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Abstract. Neural networks are being increasingly used for efficient de-
cision making in the aircraft domain. Given the safety-critical nature of
the applications involved, stringent safety requirements must be met by
these networks. In this work we present a formal study of two neural
network-based systems developed by Boeing. The Venus verifier is used
to analyse the conditions under which these systems can operate safely,
or generate counterexamples that show when safety cannot be guaran-
teed. Our results confirm the applicability of formal verification to the
settings considered.
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1 Introduction

Neural Networks (NN) have achieved impressive breakthroughs across several
domains of science – see [20] for a comprehensive catalogue of success stories.
Although being versatile and efficient, neural networks are known be susceptible
to adversarial perturbations [10,27], i.e., imperceptible modifications to their in-
puts can lead to unexpected, and often inexplicable, consequences on the outputs
produced by the network. This lack of reliability and transparency has hindered
a wider adoption of neural networks in safety and security-critical settings.

Verification of neural networks (VNN) offers a promising solution to alleviate
this problem. Since its inception, the field of VNN has experienced an impressive
growth, with several methods and tools being developed for different classes of
neural architectures and specifications [29]. In this paper, we consider two neural
network-based industrial systems developed by Boeing for the DARPA Assured
Autonomy programme and present results pertaining to their formal verification.
Specifically, the Venus verification toolkit [6] is used to analyse local robustness
properties [25,16] of (i.) an object detection system trained for open category
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detection and (ii.) a neural controller trained to assist landing in non-towered
airports. Venus is used to identify the conditions under which these systems
satisfy local robustness or generate counterexamples that comprehensively show
the circumstances under which safety cannot be guaranteed.

Related work. In recent years, there has been a large amount of work on rea-
soning on safety of neural networks. Formal verification for neural networks con-
cerns checking whether a network satisfies an input/output specification defining
the set of possible inputs and the set of admissible outputs, respectively.

Efficient methods exist to check this property for different classes of neural
architectures, e.g., [2,4,5,6,12,17,24,26,28]. While an exhaustive review of existing
approaches is outside the scope of this paper, we remark that only some methods
are complete, i.e., if a counterexample exists, these approaches are guaranteed
to find it. In contrast, incomplete approaches are normally based on various
forms of convex relaxations of the network, and they can be conservative and
thus fail to find some counterexamples. Despite considerable achievements in the
field, the verification problem remains challenging for industry-scale networks.
Indeed, the problem is known to be NP-complete [16], thereby motivating a very
active area of research to improve the scalability of neural network verification.

An also recent body of work concerns the verification of closed-loop and
cyber-physical systems equipped with learned controllers – see, e.g., [30,14,1,15].
Verification at this level typically entails checking richer specifications pertain-
ing to the systems’ temporal evolutions. Since verification over specifications
expressed in standard temporal logics, such as LTL and CTL [13], is often
undecidable [1], verification procedures in this context are typically restricted
to checking bounded specifications which express properties concerning only a
bounded number of execution steps.

2 Network verification with the Venus toolkit

Venus is a state-of-the-art sound and complete verification toolkit for ReLU-
based feed-forward neural networks. In this section, we give a formal description
of the verification problem tackled by Venus and an outline of the procedure in
Venus to solve it. We begin with the definition of feed-forward neural networks.

Feed-forward ReLU networks. A feed-forward neural network (FFNN) is a
vector-valued function f : Rm → Rn that composes a sequence of k > 1 layers,
where each layer f (i) is the composition of an input transformation and a non-
linear activation function. In linear layers, f (i)(x(i−1)) , act(i)(W(i)x(i−1) +
b(i)), where x(i−1), i > 0, is the input to the i-th layer, x(0) is the input
to the network, act(i) is the activation function of the i-th layer, and z(i) =
W(i)x(i−1) + b(i) is the vector of pre-activations of the layer which is the affine
transformation of the previous layer’s output for a weight matrix W(i) and a
bias vector b(i). In convolutional layers, f (i) computes the convolution between
x(i−1) a learned kernel. Venus focuses on the Rectified Linear Unit (ReLU) ac-
tivation function, ReLU(z(i)) , max(0, z(i)), i > 0, where the maximum function
is applied element-wise on z(i).
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Verification problem. Given a feed-forward neural network, Venus answers
positively or negatively as to whether the output of the network for every input
within a linearly definable set 3 of inputs is contained within a linearly definable
set of outputs. Formally, we have:

