff

((M,p) |=3
n Xψ) = v iff ((M,p≥2) |=3

n ψ) = v
((M,p) |=3

n ψUψ
′) = tt iff for some k ≥ 1, ((M,p≥k) |=3

n ψ
′) = tt, and for all j, 1 ≤ j < k implies ((M,p≥j) |=3

n ψ) = tt
((M,p) |=3

n ψUψ
′) = ff iff for all k ≥ 1, ((M,p≥k) |=3

n ψ
′) = ff , or for some j ≥ 1, ((M,p≥j) |=3

n ψ) = ff

Figure 4: The three-valued satisfaction relation |=3
n for an IS M , state s, path p, ATL∗ formula φ, and v ∈ {tt,ff}.

joint strategy Fn
Γ there exists some path p′ ∈ out(s, Fn

Γ )

(which is obtained when coalition Γ plays according to
Fn

Γ̄
) such that (M,p′) 6|=2

n ψ by hypothesis. As a result,
(M, s) 6|=2

n 〈〈Γ〉〉ψ.

On the other hand, the three-valued semantics is not a con-
servative extension of the two-valued one. Specifically, the
following lemma provides counterexamples to the converse
of (5) and (6).

Lemma 4. For n ∈ N+ ∪ {ω}, there exists an IS M with
state s, and ATL formulas ϕ and ϕ′ = ¬ϕ such that

(M, s) |=2
n ϕ and ((M, s) |=3

n ϕ) 6= tt (7)

(M, s) 6|=2
n ϕ
′ and ((M, s) |=3

n ϕ
′) 6= ff (8)

Proof sketch. As regards (8) consider again the game of
matching pennies presented in the proof of Lemma 2. We
remarked therein that 〈〈{2}〉〉Fw is false in the (positional)
two-valued semantics. However, in the same game Player 1
has no 1-bounded strategy to enforce Player 2 to lose, i.e., in
the three-valued semantics the value of 〈〈{2}〉〉Fw is differ-
ent from ff; actually, it is uu.

3.2 Model Checking Three-valued Bounded
Recall

We now analyse the model checking problem for the three-
valued semantics.

Definition 9 (Model Checking). Given an IS M , a formula
φ, bound n ∈ N+∪{ω}, and truth value v ∈ {tt,ff,uu}, the
model checking problem (for n-bounded recall) amounts to
determining whether (M |=3

n φ) = v.

Similarly as in the two-valued semantics, we obtain the
following undecidability result.

Theorem 3. The model checking problem for ATL in the
three-valued semantics with perfect recall and imperfect in-
formation is undecidable.

Proof sketch. The proof follows by adapting the unde-
cidability result in in (Dima and Tiplea 2011), which makes
use of the ATL formula ϕ = 〈〈{1, 2}〉〉Gok to express that

a Turing machine does not halt on the empty word. Specif-
ically, we observe that the two- and three-valued interpreta-
tions coincide for this particular formula ϕ. That is, for any
bound n ∈ N+ ∪ {ω}, we have that (M |=3

n ϕ) = tt iff
M |=2

n ϕ. Indeed, the value of atom ok is always defined,
and the structure of the clauses for operator 〈〈{1, 2}〉〉 is the
same in the two- and three-valued semantics. As a conse-
quence, we obtain that a Turing machine T does not halt on
the empty word iff (MT |=3

n ϕ) = tt, whereMT is obtained
from T as described in (Dima and Tiplea 2011).

By Theorem 3 model checking ATL∗ in the same setting
is also undecidable. Again, by assuming bounded recall we
retrieve decidability.

Theorem 4. For n ∈ N+ the model checking problem for
ATL∗ in the three-valued semantics with n-bounded re-
call and imperfect information is in EXPTIME. Moreover,
for a fixed n ∈ N+, the same model checking problem is
PSPACE-complete.

