CHALMERS

UNIVERSITY OF TECHNOLOGY

) UNIVERSITY OF GOTHENBURG

TuEsIs FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Building Verified Hardware
and Verified Stacks in HOL

Andreas Loow

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden
2021

Building Verified Hardware and Verified Stacks in HOL
Andreas Lo6w
ISBN 978-91-7905-518-9

© Andreas Loow, 2021

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr. 4985
ISSN 0346-718X

Department of Computer Science and Engineering
Chalmers University of Technology and
University of Gothenburg

SE-412 96 Gothenburg, Sweden

Telephone +46 (0)31-772 1000

Printed at Reproservice, Chalmers University of Technology
Gothenburg, Sweden, 2021

Abstract

This thesis explores building provably correct software and hardware inside the
HOL4 interactive theorem prover. Interactive theorem provers such as HOL4 are
proof environments where manual (human) and automated (machine) proofs
can be composed in logically safe ways and all proof steps (be it manual or
automated) are mechanically checked.

In this thesis, we are in particular interested in systems consisting of both
software and hardware, such as so-called verified stacks. A verified stack is
a computer system accompanied by a correctness theorem ensuring the cor-
rectness of its running software down to the computer system’s hardware
implementation.

One contribution of this thesis is that we provide new tools to build verified
stacks. Specifically, we provide a new proof-producing Verilog code generator
capable of translating hardware circuits proved correct inside HOL4 to the
hardware description language Verilog. We also provide a verified Verilog
synthesis tool, called Lutsig, for (a class of) FPGAs. Lutsig translates Verilog
designs, such as those generated by our proof-producing Verilog code generator,
to technology-mapped netlists. With the combined help of the Verilog code
generator and Lutsig, it is possible for hardware designers to design and prove
circuits correct inside HOL4 and then translate their circuits down to the netlist
level while simultaneously carrying along proved properties.

Another contribution is that we apply the new tools in concrete case studies.
In particular, one of our case studies contributes to the tradition of building
verified stacks as follows. In the case study, we use our Verilog code generator in
the construction of a verified proof-of-concept processor that we synthesize for
an FPGA board. Building upon this work, we use the processor as the hardware
basis for verified stacks based on CakeML programs, including a stack for
compiling CakeML programs and a stack for checking proofs. To be able to
construct such stacks, we adapt and extend the verified CakeML compiler and
its development methodology to support targeting the new processor we have
constructed. The CakeML compiler previously only supported compilation to
x86, ARM and other architectures without verified implementations.

ii

Contents

1 Introduction

2

1.1
1.2
1.3
1.4

1.5

1.6

1.7

1.8

2.1

Thegrandvision
Contents
The interactive theorem prover HOL4
Research questions
1.4.1 Firstresearch question
1.4.2 Second research question
Thepapers
1.5.1 Paper 1: Verified Compilation on a Verified Processor .
1.5.2 Paper 2: A Proof-Producing Translator for Verilog De-

velopmentin HOL
1.5.3 Paper 3: Lutsig: A Verified Verilog Compiler for Verified

Circuit Development
1.5.4 Paper 4: Lutsig 2.0: Verilog, Synthesis-Tool Verification,

and Circuit-Verification Methodology
1.5.5 Statement of contribution
Changes since the papers were published
1.6.1 The Silver processor and the CakeML compiler
1.6.2 The proof-producing Verilog code generator
1.6.3 Verilogsynthesis
An amazing story; or: to my surprise, formal methods actually
work ...
Conclusion L
1.8.1 The first research question
1.8.2 The second research question
1.8.3 Future work and questions
1.8.4 Concluding remarks

Verified Compilation on a Verified Processor

Introduction

iii

0 J U R s W N =

3

22 Approach 24
221 Specification oo L 25
2.2.2 High-level implementation 25
2.23 Compilation to machinecode 26
2.24 Verified systemcalls 27
2.2.5 Execution on a verified processor 28
2.3 Producing verified hardware 29
24 TheSilver CPU 31
241 TheSilverISAo 32
2.42 The Silver implementation 34
243 Algorithmic correctness of Silver 36
244 Correctness of the Verilog implementation 36
25 CakeML’sassumptions 37
2.6 Setting up Silver for CakeML 40
2.6.1 Changes to the assumptions 43
27 Results L 43
28 Discussiono 45
29 Relatedwork o 46
210 Conclusion L L L 49

A Proof-Producing Translator for Verilog Development in HOL 51

3.1
3.2

3.3
34
3.5

3.6

3.7

3.8
3.9

Introduction L L o 53
Example 54
3.21 Largerexamples 56
Hardware-development methodology summary 56
Overview 57
Verilog 57
3.5.1 Abstraction level (Verilog as an output language) . . . 58
3.5.2 Subset of Verilogincluded 58
3.5.3 Formal semantics 62
3.54 Validation 65
The translator L L. 65
3.6.1 Inputlanguage 65
3.6.2 Implementation overview 66
3.6.3 Pass one: process translation 66
3.6.4 Passtwo: full program translation. 70
Casestudies 71
3.71 Processorcasestudy 71
3.7.2 Regexp-matcher casestudy 72
Relatedwork L L 73
Discussion o o 0. 74

iv

3.10 Conclusion 75

Lutsig: A Verified Verilog Compiler for Verified Circuit Develop-

ment 77
41 Introduction 79
4.2 Why existing approaches to hardware development are insuffi-
cient 80
43 Compiler overview 82
4.4 Source language and target language 84
441 Source language: Verilog 84
442 Targetlanguage:netlists 89
4.5 Verilog-to-netlist compilation 90
4.5.1 Type checking and type annotating 90
452 Preprocessing 91
453 Verilog-to-netlist compilation 93
4.54 Netlist determinization 97
4.6 Technology mapping 99
4.6.1 Verified technology mapping 99
4.6.2 Lutsig’s top-level correctness theorem 100
4.6.3 Translation-validation-based technology mapping . . 101
4.7 Case study and evaluation 103
48 Relatedwork 108
49 Conclusion L 109