Definition 1 (Verification problem). Given a FFNN f : Rm → Rn, a lin-
early definable set of inputs X ⊂ Rm and a linearly definable set of outputs Y ⊂
Rn, the verification problem concerns determining whether ∀x ∈ X : f(x) ∈ Y.

Among the many instantiations of the above verification problem, the local
adversarial robustness problem is perhaps the most studied [25,16]. Answering
the local adversarial robustness problem requires establishing whether all images
within a norm-ball of a given image are classified equivalently by f , and can be
instantiated by setting X = {x′ | ‖x− x′‖p ≤ ε} and Y = {y | ∀i 6= c : yi < yc}
for a given image x with class label c, perturbation radius ε ≥ 0 and norm ‖ · ‖p.

Verification with Venus. Venus implements a verification method whereby the
verification problem is translated into a Mixed Integer Linear Program (MILP).
An MILP is an optimisation problem whereby an objective function is sought to
be maximised subject to a set of linear constraints over real-valued and integer
variables. The feasibility status of the MILP program associated with a verifica-
tion problem, i.e., whether there is an assignment to the variables of the MILP
that satisfies all constraints, has a strict correspondence to the satisfaction of the
verification problem: the verification problem is satisfied if and only if its MILP
program has no feasible solution. Venus makes use of the big-M method [23,3] to
translate the verification problem into MILP and relies on Gurobi [11] as solv-
ing back-end. In addition, Venus implements a number of methods that aim at
reducing the search space of feasible solutions that needs to be considered by
Gurobi, including dependency analysis and input domain splitting [6].

3 Neural network-based systems for the aircraft domain

In this section, we present our main results pertaining to the verification of
two neural network-based industrial systems developed by Boeing. First we will
focus on verifying the robustness of a high-dimensional image classifier for open
object detection. Then, we will consider the verification of a landing assistant
for non-towered airports.

3.1 Object detection with open categories

Problem description. In real-world applications, a neural network classifier is
likely to encounter novel obstacles (i.e., open categories), such as novel types of
ground vehicles and static objects. It is desirable that the classifier is able to

3 A linearly definable set is a set that can be expressed as a finite set of linear con-
straints over real-valued and integer variables.
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(a) Person (b) Vehicle (c) Airplane

Fig. 1: Sample images in the data set for open-category detection.

detect these novel objects without previous training on the objects thereof while
producing only a small number of false alarms, i.e., an alarm on the detection of
a novel object even though the object is not novel. The classifier should also have
a certain robustness against adversarial perturbations on its input. The following
study is concerned with providing risk-bounded assurance against open category
instances for an image classification system developed by Boeing.

Data set and neural network classifier. For this problem, Boeing has created a
labelled data set that includes contiguous image sequences as aircraft approach
novel obstacles or conditions. In particular, the data set contains three classes of
objects: ground vehicle, person, and airplane. Fig. 1 shows three sample images
in each category. Each image has three channels, with 255 × 255 pixels in each
channel. The image input is thus expressed as a three-dimensional matrix with
a high dimension 255 × 255 × 3. Boeing has also trained a large convolutional
neural network (CNN) with roughly 105 neurons using two categories (vehicle
and person) as the training set. The other category (i.e., airplane) is used as
open objects for the neural network to test its performance of detecting novel
objects.