Proof sketch. As regards the general case with n as a
parameter, we adapt the model checking procedure for The-
orem 2. Again, the case of interest is for strategic formulas
ϕ = 〈〈Γ〉〉ψ. We consider values tt, ff , and uu separately.
Since the clause for checking ((M,p) |=3

n ϕ) = tt is the
same as for (M,p) |=2

n ϕ, we can use the same procedure
as in Theorem 2, which is in EXPTIME. To check whether
((M,p) |=3

n ϕ) = ff we observe that this is tantamount
to the two-valued clause for 〈〈Γ̄〉〉¬ψ. Therefore, we use the
procedure in Fig. 1 with input formula 〈〈Γ̄〉〉¬ψ. Again, its
complexity is in EXPTIME. Finally, if both cases (tt) and
(ff) return false, then the result is undefined (uu). Since to
determine uu we use two procedures in EXPTIME, this
is also in EXPTIME. In Fig. 5 we outline the procedure
above. As for Theorem 2, the procedure above is called a
polynomial number of times in the size of ϕ, so the overall
complexity is still in EXPTIME.

For a fixed n ∈ N+ the procedure above is inPSPACE, as
we recall that guessing a strategy on the inflated model can
be done in polynomial space. As regards the lower bound,
we make use of the same reduction as in Theorem 2. In par-
ticular, we can reduce model checking an LTL formula ψ to
the verification of the truth of the ATL∗ formula 〈〈∅〉〉ψ in



Algorithm MC3(M, 〈〈Γ〉〉ψ, n, v) :

1 i f v = tt t h e n re turn MC(M, 〈〈Γ〉〉ψ, n) ;
2 e l s e i f v = ff t h e n re turn MC(M, 〈〈Γ̄〉〉¬ψ, n) ;
3 e l s e i f v = uu and
4 MC(M, 〈〈Γ〉〉ψ, n) ∨MC(M, 〈〈Γ̄〉〉¬ψ, n) t h e n
5 re turn ff ;
6 e l s e re turn tt ;

Figure 5: Algorithm to decide ATL∗ three-valued model
checking.

the three-valued semantics.

By Theorems 2 and 4 model checking ATL∗ on the two-
and three-valued semantics has the same complexity. This is
also the case for ATL.

Theorem 5. For n ∈ N+ the model checking problem for
ATL in the three-valued semantics with n-bounded recall
and imperfect information is in EXPTIME. Moreover, for
a fixed n ∈ N+, the same model checking problem is ∆P

2 -
complete.

Proof sketch. Clearly, the EXPTIME upper bound for
the general case still holds.

As for a fixed n ∈ N+, we adapt the proof of Theorem 4.
In particular, in the procedure to decide strategy formulas
we change the model checking subroutine as we did in the
proof of Theorem 2, by using the one for CTL (which we
recall to be in ∆P

2 ) instead of the one for CTL∗.

Again, for a fixed n ∈ N+, the complexity of model
checking three-valued ATL and ATL∗ with n-bounded re-
call (and imperfect information) is the same as for imperfect
recall. Also, as in Sec. 2 we are primarily interested in the
decidability of the model checking problem for bounded re-
call, irrespectively of tight complexity results.

Our aim in the rest of this section is to lay the theoretical
foundations of a (partial) model checking procedure that is
able to deal with the whole of ATL∗. To this end, the next
result, which is akin to Lemma 1, details the preservation of
ATL∗ formulas when adding memory. However, differently
from Lemma 1, this result holds for all ATL∗ formulas.

Lemma 5. Let m,n ∈ N+ ∪{ω} be such that m ≤ n; let ψ
be a formula in ATL∗. Then,

((M, s) |=3
m ψ) = tt ⇒ ((M, s) |=3

n ψ) = tt (9)

((M, s) |=3
m ψ) = ff ⇒ ((M, s) |=3

n ψ) = ff (10)

Proof sketch. The proofs for both (9) and (10) are by
simultaneous induction on the structure of the formula. We
only present the case for (10) where the main operator is the
strategic modality, the other operators being immediate.

(10) By Def. 8 ((M, s) |=3
m 〈〈Γ〉〉ψ) = ff if for some

Fm
Γ̄

, for all p ∈ out(s, Fm
Γ̄

), ((M,p) |=3
m ψ) = ff . Given

Fm
Γ̄

we construct a set Fn
Γ̄

of strategies as follows: for ev-
ery agent i ∈ Γ̄ and history h ∈ G<1+n, define fni (h) =
fmi (h(|h|−m), . . . , h|h|) for m < |h|, fni (h) = fmi (h) oth-
erwise. Notice that fni so defined is uniform, provided that
fmi is. Given such Fn

Γ̄
, we obtain out(s, Fn

Γ̄
) = out(s, Fm

Γ̄
).