Lutsig 2.0: Verilog, Synthesis-Tool Verification, and Circuit-Ver-

ification Methodology 111
51 Introduction 113
5.2 Background: VPDand TVD. 114
5.2.1 Verified-program development (VPD) 114
5.2.2 Traditional Verilog development (TVD) 115
5.3 Problems in combining VPDand TVD 116
54 A closer look at Verilog’s two semantics 117
5.4.1 Simulation semantics oL 117
5.4.2 Synthesis semantics 117
5.4.3 Relationship between the two semantics 118
5.5 Lutsig’s VPD methodology for Verilog 118
5.5.1 Part 1: Lutsig’s multipurpose Verilog semantics 119
5.5.2 Part 2: Lutsig’s synthesis algorithm 120
5.5.3 Synthesis modeling idioms and Lutsig 121
5.6 Therestofthepaper 122
5.7 Using Lutsigin practice 122

5.8

5.9
5.10

5.11
5.12
5.13
5.14

Formal semantics 124

5.8.1 Expressiveness 124
5.8.2 Lutsig’s Verilog semantics 124
5.8.3 Lutsig’s netlist semantics 126
The proof-producing Verilog code generator 127
Lutsig 129
5.10.1 Problems in compiling combinational logic 131
Functional correctness of Lutsig 134
Nonfunctional correctness of Lutsig 134
Relatedwork 135
Conclusion 137

vi

CHAPTER 1

Introduction

This introduction provides some background material relevant for this thesis
and describes how the papers included in this thesis fit together.

1.1 The grand vision

This thesis concerns proving computer components correct using mathematics.
When we mathematically prove a component correct we say that we verify it.

With this terminology in place, the grand vision underlying the papers
included in this thesis is simple to state: verify everything, everywhere, always.

Or, the vision put in more precise form: This thesis concerns building
trustworthy computer systems. Here, by “computer system”, I (really) mean the
whole system: software, hardware, connections between different components
- you name it.

Previous projects with ambitious goals similar to the above are easy to
enumerate exhaustively since there are essentially only three:

« the CLI stack project [9, 96] (late 1980s and early 1990s),
« the Verisoft project [3] (2003-2010), and
« the DeepSpec project [5] (2016-2021).

Of course, the exact number depends on how we count. For example, the
Rigorous Engineering of Mainstream Systems (REMS) project [94], the Provably
Correct Systems (ProCoS) project [38, 42], and Jeffrey Joyce’s work on “totally
verified systems” [54] have overlapping aims with the above-mentioned projects.
A similar vision to ours (but not the execution of the vision) is even present in
Hoare’s “An axiomatic basis for computer programming” from 1969 [44]:

The most important property of a program is whether it accom-
plishes the intentions of its user. [...] When the correctness of a
program, its compiler, and the hardware of the computer have all
been established with mathematical certainty, it will be possible

to place great reliance on the results of the program, and predict
their properties with a confidence limited only by the reliability of
the electronics.

Trustworthy computer systems are known by multiple names; I use the
name “verified stack” here. The term “stack” is a descriptive term since computer
systems can be usefully thought of in terms of layers stacked on top of each
other. Both when building and using a computer system, such a view of com-
puter systems is useful. Specifically, when working in one layer of a stack (i.e., a
computer system), we should only have to be concerned with the layer immedi-
ately above us and the layer immediately below us. For example, when writing
a computer program in a mainstream language like Python, C++, or Haskell,
we should not have to think about the hardware implementation details of the
computer we will use to run our program. Similarly, when verifying a software
program we should not have to think about hardware implementation details.

The kind of modularity described in the above examples can be achieved
by separating different stack layers by specifications. That is, we see the layers
as modules consisting of both implementations and specifications, where the
specifications of the modules of the stack can be used to glue together the
modules into one coherent computer system independently of how the modules
are implemented (i.e., the module implementations are hidden behind the
module specifications). Such an approach results in computer systems with
layers that can be modularly developed and verified independently of each other.

1.2 Contents

This thesis consists of four papers. The papers contribute, in different ways, to
the grand vision of building trustworthy computer systems. In the first paper,
we build verified stacks that can (e.g.) compile functional programs and check
machine-readable proofs. In the remaining three papers, we describe tools
that can be used for constructing verified stacks and, in particular, tools for
constructing trustworthy hardware.

Concretely, this thesis contributes the following artifacts:

+ A new formal semantics for the hardware description language Verilog,
which enables formal reasoning about Verilog circuits

« A new verified Verilog synthesis tool called Lutsig, which generates
technology-mapped FPGA netlists

+ A new proof-producing Verilog code generator, which allows hardware
developers to build provably correct Verilog circuits

+ A new verified processor called Silver, which is implemented in Verilog

« A new extension to the verified CakeML compiler (a compiler from the
SML-like language CakeML to machine code), which makes it target
Silver

The contributed artifacts are meaningful both as independent artifacts and as
artifacts for verified stack constructions. The artifacts are connected to each
other:

All artifacts that relate to Verilog make use of our new formal semantics
for Verilog.

» Lutsig can synthesize the output of the Verilog code generator (when the
output is within the subset of Verilog Lutsig supports).

« The verified processor Silver is implemented in Verilog, developed with
the help of the Verilog code generator, and functions as the meeting point
between software and hardware in our stack constructions.

+ Our CakeML extensions connects the CakeML compiler and the Silver
processor.

« Etc.

There are many ways to summarize a collection of papers. Throughout this
chapter, a big-picture-oriented summary is given, where the artifacts introduced
above and related concepts are described as-needed as they fit into the larger
picture. As part of this summary, in Sec. 1.5, a paper-oriented summary is given,
and when concluding this chapter, in Sec. 1.8.4, an artifact-oriented summary
is given.

1.3 The interactive theorem prover HOL4

Since this thesis applies mathematics to software and hardware development,
this thesis belongs to the subfield of computer science known as formal methods.
Other approaches to ensure the reliability of software and hardware include
empirical methods such as testing, which we do not cover here.