The architecture of this large CNN model has two convolutional layers of
16 and 32 filters respectively (size 5 × 5 and 3 × 3, respectively), followed by
one global average pooling layer, two fully connected layers with 128 and 2
neurons respectively, and one final softmax layer. The softmax layer normalizes
the output into the interval [0, 1] such that its outputs add up to one. The
activation function in each layer is the standard ReLU operator. Therefore, the
CNN model maps an image input x ∈ R255×255×3 to an output y ∈ R2 and
classifies x using the following logic: if y1 ≥ t1, it outputs the label “vehicle”
with confidence y1; if y2 ≥ t2, it outputs the label “person” with confidence y2;
otherwise, it reports the input image as a novel object. The thresholds t1 and
t2 were carefully chosen to balance the false alarm rate of (20%) and the overall
prediction error rate (30%).

Robustness verification setup. We aim to verify the local robustness of the above
CNN against adversarial perturbations on the image input. Formally, given a
correctly classified image x0 (person, vehicle, or open object) and a perturbation
radius ε > 0, we would like to certify

for all x s.t. ‖x− x0‖∞ ≤ ε we have f(x) = f(x0), (1)
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Radius ε
Robust Non-robust

Time-out (7200 s)
Number Avg time (s) Number Avg time (s)

1.0 × 10−4 20 2500 0 — 0
1.0 × 10−3 6 2720 2 4850 12
1.0 × 10−2 0 — 10 4200 10

Table 1: Numerical results via Venus on randomly selected 20 images

or to identify a counterexample x̂ to falsify the condition above. In (1), f(·)
denotes the CNN model. If (1) is true, then the neural network is certified to be
locally robust for the image input x0 against any adversarial perturbation up to
ε. Otherwise, a counterexample can be found which can be used to augment the
training set to improve the robustness of the model. Note that (1) is a particular
instantiation of the verification problem in Section 2.

Extension of Venus and numerical results: The images in this case study have
a very high dimension, i.e., x ∈ R255×255×3, similar to the dimension of those
in Imagenet [9]. We note that most existing complete robustness verifiers only
test their verification performance on standard benchmarks, such as the MNIST
dataset [19] or the CIFAR10 dataset [18], where the images have a much lower
dimension (28 × 28 × 1 and 32 × 32 × 3, respectively). In addition, the CNN
model is large (approximately 105 neurons) as compared to the standard models
considered in neural network verification. As a consequence, Venus could not
efficiently generate the MILP encoding of the robustness verification problem (1),
either because of memory issues or because of exceeding the time consumption
limit (see below). To overcome this, we have improved Venus’s implementation
by exploiting the special structure of CNNs, i.e., that the value of a neuron
depends only on a small subset of the neurons in the previous layers, to obtain
a much more scalable MILP encoding method.

For the numerical experiments, we used a machine with an Intel Core i9
9900X 3.5 GHz 10-core CPU, 128 GB RAM running Fedora 30 with Linux
kernel 5.3. We randomly selected 20 images from the data set that are correctly
classified by the CNN model. We then used the extended version of Venus to
solve the robustness verification problem (1) with a timeout limit of 7200 seconds.
To test the robustness of the CNN model, we varied the perturbation radius from
1.0 × 10−4 to 1.0 × 10−2. Table 1 lists the results. We can see that the CNN
model is robust with respect to the small perturbation (1.0× 10−4); in this case
Venus could return a positive certificate within 1 hour. Concerning the bigger
perturbation radii, the CNN model becomes less robust; in this case Venus could
identify concrete counterexamples for 10 images out of 20 within 7200 seconds.
In particular, Venus identified a counterexample for the “vehicle” image shown
in Fig 1(b) for ε = 10−2. This counterexample fooled the CNN to classify it
an open object. Finally, we note that since Venus is a complete verifier the
robustness of the CNN can by certified w.r.t the rest of the images by increasing
the timeout.
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3.2 Collision avoidance for landing at non-towered airports

Problem description. Automated collision avoidance has become an essential
component of every autonomous system. Whilst the safety of commercial avia-
tion relies on centralized guidance from Air Traffic Control (ATC), private avi-
ation must rely on onboard systems, especially when operating at non-towered
airports. To prevent collisions, the regulator requires all vehicles to maintain a
minimum safe horizontal separation which is advised via ATC commands, a set
of rules defined in the pilot’s handbook and the airport-specific traffic pattern.