Algorithm Iterative MC(M,ψ, n) :

1 j = 1 , k = uu ;
2 whi le j ≤ n and k = uu
3 i f MC3(M,ψ, j, tt) t h e n k = tt
4 e l s e i f MC3(M,ψ, j,ff) t h e n k = ff
5 j = j + 1 ;
6 end whi le ;
7 i f k 6= uu t h e n re turn (j, k) ;
8 e l s e re turn −1;

Figure 6: The procedure IterativeMC to decideATL∗ iter-
atively.

In particular, for all p ∈ out(s, Fn
Γ̄

), ((M,p) |=3
n ψ) = ff by

induction hypothesis, and therefore ((M, s) |=3
n 〈〈Γ〉〉ψ) =

ff .

By Lemma 5 adding memory preserves defined truth val-
ues for all formulas in ATL∗. This is in marked contrast
with Lemma 1. Indeed, even though in some cases the value
of an ATL∗ formula may be undefined in the three-valued
semantics, whenever it is defined, it does not change if mem-
ory is added.

By combining together Lemmas 3 and 5 we prove our
main result on the relationship between bounded recall and
the two- and three-valued semantics.

Corollary 1. Let m,n ∈ N+ ∪{ω} be such that m ≤ n; let
ψ be a formula in ATL∗. Then,

((M,p) |=3
m ψ) = tt ⇒ ((M,p) |=2

n ψ) (11)

((M,p) |=3
m ψ) = ff ⇒ ((M,p) 6|=2

n ψ) (12)

Of particular interest is the case for m ∈ N+ and n =
ω. By Corollary 1 we can outline a verification procedure
for perfect recall, whereby ATL∗ formulas are checked in
the three-valued semantics iteratively. If either true or false
are returned, by Corollary 1 this is also the truth value for
the two-valued semantics under perfect recall. We provide a
detailed presentation and formal analysis of this verification
procedure in the next section.

4 Approximating Perfect Recall
In this section we provide a partial decision procedure for
model checking ATL∗ with imperfect information and n-
bounded recall. It is partial, as it is not guaranteed to termi-
nate for the case of perfect recall, i.e., n = ω. This procedure
is described in an algorithmic way in Fig. 6. It takes as input
an IS M , an ATL∗ formula ψ, and a bound n ∈ N+ ∪ {ω}.
Procedure Iterative MC() includes a loop, whose guard
checks whether the bound has not yet been attained (j ≤ n)
and ψ has not yet been decided (k = uu). Within the loop
ψ is model-checked in M according to the three-valued se-
mantics by subroutine MC3(), and variable k stores the re-
sult. On exiting the loop, variable k is tested. If k 6= uu, the
loop was exited because of a defined answer for the three-
valued model checking problem with j-bounded recall. By
Corollary 1 we can then transfer the value returned to the
corresponding model checking problem in the two-valued



semantics. On the other hand, if k = uu then the bound has
been attained in the loop and -1 is given as a result. We now
prove the termination of the algorithm in Fig. 6 for n ∈ N+,
as well as its soundness.

Theorem 6. For n ∈ N+, Iterative MC() terminates in
EXPTIME. Moreover, Iterative MC() is sound: if the
value returned is different from -1, then M |=2

n φ iff k = tt.

Proof sketch. As regards termination in EXPTIME, no-
tice that for n ∈ N+ the algorithm in Fig. 6 calls pro-
cedure MC3(), which is in EXPTIME (Theorem 4), a
bounded number of times. Then, the overall complexity is
in EXPTIME.

As for soundness, suppose that the value returned is dif-
ferent from -1. In particular, either k = tt or k = ff . If
M |=2

n φ and k = ff , then ((M, s) |=3
j ψ) = ff for j ≤ n,

and by Corollary 1.(12) we have M 6|=2
n φ, a contradiction.

Hence, k = tt as required. On the other hand, if k = tt then
by Corollary 1.(11) we obtain M |=2

n φ.