This thesis, like the three previous verified-stacks projects mentioned above,
follows the approach to mathematics known as interactive theorem proving. In
interactive theorem proving, a human and a machine cooperate in constructing
proofs. See Geuvers [27], Harrison et al. [37], and Ringer et al. [90] for general
background information on interactive theorem proving.

Specifically, all proofs in the papers included in this thesis have been con-
structed in cooperation with, and have subsequently been checked by, the HOL4
interactive theorem prover [95]. The main way to conduct proof in HOL4 is
that a human and HOL4 cooperatively construct a tactic-based proof. HOL4
is also easily scriptable, so HOL4 users can easily add new custom tactics and
automated proof procedures as needed.

It is important to use a trustworthy interactive theorem prover since the
prover is part of the trusted computing base (TCB) of the theorems proved
with help of the prover. Using a trustworthy prover is in particular important
in verified-stack projects, since, in such projects, we want to keep the TCB as
small as possible. Specifically, the TCB of stacks verified with the help of an
interactive theorem prover consists of

« the top-level specification of the stack (e.g., a specification for a user-
facing application),

« the bottom-level specification of the stack (e.g., the semantics of the
hardware language the bottom level of the stack is implemented in),

« the theorem prover used in verifying the stack (e.g., as here, HOL4).

As long as we are using a trustworthy prover, the above is a remarkably
small TCB. Note specifically how no intermediate layers are part of the TCB.
This means that correctness arguments for the individual intermediate layers
and their connections to surrounding layers can be arbitrarily complex without
contributing to the TCB. The number of intermediate layers is also irrelevant
for the TCB.

The HOL4 prover is a trustworthy prover since to trust the prover we need
only to trust a small kernel of the prover. Specifically, HOL4 is an LCF-style
prover, and the architecture of its kernel and the rest of the system is based on
the LCF tradition [32, 33, 86]. MacKenzie [69], Klein [56, Sec. 2], Pollack [89],
and Wiedijk [111] provide more in-depth discussions about trust concerns in
the context of computer mathematics.

1.4 Research questions

We now introduce two research questions that have motivated the work carried
out for this thesis. We return to the questions in the end of this chapter.

1.4.1 First research question

The first research question addressed by this thesis is:

4

Can we build fully verified stacks based on substantial programs?

Previous verified-stack projects have only, to the best of my knowledge,
run small programs on top of their verified hardware stacks. A reasonable next
step is thus to investigate if more substantial fully verified programs can be
run on top of fully verified hardware.

The CakeML compiler — a verified compiler for the SML-like language
CakeML - served as a good starting point to answer the above research question
for three reasons:

+ The compiler is capable of compiling substantial programs, including
compiling itself.

« There exists a small collection of substantial programs written for the
compiler.

+ The compiler’s correctness theorem is specified on the level of machine
code, i.e. down to a level appropriate to relate to hardware.

Moreover, I and the developers of the CakeML compiler thought of the com-
piler as a “realistic” compiler, in the sense that no “unrealistic” (unsatisfiable)
assumptions were made in the compiler’s correctness theorem. Connecting the
compiler to verified hardware allowed us to put this perception about realism
to test. In particular, previously, when targeting unverified hardware, assump-
tions about the runtime environment had to be baked in into the compiler’s
correctness theorem. For example, assumptions about file input and output.

1.4.2 Second research question

The second research question this thesis addresses is:

Can the traditional development methodology for verified software
based on verified software compilers be replicated for hardware
development for a mainstream hardware description language?

Before this thesis, there existed previous work on the semantics of main-
stream hardware description languages (HDLs) — both for Verilog (e.g., Gor-
don [30] and Meredith et al. [73]) and for VHDL (e.g., the collection of ap-
proaches in the book Formal Semantics for VHDL [57]). There also existed
previous work on verified hardware synthesis (e.g., Braibant and Chlipala [15]).
But no previous work combined work on mainstream HDLs with work on
verified synthesis: the work on mainstream HDLs did not address the verifi-
cation of synthesis tools, and the work on verified synthesis tools was based

on nonmainstream languages such as Bluespec with a much smaller userbase
than the mainstream hardware languages.

The work on the verified Verilog synthesis tool Lutsig is what ended up
addressing the research gap formed by the lack of verification projects for
verified synthesis tools for a mainstream HDL.

As stated in the research question above, one particular aspect that moti-
vated the work on Lutsig was whether the “traditional development methodol-
ogy for verified software” could be applied to a mainstream HDL for hardware
development. Here, by the “traditional development methodology” we refer to
the development approach where software-program-correctness reasoning is
carried out on the source level and then transported to the compiled program —
the target level — by composing the source-level reasoning with the compiler’s
correctness theorem. To apply this development approach to Verilog develop-
ment, as done in the work on Lutsig, both Verilog’s hardware-oriented features
- such as X values — and Verilog’s quirks — such as simulation-and-synthesis
mismatches — have to be taken into consideration.

The development methodology described above is important since it can be
understood as addressing the practicalities of small-TCB development inside an
interactive theorem prover. More precisely, the problem is as follows. When de-
veloping software and hardware inside an interactive theorem prover, we need
a way to represent the artifacts we build. Two aspects of such representations
are important:

« How easy is it to reason about the representation?

« What is the connection between the representation and what is rep-
resented? Le., how large is the formalization gap? Le., how does the
representation strategy contribute to the TCB?

To be able to develop reliable software and hardware inside an interactive
theorem prover, we need convincing answers to both questions since a repre-
sentation that is easy to reason about is not useful if the connection between
the representation and what is represented is not clear, and a clear connection
between the representation and what is represented is not useful if we cannot
reason about the representation. However, finding one single representation
that provides satisfying answers to both questions is often difficult since a
representation that is easy to reason about usually means a high-level repre-
sentation, and a representation with a clear connection to what it represents
usually means a low-level representation.

Verified compilers provide an answer to the above problem since verified
compilers enable us to work with multiple representations and translate be-
tween them automatically without increasing the TCB. Specifically, a verified

compiler allows us to establish target-level correctness by

1. first carrying out source-level reasoning, i.e., carry out reasoning based
on a high-level representation where reasoning is simple,

2. followed by using the compiler to automatically build a low-level repre-
sentation, with a clear connection to what is represented, and finally,

3. easily transporting the reasoning about the high-level representation
down to the low-level representation by simple composition with the
compiler’s correctness theorem.