This case study poses the collision avoidance problem as a data-driven de-
tection problem. The goal is to detect the collisions when approaching landing
by analysing the dynamic state of the airplane (Agent) and another vehicle (In-
truder). The detection is done via an ML-based inference model trained on the
previous (simulated) experience. A positive detection triggers the rejection of the
landing and makes the Agent go for another landing approach. This rejection
guarantees safe separation in the vertical space.

Simulation environment. Boeing developed a lightweight Python simulation in-
tegrated with the OpenAI GYM framework [7] to facilitate the study of the
problem described above. The surrogate environment simulates a 2D collision
avoidance problem that mimics the real task (on the ground collision avoidance
for the aircraft landing). The environment simulates the movements of multiple
Intruder vehicles on a 10×10 kilometres square. The Agent has to either continue
the automated landing or reject it to provide minimal horizontal separation. The
environment incorporates a probabilistic behaviour model for the Intruder and
the use of scripted configuration files: the former allows to randomize the tra-
jectory of the Intruder vehicle and simulate a violation of the traffic rules; the
latter enables quick reconfiguring of simulated scenarios.

The surrogate simulation imitates the dynamics of both the Agent and the
Intruder vehicles selected for the experiment. All ground vehicles are represented
by a simplistic dynamic model (mass-less Dubin’s car). Each vehicle uses a base
class that takes control inputs in form of steering and acceleration commands in
return for its updated position and speed. For the Agent vehicle, we simulate the
dynamics of a single-engine turboprop Cessna 208 Grand Caravan. The aircraft
control is different from 2D car-like dynamics and does not have conventional
brakes, acceleration, and steering. The effectiveness of the controls depends on
the aircraft’s altitude, airspeed, etc. A PID-based waypoint controller provides
low-level control for the Agent and Intruders. The controller defines trajectories
as lists of waypoints to be followed and adds a controlled level of noise to the
controller state to make trajectories more natural.

Neural network classifier. The rejection action is commanded by a pre-trained
neural network classification model that predicts the probability of collision be-
tween the Agent and Intruder vehicles projected on a 2D surface. The network
is fully-connected and is trained using data gathered from the simulator. Each
data sample represents a state vector that that captures the position, heading
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Safe configurations Collision configurations
ε Robust Avg time (s) Not robust Avg time(s) Robust Avg time (s) Not robust Avg time(s)

0.05 50 0.09 0 - 48 0.11 2 0.33
0.1 50 0.09 0 - 48 0.10 2 0.38
0.2 50 0.08 0 - 48 0.10 2 0.39
0.5 50 0.08 0 - 48 0.11 2 0.39
1 50 0.08 0 - 47 0.10 3 0.33

1.5 50 0.07 0 - 45 0.11 5 0.37

Table 2: Robustness results for safe configurations and collision configurations.

and speed of the Agent and the Intruder vehicles. Samples are labelled either as
0 or 1, depending on whether the simulation run from which they were gathered
resulted in a collision or not. The neural network has 8 input neurons, 2 hidden
layers with 128 nodes each and ReLU activations, and 1 output neuron that uses
a Sigmoid activation to produce a continuous collision probability within [0, 1].

To evaluate the performance of the system, Boeing developed a run-time
rejection system that utilizes the neural network to predict the probability of
collision and compares this with a predefined threshold λ to command the re-
jection. The runtime system evaluates the chance of collision with each Intruder
vehicle on the ground individually, and triggers a rejection if the inference model
predicts a probability greater than λ for any Intruder.

Robustness analysis. We conducted a formal analysis of the neural classifier
to assess its local robustness against adversarial perturbations. Formally, given
an input x0 and a perturbations radius ε > 0, we check if for all x such that
‖x − x0‖∞ ≤ ε it holds that f(x) � λ4, where f(·) denotes the network trained
by Boeing and � ∈ {≥,≤} depending on whether the initial input x0 belonged
to a collision trajectory or not. Intuitively, the inference model should always
compute prediction probabilities that are ≥ λ (resp. ≤ λ) for inputs x in the
vicinity of an x0 for which a collision happened (resp. did not happen).