Incidentally, for a fixed n ∈ N+, algorithm
Iterative MC() actually runs in PSPACE.

An important application of Iterative MC() is for n =
ω, namely model checking perfect recall. In such a case ter-
mination is no longer guaranteed, but soundness is.

Theorem 7. For n = ω, Iterative MC() does not neces-
sarily terminate. However, Iterative MC() is sound: if the
value returned is different from -1, then M |=2

n φ iff k = tt.

Proof sketch. We have remarked that in several games,
such as matching pennies, neither player has a strategy to
win the game, no matter how much recall we assume on our
players. Soundness follows again by Corollary 1.

As a result, by Theorem 7 we have a sound, albeit incom-
plete, decision procedure for model checking ATL∗ with
perfect recall and imperfect information. Observe that no
complete procedure is attainable as the problem is undecid-
able in general (Dima and Tiplea 2011).

Example 2. We conclude with an example for illustra-
tive purposes. In connection with the IS M for the pur-
chase gift game in Example 1, consider the specification
φ = [[Bob]]X〈〈Alice〉〉(Fp∧F t) which intuitively states that
no matter what Bob does, at the next step Alice has a strategy
whereby all outcomes eventually satisfy atoms p and t (pos-
sibly at different times), that is, she will be able to collect
the gift and the wrapping paper. This specification is neither
existential nor universal, and therefore does not fall within
the hypothesis of Lemma 1. Nevertheless, φ is amenable to
algorithm Iterative MC() in Fig. 6. Specifically, given the
IS M in Fig. 3, formula φ, and bound n ≥ 2, the algo-
rithm Iterative MC(M,φ, n) initializes the bound on re-
call to 1 and the value of k to undefined uu. Then, proceeds
with the first iteration. Both subroutines MC3(M,φ, 1, tt)
and MC3(M,φ, 1,ff) return false because, according to the
three-valued semantics, Alice does not have a memoryless
strategy to enforce 〈〈Alice〉〉(Fp ∧ F t) at the next step, nor
Bob has a (memoryless) strategy to prevent 〈〈Alice〉〉(Fp ∧
F t) at the next step. On the other hand, in the second iter-
ation the call MC3(M,φ, 2, tt) returns true, as Alice has

a 2-bounded recall strategy to enforce 〈〈Alice〉〉(Fp ∧ F t)
at the next step, and therefore φ holds. Thus, we conclude
that the IS M in Example 1 satisfy specification φ under the
assumptions of imperfect information and perfect recall.

5 Related Work
We now discuss our work in the context of recent contri-
butions on logic-based languages for the specification of
strategic abilities of agents in multi-agent systems. In par-
ticular, inspired by (Ball and Kupferman 2006; Shoham
and Grumberg 2004) a stream of papers has recently ap-
peared on three-valued semantics for ATL. In (Lomuscio
and Michaliszyn 2014; 2015) three-valued abstractions for
interpreted systems are introduced to tackle the complexity
of MAS verification. These investigations were developed
further in (Belardinelli, Lomuscio, and Michaliszyn 2016;
Lomuscio and Michaliszyn 2016) by means of predicate ab-
straction. While we take our inspiration from this line of
works, our present contribution differs significantly.

First of all, the semantics and the underlying classes of
systems we study here are different from those in (Lomus-
cio and Michaliszyn 2014; 2015; 2016). Specifically, these
works assume non-uniform strategies (Lomuscio and Rai-
mondi 2006), with crucial implications on the decidability
and complexity of the model checking problem. In particu-
lar, in the semantics of non-uniform strategies model check-
ing ATL with imperfect information is decidable in PTIME
both for the memoryfull and memoryless case. Hence, ap-
proximating perfect recall is not even an issue in the setting
of (Lomuscio and Michaliszyn 2014; 2015; 2016). On the
other hand, we here insist on considering uniform strategies,
as this is the framework commonly used when analysing
strategic abilities of agents in MAS and game-theoretical
contexts (Jamroga and van der Hoek 2004).