1.5 The papers

This section provides short summaries of the contents of the papers included
in this thesis. The following papers are included:

Paper 1 Verified Compilation on a Verified Processor, by Andreas L66w, Ra-
mana Kumar, Yong Kiam Tan, Magnus Myreen, Michael Norrish, Oskar
Abrahamsson, and Anthony Fox. Presented at Conference on Program-
ming Language Design and Implementation (PLDI) in 2019.

Paper 2 A Proof-Producing Translator for Verilog Development in HOL, by
Andreas Lo6w and Magnus Myreen. Presented at Conference on Formal
Methods in Software Engineering (FormaliSE) in 2019.

Paper 3 Lutsig: A Verified Verilog Compiler for Verified Circuit Development,
by Andreas L66w. Presented at Conference on Certified Programs and
Proofs (CPP) in 2021.

Paper 4 Lutsig 2.0: Verilog, Synthesis-Tool Verification, and Circuit-Verification
Methodology, by Andreas L66w. Paper draft; not yet published.

The papers are included in full as separate chapters following this intro-
ductory chapter. The summaries here focus on what is concretely done and
achieved in each paper and highlight the relationships between the included
papers. For the scientific contribution of each paper, in terms of novelty claims,
and how the paper relates to previous work, see the papers themselves. The full
abstracts are included in the beginning of each chapter for each included paper.

Paper 1-3 have been published. The three published papers are included
as published (except minor clarifications and minor language fixes), with the
exception that the appendix of Paper 3 has been inlined into the main body of
the paper. Paper 4 is a paper draft and is not yet published.

1.5.1 Paper 1: Verified Compilation on a Verified Proces-
sor

In Paper 1 we build verified stacks and we introduce our proof-producing
Verilog code generator.

The code generator enables hardware designers to develop circuits in higher-
order logic (HOL) and translate them to Verilog circuits. The code generator is
based on our Verilog semantics that we also introduce in this paper. The code
generator is proof-producing in the sense that it for every run produces (using
the HOL4 API) a HOL4 theorem stating that the input HOL circuit and the output
Verilog circuit have the same behavior. This allows hardware designers to prove
theorems about HOL circuits (specifically, shallowly embedded Verilog designs)
and easily transport such theorems to generated Verilog circuits (specifically,
generated deeply embedded Verilog designs) generated by the code generator.

Moreover, in the paper we use the code generator to build verified stacks.
For this, the paper introduces our verified Silver processor. We build Silver and
verify it down to its Verilog implementation with the help of the code generator.
In the paper, we extend the verified CakeML compiler such that we can run
the compiler on top of Silver. To run the compiler and other programs on top
of the processor, we synthesize the Verilog implementation of the processor,
using standard (unverified) Verilog synthesis tools, for one of our FPGA boards.
All the programs we ran on top of the processor, including both the CakeML
compiler itself and a proof checker, have associated correctness theorems stating
that the programs satisfy their specifications when run on top of the Verilog
implementation of the processor.

Note: In Paper 2 and 3, the code generator is called a “translator”. This
is because the proof-producing tool in the CakeML project that inspired the
Verilog code generator is called “translator” (the CakeML translator translates
shallowly embedded CakeML programs to deeply embedded CakeML programs).
In the introduction of this thesis, we use the term “code generator” throughout.

1.5.2 Paper 2: A Proof-Producing Translator for Verilog
Development in HOL

Paper 2 provides further information on the proof-producing code generator
introduced and used in Paper 1. The paper also provides a more in-depth
discussion on the Verilog semantics introduced in Paper 1.

1.5.3 Paper 3: Lutsig: A Verified Verilog Compiler for Ver-
ified Circuit Development

Paper 3 introduces the verified Verilog synthesis tool Lutsig. Lutsig targets
technology-mapped netlists for (a class of) FPGAs' and is based on the Verilog
semantics developed in Paper 1 and 2. As a result, as of this paper it is now
possible to reliably synthesize Verilog designs produced by the proof-producing
code generator from Paper 1 and 2 (previously, to do synthesis one had to
involve unverified synthesis tools) — as long as the designs are implemented in
the (currently small) subset Lutsig supports. For example, the Silver processor
from Paper 1 falls outside the supported Verilog subset, but in a case study in
the paper we show that a moving-average filter can be successfully compiled
down to a netlist. Since Lutsig is verified, properties proved at the Verilog
level can be transported down to the netlist level with the help of Lutsig. The
moving-average filter case study in the paper shows how to do this kind of
property transportation in practice.

1.5.4 Paper 4: Lutsig 2.0: Verilog, Synthesis-Tool Verifica-
tion, and Circuit-Verification Methodology

Paper 4 continues the work started in Paper 3. To be able to synthesize more
Verilog designs, Lutsig must support a larger subset of Verilog. For this reason,
the paper introduces a new version of Lutsig that supports a larger subset,
specifically, Verilog’s always_comb construct. Moreover, in extending Lutsig,
it becomes apparent that we must think deeper about differences between
verifying software compilers and hardware-synthesis tools. In particular, where
does concepts from the Verilog world such as synthesis idioms fit into the larger
verification picture?

1.5.5 Statement of contribution

This section provides short summaries of my contributions to the four papers
included in this thesis.

+ For Paper 1, I designed, developed and verified the Silver processor. I was
also responsible for the lab hardware setup, including FPGA development
and surrounding tooling. I was involved, from the hardware side, in the

! Additional background for readers unfamiliar with FPGAs: Lutsig covers a large part of the
synthesis process, but not all of the process. For example, before a technology-mapped netlist can
be loaded onto an FPGA, it must first be placed and routed. Moreover, the placed-and-routed netlist
must be encoded into an FPGA bitstream before it can be loaded onto an FPGA. These subsequent
compilation steps are not included in Lutsig and other tools must be used for these steps.

integration of the CakeML compiler and the processor (e.g., adapting the
processor and its surrounding components for the integration), but the
software work was carried out by the other authors of the paper.