We collected 50 samples from the simulator for which the neural network
correctly predicted collision and 50 for which collisions did not occur. Table 2
reports our results for a rejection threshold of λ = 0.75. The inference model
appears to be robust for perturbations up to ε = 1.5 for inputs that belong to a
safe trajectory, i.e., the model consistently predicted low collision probabilities
for the perturbations considered. However decisions appear to be less robust
in the other case; we hypothesise this is because of the fact that increasing ε
may effectively create input configurations for which rejection commands should
not be triggered. In all cases, Venus was able to solve the verification problem
within less than a second.

4 Note that Venus does not support the Sigmoid function used in the output layer;
we therefore use its inverse to compute the preimage of λ and compare this value
with the pre-activation value of the output node.



8 P. Kouvaros et al.

Analysing sensitivity to single inputs. Our previous analysis considered adver-
sarial perturbations that are allowed to modify all input components at the same
time. This corresponds to a scenario where all sensors of the Agent vehicle are
subject to failure. However, more realistic failures may involve only a subset of
the sensors; moreover, different sensor failures may have different consequences
on the final prediction of the inference model.

Component Not robust Avg time (s)
xE 1 0.25
yE 1 0.26
θE 1 0.26
sE 1 0.25
xI 1 0.24
yI 1 0.24
θI 1 0.26
sI 3 0.29

Table 3: Sensitivity analysis results for
perturbations applied to single input com-
ponents and perturbation radius ε = 1.

To investigate this, we carry out
a formal analysis where the inference
model is verified against a variation
of the local robustness property previ-
ously used. Namely, we apply adversar-
ial ε-bounded perturbations to a sin-
gle input component at the time and
verify robustness in the resulting sce-
nario. Similarly to the previous exper-
iments, we sampled 50 instances for
which collisions were flagged in the sim-
ulator and tested increasing perturba-
tion radii. Table 3 reports sample re-
sults obtained for ε = 1. Our analy-
sis helped us identify that predictions
seem to be comparably less robust to
perturbations applied to the input component related to the speed of the In-
truder vehicle. This can be explained by the fact that changes in speed may
create scenarios where the Intruder proceeds slowly and thus collisions can be
avoided. Again, Venus was able to solve all verification queries within less than
a second.

4 Conclusions and outlook

We considered two neural network-based industrial systems developed by Boeing
and showed how formal verification can be used to provide assurance guarantees
for said systems. The Venus verification toolkit was successfully employed to
formally analyse the behaviour of these models, providing proofs of safety or
counterexamples to show when safety could not be guaranteed. Despite promis-
ing results, several challenges remain for the wider application of formal methods
to neural network-based industrial systems.

Scalability is admittedly the biggest challenge in this arena, as industrial ap-
plications often require checking neural models that contain hundreds of thou-
sands parameters, if not millions. While recent efforts in VNN have contributed
to impressive scalability improvements – especially as far as incomplete verifica-
tion methods are concerned [21,22] – more work still needs to be done to address
industrial-scale problems. This need becomes even more evident when verifica-
tion is performed at system level, i.e., when the neural network-based system is
considered in its entirety and closed-loop behaviours are analysed.
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Another important direction where the expertise of the formal methods com-
munity may be determinant is that of formalising richer specifications beyond
local adversarial robustness, especially in the case of perception systems such as
the one studied in Section 3. Recent developments in VNN have addressed new
specifications, such as robustness against semantic perturbations that can alter,
e.g., saturation or contrast in an image [17], and geometric perturbations that
apply transformations such as rotations to input images [5].

We conclude by highlighting that safe deployment of neural network-based
systems will also require runtime assurance methods that are able to detect
anomalous behaviour during execution. Different proposals have been made
within the formal verification community, see, e.g., [8]; however several inter-
esting open questions remain in this domain.
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