Further, in the related (Belardinelli and Lomuscio 2017)
imperfect recall is assumed, whereas here we tackle the case
of perfect recall. Their three-valued semantics ofATL oper-
ators is also different from what we propose here. Formally,
in (Belardinelli and Lomuscio 2017) the falsehood of a for-
mula of type 〈〈Γ〉〉ψ is given in terms of may-strategies of
coalition Γ, whereas we define it in terms of the strategic
abilities of the complement coalition Γ̄. This is a key feature
of our semantics, as it allows us to preserve defined truth
values when adding recall (Lemma 1).

Finally, our objective in the present contribution is differ-
ent from the one addressed in (Lomuscio and Michaliszyn
2014; 2015; 2016): we aim at approximating undecidable
perfect recall via decidable bounded recall. As remarked
above, this is not an objective in (Lomuscio and Michaliszyn
2014; 2015; 2016).

Classic, two-valued bounded recall and bounded strate-
gies have been studied quite extensively in the literature.
In (Ågotnes and Walther 2009) the authors consider strate-
gies according to two different bounds: over the set of histo-
ries and over the length of histories. In this framework, they
show that ATL with bounded memory is strictly more ex-
pressive than standard ATL. In (Brihaye et al. 2009) ATL
is extended in two directions: strategy contexts and bounded
memory. Then, the model checking problem is proved to be



in EXPSPACE. In (Jamroga, Malvone, and Murano 2017)
strategies are defined as a list of condition-action rules.
Then, the authors present a variant of ATL that makes use
of strategy operators with a bound on the size of this list. To
the best of our knowledge, in most contributions cited above
the emphasis on boundedness always concerns expressive-
ness issues and complexity of the related model checking
problem, but it has not been considered as approximation
of perfect recall, which is the main focus of the present
work. In some cases, including (Ågotnes and Walther 2009;
Brihaye et al. 2009), the semantics are incomparable.

A further representation of finite-memory strategies was
introduced in (Vester 2013), where strategies are defined
as deterministic finite-state transducers (DFST). Since this
work is the most closely related to the present contribution,
we discuss it in detail and provide some comparison results.
We show below that bounded strategies and DFST cannot al-
ways be translated (polynomially) one into the other. Hence,
the two formalisms are orthogonal. We begin by introducing
the definition of DFST, but refer to (Vester 2013) for more
details.
Definition 10 (DFST). A deterministic finite-state transduc-
ers is a tuple D = 〈V, v0, In,Out, Fin, Fout〉, where (i) V
is a finite non-empty set of states; (ii) v0 is the initial state;
(iii) In is the input alphabet; (iv)Out is the output alphabet;
(v) Fin : V × In → V is the transition function; and (vi)
Fout : V × In→ Out is the output function.

Intuitively, the set V of states are the possible values of
the internal memory of the strategy. The initial state v0 cor-
responds to the initial memory value. The input symbols in
In are the states of the game, and set Out of output sym-
bols is the set of actions in the game. In each round of the
game the DFST reads the current state. Then, it updates its
memory based on the current memory value and the input
state according to Fin, and performs an action based on the
current memory value and the input state according to Fout.

A function σ : G+ → Act is a finite-memory strategy if
there exists a DFST such that for all histories h ∈ G+:

σ(h) = Fout(G(v0, h≤|h|−1), last(h))

where for every state v and history h, function G is defined
recursively as follows:

G(v, h) =

{
Fin(v, h1) if |h| = 1;

Fin(G(v, h≤|h|−1), last(h)) otherwise.

That is, G is the function that repeatedly applies the tran-
sition function Fin on a sequence of inputs to calculate the
state after a given history.

We now compare formally our definition of bounded strat-
egy with finite-memory strategies given via DFST. Hereafter
we say that two strategies are equivalent if they correspond
to the same function σ : G+ → Act.
Proposition 1. For every bound n ∈ N, there exists some
DFSTD for which there is no equivalent strategy with g(n)-
bounded memory, for any polynomial function g.

Proof sketch. Notice that we can construct a DFST
D such that for some history h of size exponential in n,
and different states s, s′, it is the case that Fout(G(v0, s ·

h≤|h|−1), last(h)) 6= Fout(G(v0, s
′·h≤|h|−1), last(h)). For

instance, consider a DFST D that loops between two differ-
ent states in V a number of times exponential in n. This kind
of behaviour cannot be captured by any strategy whose re-
call is bounded by some polynomial g(n).