« For Paper 2, I alone have developed everything described by the paper.
My co-author gave advice and adjusted the presentation in the paper.

« T am the sole author and developer of both Paper 3 and Paper 4.

1.6 Changes since the papers were published

In this section I look back at the papers included in this thesis. In particular, I
discuss what has changed since the papers were published and discuss some
limitations.

1.6.1 The Silver processor and the CakeML compiler

I do not have anything new in particular to say about the Silver processor or
the connection between the CakeML compiler and the processor. As I see it,
the main limitation of the stacks we created was clear already at the time we
created them; the main limitation of our stacks is the performance of the stacks,
specifically, the performance of the Silver processor. For example, compiling
CakeML programs on top of the Silver processor, when synthesized for one of
our FPGA chips, takes multiple hours whereas compiling the same program
on my laptop finishes almost immediately. Another important limitation is
that we only verify the processor down to its Verilog implementation. To load
the Verilog implementation onto an FPGA, the implementation needs to be
synthesized for the FPGA and encoded into a bitstream. These steps are not part
of our formal story, and the tools we used in the project to perform those tasks
are therefore part of the TCB of the stacks we built. Hopefully, given enough
development investment, Lutsig should eventually be able to synthesize Silver —
thereby removing a large part of the unverified tools we relied on in the project
out of the TCB.

Erbsen et al. [22], in a paper published after Paper 1, point out some other
limitations: “[...] all of [the previous verified stack projects] have simplified
the [stack construction and verification] task by restricting interactivity of the
application, inventing new simplified instruction sets, and using unrealistic
input and output mechanisms.” I do not consider these limitations as important
as the two mentioned above (i.e., performance and the unverified tools we
relied on); I explain why below.

It is true that we in our stack constructions restrict user interactivity and to
some extent it is also true that we use “unrealistic input and output mechanisms”,

10

since we preload all application input into memory before starting applications.
We took this approach since we wanted to make the input mechanism as
simple as possible, to minimize the TCB. But, in retrospect, in the end, it is not
clear that preloading input results in a smaller TCB, since it simply moves the
complexity of the input mechanisms from the environment model of the stack
to whatever is used to preload the input into memory (in our case, an unverified
Python script). With that said, I do not see any particular obstacles in replacing
the input/output mechanism we utilize in our stacks with an input/output
mechanism that supports interactivity, so I do not see this as a severe limitation
of the stacks we can create. Instead, I see the particular input/output mechanism
we ended up using as a partly accidental/inessential consequence of us only
using batch program in our case studies (a compiler, a proof checker, etc.) rather
than a necessary choice and inherit limitation of our approach.

As for “inventing new simplified instruction sets” — this is also true to some
extent. We, indeed, use a custom ISA rather than an established ISA like x86 or
ARM. However, I see the choice to introduce a new ISA rather than using an
already established but simple ISA like RISC-V to be largely an artifact of how
the processor was developed rather than a consequence of some limitation of
our approach. The Silver processor implementation is so simple that the specific
encoding used for instructions is unimportant, and I consequently do not see
any obstacles in using e.g. the RISC-V ISA instead of the Silver ISA. But at the
same time, I agree that using an established ISA rather than a custom ISA would
be preferable since by using an established ISA it would be more clear to readers
that there are no simplifying assumptions built into the instruction-encoding
scheme used. With that said, I am not aware of any simplifications made in the
instruction-encoding scheme nor should there by anything else novel about the
Silver ISA; the ISA is more an accidental artifact of the development process
than anything else. For example, in terms of realism, the Silver ISA is expressive
enough to serve as a compilation target for the CakeML compiler. But at the
same time, when it comes to verified stacks, including their ISAs and other
details, stacks should be evaluated based on what was done, not what could
have been done.

1.6.2 The proof-producing Verilog code generator

The proof-producing Verilog code generator was introduced and described in
Paper 1 and 2. We call the code generator as it existed when Paper 1 and 2
were published version 1 of the code generator. For Paper 3, I had to revisit
the code generator since the Verilog semantics it is based on was updated for
that paper, but no major changes were done. For Paper 4, I reimplemented
a large part of the code generator. We call the reimplemented version of the

11

code generator version 2 of the code generator. I reimplemented a large part
of the code generator since it was partly needed to support the new features
introduced but also to address some internal architectural problems that made
using the code generator difficult (I explain this in more detail further down).

All in all, for all versions, the proof-producing Verilog code generator
consists of three parts:

« A way to shallowly embed Verilog designs in HOL
« A formal semantics for Verilog, i.e., a way to deeply embed Verilog designs

« A proof-producing algorithm to translate shallowly embedded Verilog
designs to their corresponding deeply embedded representation

In the following, I comment on some ways in which the code generator
has evolved during the work on the four papers included in this thesis, and I
provide some more details that did not fit into any of the papers.

Shallowly embedding Verilog designs in HOL

Both version 1 and 2 of the code generator expect Verilog designs to be shal-
lowly embedded as collections of next-state functions, i.e., functions from state
records to updated state records. In both versions, every next-state function
is translated to a Verilog process. In version 1, all functions were translated
to always_ff @(posedge clk) blocks (where clk is a circuit-global clock). In
version 2, both always_ff blocks and always_comb blocks are supported.

Inside Verilog processes, we have statements and expressions. We now
describe their embeddings.

Expressions are embedded with the help of the HOL word library and
standard HOL Booleans. Verilog arrays are embedded as HOL words, and the
various Verilog array operators supported by the code generator are simply em-
bedded as their corresponding HOL-word-library analogues. Verilog Booleans
are embedded as HOL Booleans in a similarly straightforward manner.

The embedding of statements is less straightforward. In particular some
extra thought needs to be allocated to how to embed blocking and nonblocking
assignments. In Verilog, nonblocking assignments are used for (some) shared
variables and the effect of a nonblocking assignment is not visible until the
next clock cycle. Therefore, when embedding a nonblocking assignment in
a next-state function, we cannot naively directly update the state record the
next-state function operates over since the effect of the assignment would be
visible immediately.