As for the translation from bounded recall strategies to
DFST we have the following result.

Proposition 2. For every bound n ∈ N, there exists some
n-bounded recall strategy f for which there is no equivalent
DFST with g(n) states, for any polynomial function g.

Proof sketch. We provide a hint of a proof by con-
tradiction. Given a n-bounded recall strategy f , suppose
that we can construct a DFST D with m states, where
m < |S|n−1. In particular, this means that for two differ-
ent histories h and h′ of length n, at some points k and
j, the function G returns the same state of memory, i.e.
G(v0, h≤j) = G(v0, h

′
≤k). Suppose that hj = h′k, then we

have that Fout(G(v0, h≤j), hj) = Fout(G(v0, h
′
≤k), h′k),

i.e., the same action is returned by histories h≤j and h′≤k.
Since we suppose that our strategies have n-bounded re-
call, then w.l.o.g. we can assume that f assigns different
actions to h≤j and h′≤k. But this contradicts the fact that
m < |S|n−1 states of memory in a DFST are sufficient to
describe a n-bounded strategy.

Intuitively, Propositions 1 and 2 can be summarised as fol-
lows: while DFST can be seen as representing finite memory
in strategies, the bounded strategies here introduced express
recall. Memory and recall are related, but orthogonal no-
tions. Moreover, to the best of our knowledge, the one here
presented is the first three-valued semantics for bounded re-
call. This modelling choice is the key feature as to why The-
orem 7 applies unrestricted.

6 Conclusions
Model checking MAS against Alternating-time Temporal
Logic is known to be undecidable under perfect recall and
imperfect information. In this paper we put forward a sound,
albeit incomplete, verification procedure for perfect recall
based on a novel notion of bounded recall. To do so, we
introduced bounded recall on interpreted systems by giving
both a two- and a three-valued semantics. By using the three-
valued semantics for bounded recall we were able to prove a
preservation result of defined truth values from the bounded
to the perfect recall case for all ATL∗ specifications. As
shown, this is not possible in the classic two-valued se-
mantics. This laid the foundation for an iterative procedure,
which can, in some cases, solve the model checking prob-
lem under perfect recall by considering a bounded amount
of memory. Since model checking perfect recall is undecid-
able in general, the procedure discussed is naturally incom-
plete. It is, however, the first procedure that we are aware of,
which can give a solution in cases of interest.

In future work we plan to explore implementing the pro-
cedure above on a symbolic model checker for ATL∗ with
imperfect information, such as Verics (Knapik et al. 2010) or
MCMAS (Lomuscio, Qu, and Raimondi 2017). Given the



complexity bounds of Theorem 6, we do not expect such
an implementation to provide an efficient tool for verify-
ing concrete systems for large values of the recall parameter.
Moreover, it should be noted that such an implementation is
likely to require a major effort. Indeed, to our knowledge no
efficient model checker for ATL∗ on uniform strategies is
available, nor is any model checker on this class of systems
for a 3-valued semantics. So, this task would be a significant
endeavour in itself.

Indeed, the present contribution is primarily focused
on exploring the theoretical underpinnings upon which
approximations of perfect recall could be realised. With this
in mind, it may be worth exploring further approximations
for perfect recall or classes of formulas and models for
which the present method is complete. We leave both of
these issues to further work.

Acknowledgements. F. Belardinelli acknowledges the
support of ANR JCJC Project SVeDaS (ANR-16-CE40-
0021). A. Lomuscio is supported by a Royal Academy of
Engineering Chair in Emerging Technology.