In version 1, the above is solved by saying that a process that writes to a
shared variable is not allowed to read the variable after it has written to the

12

variable. Concretely, this is implemented in two steps in the code-generation
algorithm. In the first step, all processes are translated from shallowly embed-
ded Verilog to deeply embedded Verilog process-by-process. In this first step,
all assignments, including assignments to shared variables, are translated to
blocking assignments. After the first step, a second step that operates over
deeply embedded Verilog designs starts. This second step translates all blocking
assignments to shared variables to nonblocking assignments. Since processes
are not allowed to read shared variables after they have written to them, the
translation of blocking assignments to nonblocking assignments does not affect
the execution of the processes when considered in isolation (for a more precise
statement of this, see Paper 2). After this second step, the processes can be
merged into one single module since they no longer interfere with each other,
since all assignments to shared variables are nonblocking.

In version 2, I changed how nonblocking assignments are embedded. The
main reason for this change was to allow to embed more designs (i.e., to make
the embedding style more expressive). For example, code like the following can
be found in Verilog projects:

always_ff @(posedge clk) begin

a <= inp;
b <= a;
c <= b;
end

This block is not embeddable in the embedding style used in version 1 of the
code generator since both a and b are read after being written to. It is often
possible to manually rewrite code into embeddable form, but if we want to be
able to embed Verilog code as written by Verilog programmers, a more powerful
embedding style is needed.

To allow embedding blocks like the above, version 2 of the code generator
encodes blocks using next-state functions operating over two state records.
More precisely, if the state record type is s, then the type of the next-state
functions of is s — s — s (modulo some details not of relevance here). The
first input record contains the values of all variables at the beginning of the
current clock cycle, and the second input record contains the most recent values
of all variables. Recall that version 2 of the code generator supports always_comb
blocks. Such blocks are not important for our discussion here since they should
never contain nonblocking assignments. For always_ff blocks, if we for all
next-state functions

« never update the first input record,

« commit all updates to the second record,

13

« read the values of shared variables from the first record, and
« read the values of nonshared variables from the second record,

then there is a direct correspondence between the next-state function and the
same function as implemented as a Verilog process. (Paper 4 includes a concrete
example of how this embedding style looks in practice.)

With the new embedding style utilized in version 2, we no longer need a
two-step translation process. In version 2 of the code generator, assignments
to shared variables are directly translated to nonblocking assignments, and
assignments to nonshared variables are, as before, translated to blocking as-
signments.

The embedding style utilized in version 2 is more complex than the style
used in version 1, but since the former allows for embedding a larger number of
Verilog designs I consider it a better embedding style. (Moreover, the translation
implementation of version 2 turned out much cleaner than the implementation
of version 1.)

The code-generation algorithm

This section concerns a minor implementation detail I thought was worth
mentioning that changed between version 1 and 2 of the code generator.

Version 1 and 2 of the code generator are based on the same underlying
algorithm. However, in version 1, one short-sighted shortcut that was taken
in the implementation of the code generator is that the two predicates Eval
and EvalS used to express correspondences between shallowly embedded and
deeply embedded Verilog code both depended on a predicate relS. The predicate
relS is a per-circuit generated predicate used to express that a circuit-specific
state record and a Verilog state (for the Verilog semantics) represent the same
state. Since Eval and EvalS are used in the implementation of the code generator,
this meant that the whole code generator must be recompiled every time a new
circuit is to be translated (since the constants used in the code generator depends
on a circuit-specific predicate). Without changing the underlying algorithm,
this was addressed in version 2 by parameterizing Eval and EvalS over what
state relation to use. Most of the code-generator infrastructure thereby becomes
independent of circuit-specific constants and therefore does not need to be
recompiled when applied to new circuits.

For Paper 4 (i.e. version 2 of the code generator), the above change in
combination with adding support for always_comb blocks and changing the
handing of nonblocking assignments resulted in most of the implementation
of the code generator being redone. Therefore, most implementation details
mentioned in Paper 2 (i.e., version 1 of the code generator) are now out-of-date

14

— but the underlying ideas are still the same in the updated version of the code
generator.

1.6.3 Verilog synthesis

In Paper 1 and 2 unverified tools are used for Verilog synthesis. After Lutsig
was introduced in Paper 3, synthesis from Verilog down to technology-mapped
netlists can be done by Lutsig instead. However, introducing Lutsig does not
necessitate us to revisit Paper 1 and 2. Lutsig shrinks the TCB of circuits
developed using our tools since our formalization of Verilog’s semantics no
longer needs to be part of the TCB, but the overall development flow is the same
as before Lutsig was introduced: (1) use the proof-producing code generator to
generate a Verilog design, (2) use a Verilog synthesis tool to map the generated
Verilog design to hardware. Lutsig only affects the second step (i.e., (2)), so
the first step (i.e., (1)) can remain the same (since both the code generator and
Lutsig are based on the same Verilog semantics).

1.7 Anamazing story; or: to my surprise, formal
methods actually work

To illustrate the value of formally proving computer systems correct, two
verification success stories are presented in this section.

Today, it is not a difficult task to find interactive-theorem-proving success
stories; one can find everything from theoretical results in abstract mathematics
to concrete results in computer science such as verified compilers (see e.g.
Ringer et al. [90]). Stacks verified using interactive theorem proving provide
one particularly good source of formal-methods success stories. If you ask
me, the most exciting part about building verified stacks is seeing the physical
realization of the stack actually work in practice when running a proven-correct
concrete program. Both the stories presented here are such stories.

The first success story comes from Albin et al. [2] and their work on the CLI
stack. Albin et al. report on the testing of the FM9001 microprocessor, which is
a processor integrated into the CLI stack. To be more precise, the FM9001 was
fabricated by LSI Logic, Inc., as an ASIC, and Albin et al. report on the post-
fabrication testing of the physical device. The story in the paper is a story about
success, since the processor works as expected for all tests it was subjected to.
In Albin et al.s words: “The testing included both executing FM9001 machine
code and also low-level testing with a Tektronix LV500 chip tester. To date, all
tests have confirmed that the FM9001 behaves as formally specified” In one part
of their report, Albin et al. enumerate a series of successful software tests they

15

have performed, and they express their satisfaction seeing their proven-correct
stack actually do what they have proven it should do as follows:

In all these cases, the FM9001 microprocessor worked as expected.
Perhaps the most satisfying of these software tests is the Nim
game-playing program. It was most rewarding to see this rather
subtle Piton program, which has been formally proved, with Nqthm,
to win if possible, actually win, when possible, while executing
on a physical FM9001—and winning within a proven real-time
performance envelope.

The second success story is similar but instead comes from work done for
Paper 1. In fact, since I am part of the story, I know it is not only a success story
— it is an amazing story. With that said, let us jump into the story.

After having finished proving the correctness of a Silver-and-CakeML stack
capable of compiling functional programs, it was time to test the stack in
practice. The only program we had run on top of Silver before this was a
small hello world program. Running the hello world program led us to identify
some small integration problems, such as e.g. some small problems in the
unverified Python glue scripts used to load machine code into memory, handle
input/output (e.g., to print text to a terminal), etc. But with those small problems
addressed, it was time to run the full compiler.

In development not based on formal methods, going from running a sim-
ple hello world program to running a full compiler is an unthinkable step. I
nevertheless loaded the proven-correct machine code of the CakeML compiler
into the memory of the FPGA board I had synthesized Silver for and told the
compiler to compile a small example program. At first, nothing happened. This
is to be expected, since the compiler does not give any output until the compi-
lation process is complete. After an hour of compilation, still nothing. When
running the CakeML compiler on my laptop, compiling the same small example
program takes almost no time at all. But since the processor inside my laptop is
much more complex than Silver, it is of course to be expected that Silver is not
as fast. It therefore made sense to continue waiting. At this point, however, the
day was over and I went home and let the compilation process run overnight.

When coming back the next day, I was expecting to find the processor in
some unexplainable error state. To my surprise, this was not the case. Instead,
the compilation process had finished successfully, and the compiler had printed
the compilation result, i.e., the machine code of the small example program.
Comparing the outputted machine code with reference machine code moreover
showed that the compiler had not only outputted machine code, it had outputted
exactly the machine code it should output. That is, the compiler executed and

16

finished successfully the very first time we ran it on top of Silver. An amazing
end of an amazing story — to my surprise, formal methods actually work!

1.8 Conclusion

Concluding this chapter, we now ask what remains of the two research questions
introduced earlier in this chapter, given the work that has been done in the
included papers.

1.8.1 The first research question

The first research question — on running substantial verified programs on top
of verified hardware — is answered positively by Paper 1 and 2. Specifically,
Paper 1 shows how we have built verified stacks capable of, among others,
compiling functional programs and checking proofs. At the same time, it should
be acknowledged that further work is possible, as described further in Sec. 1.8.3.

1.8.2 The second research question

The second research question — on enabling the development of verified hard-
ware in a mainstream HDL similarly to how verified software is developed
using verified software compilers — is answered positively by Paper 3 and 4.
Specifically, Paper 3 introduces the verified Verilog synthesis tool Lutsig and
illustrates how to apply Lutsig to hardware development. In Paper 4, Lutsig is
developed further, and the supported subset of Verilog is extended. As with the
first research question, the limitations of our attempt at answering the second
research question should be acknowledged; some further work is described in
Sec. 1.8.3.

1.8.3 Future work and questions

Of course, as with any work, it is possible to improve the work carried out in
the papers included in this thesis.

One aspect of how the Silver processor was received that surprised me
was the skepticism the processor’s custom ISA received. To me, the ISA is an
artifact of the processor’s development process. But, of course, that it is truly
an artifact and not a workaround or something similar is something that needs
to be supported by an argument. For Lutsig, we have the opposite situation.
Lutsig is a very understandable artifact, since Verilog is a well-known language.
What is great about this is that even developers with no understanding of the

17

internals of hardware-synthesis tools can form an image of how useful Lutsig
is.

Understandability ties into how I see Lutsig develop over time. The goal
of the first version of Lutsig was (of course) not to build a full synthesis tool
comparable to unverified commercial tools. Rather, the idea was to build a simple
but functioning tool capable of transporting circuit-correctness properties
from the Verilog level down to the netlist level. This, if you ask me, is a good
starting point for developing a more serious synthesis tool. Since Lutsig is an
understandable product, Lutsig is something that can receive critique. Critique
of particular interest is what can be considered to be missing from Lutsig. For
example, support for level-sensitive latches and support for multiple clock
domains are things that have already been mentioned to me. Forming a picture
of what is missing based on both external critique and self-driven case studies
will help form an idea about in what direction Lutsig should be developed.

Something similar can be said about the verified stacks we have built.
Even if there are understandability aspects of the ISA that could be improved,
the final artifacts themselves (i.e., the stacks) are understandable products.
For example, a verified stack capable of compiling functional programs is
understandable as long as you are familiar with compilation. Moreover, the
stacks fit into a similar incremental development story as the one imagined for
Lutsig. The stacks developed in this thesis are not the first verified stacks to be
developed; rather, the stacks address limitations of previous stacks (specifically,
running substantial programs). At the same time, the stacks introduced here
have limitations themselves. This opens up for further work — however, the bar
for future work is, as a consequence of our stacks, now raised. In other words,
progress has been made.

Aiming at being more concrete about the future, here follows a short wish
list of concrete things that I would have done given more time:

« Asmentioned in previous sections, the performance of the stacks we build
in Paper 1 is in need of improvement, in particular the Silver processor.
To come closer to more realistic stacks, a next step in the development
could be to build a stack sufficiently performant to compile programs in
reasonable time (rather than, as now, multiple hours).

« Extending the Verilog support of Lutsig such that one could compile the
Silver processor using Lutsig would allow us to shrink the TCB of the
stacks we have built in Paper 1 (since a large part of unverified hardware
synthesis could then be removed from the TCB). Of course, a version of
Lutsig with extended Verilog support would also be useful for compiling
other larger circuits as well. Moreover, language features like module
open up questions about modular verification.