References
Ågotnes, T., and Walther, D. 2009. A Logic of Strategic
Ability Under Bounded Memory. Journal of Logic, Lan-
guage and Information 18(1):55–77.
Ågotnes, T.; Goranko, V.; Jamroga, W.; and Wooldridge, M.
2015. Knowledge and ability. In Handbook of Logics for
Knowledge and Belief. Elsevier. 543–589.
Alechina, N.; Logan, B.; Nguyen, H. N.; Raimondi, F.; and
Mostarda, L. 2015. Symbolic model-checking for resource-
bounded ATL. In Proceedings of AAMAS 2015, 1809–1810.
Alur, R.; Henzinger, T.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672–713.
André, É.; Petrucci, L.; Jamroga, W.; Knapik, M.; and
Penczek, W. 2017. Timed ATL: forget memory, just count.
In Proceedings of AAMAS 2017, 1460–1462.
Baier, C., and Katoen, J. P. 2008. Principles of Model
Checking. MIT press.
Ball, T., and Kupferman, O. 2006. An abstraction-
refinement framework for multi-agent systems. In Proceed-
ings of LICS06, 379–388.
Belardinelli, F., and Lomuscio, A. 2017. Agent-based ab-
stractions for verifying alternating-time temporal logic with
imperfect information. In Proceedings of AAMAS 2017,
1259–1267.
Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S.
2017. Verification of multi-agent systems with imperfect
information and public actions. In Proceedings of AAMAS
2017, 1268–1276.
Belardinelli, F.; Lomuscio, A.; and Michaliszyn, J. 2016.
Agent-based refinement for predicate abstraction of multi-
agent systems. In Proceedings of ECAI16, 286–294.
Berthon, R.; Maubert, B.; Murano, A.; Rubin, S.; and Vardi,
M. Y. 2017. Strategy logic with imperfect information. In
Proceedings of LICS 2017, 1–12.

Brihaye, T.; Lopes, A.; Laroussinie, F.; and Markey, N.
2009. ATL with Strategy Contexts and Bounded Memory.
In Proceedings of LFCS’09, 92–106.
Busard, S.; Pecheur, C.; Qu, H.; and Raimondi, F. 2015.
Reasoning about memoryless strategies under partial ob-
servability and unconditional fairness constraints. Informa-
tion and Computation 242:128–156.
Clarke, E.; Emerson, E.; and Sistla, A. 1986. Automatic Ver-
ification of Finite-State Concurrent Systems Using Tempo-
ral Logic Specifications. Proceedings of TOPLAS 8(2):244–
263.
Dima, C., and Tiplea, F. 2011. Model-checking ATL under
imperfect information and perfect recall semantics is unde-
cidable. CoRR abs/1102.4225.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning about Knowledge. MIT Press.
Jamroga, W., and Dix, J. 2006. Model checking abilities
under incomplete information is indeed ∆2

P -complete. In
Proceedings of EUMAS’06, 14–15.
Jamroga, W., and van der Hoek, W. 2004. Agents that know
how to play. Fundamenta Informaticae 62:1–35.
Jamroga, W.; Malvone, V.; and Murano, A. 2017. Reasoning
about natural strategic ability. In Proceedings of AAMAS
2017, 714–722.
Knapik, M.; Niewiadomski, A.; Penczek, W.; Pólrola, A.;
Szreter, M.; and Zbrzezny, A. 2010. Parametric model
checking with verics. Proceedings of TPNOMC 4:98–120.
Lomuscio, A., and Michaliszyn, J. 2014. An abstraction
technique for the verification of multi-agent systems against
ATL specifications. In Proceedings of KR14, 428–437.
Lomuscio, A., and Michaliszyn, J. 2015. Verifying multi-
agent systems by model checking three-valued abstractions.
In Proceedings of AAMAS 2015, 189–198.
Lomuscio, A., and Michaliszyn, J. 2016. Verification of
multi-agent systems via predicate abstraction against ATLK
specifications. In Proceedings of AAMAS 2016, 662–670.
Lomuscio, A., and Raimondi, F. 2006. Model checking
knowledge, strategies, and games in multi-agent systems. In
Proceedings of AAMAS 2006, 161–168. ACM Press.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2017. MCMAS:
an open-source model checker for the verification of multi-
agent systems. Proceedings of STTT 19(1):9–30.
Meyden, R. v., and Shilov, H. 1999. Model checking knowl-
edge and time in systems with perfect recall. In Proceedings
of FST&TCS’99, 432–445.
Schobbens, P. 2004. Alternating-Time Logic with Imperfect
Recall. Proceedings of ENTCS 85(2):82–93.
Shoham, S., and Grumberg, O. 2004. Monotonic
abstraction-refinement for CTL. In Proceedings of
TACAS04, 546–560.
Vester, S. 2013. Alternating-time temporal logic with finite-
memory strategies. In Proceedings of GandALF 2013, 194–
207.