18

« An even more substantial extension, and a further step towards further
realism, would be to start to think about what would be needed for a
multicore-based (or even multiprocessor-based) verified stack. Concur-
rency would of course be a highly nontrivial extension to our work
and would require revisiting almost every single layer of our stacks; we
would at least need a way to formally reason about concurrent programs,
a verified compiler for concurrent programs, and a verified multicore
processor.

« A project orthogonal to the above items could be to look into the con-
struction of a more formal connection between the Verilog standard’s
Verilog semantics and Lutsig’s Verilog semantics, since such a connection
is valuable for compiling unverified circuits (and circuits verified with
respect to other non-Lutsig formalizations of the Verilog standard).

Beyond the two research questions addressed in the beginning of this
conclusion, there are many big-picture questions one could ask about the work
in this thesis that are not addressed in this thesis: How should arguments
for the value formal methods for hardware functional correctness supposedly
provide be adapted to the fact that the most recent highly publicized processor
problems have been security vulnerabilities (like Heartbleed, Meltdown, and
Spectre [39, 72]) rather than functional bugs like the famous FDIV bug [112]
from 1994? How should one go about making hardware development based
on interactive theorem proving attractive for hardware developers without
any background in either the relevant kinds of formal methods or functional
programming? Moreover, since we in the work for this thesis have developed
a synthesis tool for (currently) FPGAs, hardware-oriented questions beyond
the immediate context of verified stacks are relevant as well. For example,
what are the appropriate application domains for FPGAs and how are FPGAs
best programmed in those different application domains [58, 80, 91, 102, 114]?
Specifically, how fit for those application domains is the synthesis tool we
have developed (or how fit can it be made)? And how, more generally, should
hardware development for non-FPGA target technologies be carried out?

1.8.4 Concluding remarks

Concluding this section, we give one last summary of the contents of the papers.
This time we orient the summary around the artifacts contributed by this thesis.

Two artifacts are of relevance for all four included papers: Our Verilog
semantics and our proof-producing Verilog code generator. To build correct
Verilog artifacts, a formal Verilog semantics is needed. Since all papers include

19

some kind of Verilog artifact, all papers relate to our Verilog semantics. More-
over, since our Verilog code generator allows for the construction of provably
correct Verilog artifacts and all our papers relate to at least one provably cor-
rect Verilog artifact, the code generator is of relevance for all papers as well.
Specifically, the code generator allows hardware designers to (1) reason using
shallowly embedded Verilog circuits, (2) automatically translate their shallow
circuits to deeply embedded circuits, i.e., a representation using our Verilog
semantics, and (3) easily transport correctness properties from shallow circuits
to deep circuits.

Beyond the Verilog semantics and the Verilog code generator, it is possible
to form two clusters of the artifacts we introduce and extend in this thesis.
The first cluster relates to verified stacks and the second cluster to Verilog
synthesis. Both clusters relate to both our Verilog semantics and our Verilog
code generator.

The first cluster is constituted by the CakeML compiler and the new Sil-
ver processor we introduce in this thesis. In our verified stacks, the CakeML
compiler and our extensions to it allow us to run CakeML programs on top of
the verified Verilog processor Silver. To develop and prove the Silver processor
correct, we used our Verilog code generator. By using unverified synthesis
tools, we have synthesized the Silver processor to an FPGA board and run our
processor and programs on top of this board. The majority of the work building
our verified stacks went into the software-hardware interface and the verified
Silver processor (i.e. the hardware part of the stacks). The Silver processor —
the Silver ISA specifically — is where software and hardware meet. An ISA
(although not the Silver ISA) is a standard interface in unverified stacks; what
set verified stacks apart from unverified stacks is that all layers of the stacks
are themselves verified and that the layers’ connections to surrounding layers
are verified as well.

The second cluster is constituted by our verified Verilog synthesis tool
Lutsig. Lutsig currently targets FPGAs. Since Lutsig can synthesize Verilog
artifacts generated by our Verilog code generator (as long as the generated
Verilog code is within the subset of Verilog supported by Lutsig), Lutsig is
connected to our Verilog code generator. Since both Lutsig and our Verilog
code generator are based on our formal Verilog semantics, connecting them
was straightforward.

In the future, I hope to be able to connect the two clusters together, i.e., that
processor-size Verilog artifacts can be synthesized using Lutsig.

20

CHAPTER 2
Verified Compilation
on a Verified Processor

Andreas L66w, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen,
Michael Norrish, Oskar Abrahamsson, and Anthony Fox

Abstract. Developing technology for building verified stacks, i.e., computer
systems with comprehensive proofs of correctness, is one way the science of
programming languages furthers the computing discipline. While there have
been successful projects verifying complex, realistic system components, includ-
ing compilers (software) and processors (hardware), to date these verification
efforts have not been compatible to the point of enabling a single end-to-end
correctness theorem about running a verified compiler on a verified processor.

In this paper we show how to extend the trustworthy development method-
ology of the CakeML project, including its verified compiler, with a connection
to verified hardware. Our hardware target is Silver, a verified proof-of-concept
processor that we introduce here. The result is an approach to producing ver-
ified stacks that scales to proving correctness, at the hardware level, of the
execution of realistic software including compilers and proof checkers. Along-
side our hardware-level theorems, we demonstrate feasibility by hosting and
running our verified artefacts on an FPGA board.

Published at Conference on Programming Language Design and Implementation
(PLDI), 2019

21

22

2.1 Introduction

A verified stack is a computer system that is demonstrably correct. Specifically,
it is a system with a formal proof of correctness that covers all layers of the
implementation, from the hardware through to the application code. Enabling
the construction of verified stacks is a guiding light for the field of formal
verification; several projects have made progress towards its achievement [3, 5,
96]. In this paper, we report on a milestone in this tradition: a verified stack
consisting of a verified processor that we have synthesized for an FPGA board
on which we can run a realistic and verified compiler.

To reach this milestone, we have developed a new verified processor called
Silver! that is simple but general-purpose, and we have extended the trustwor-
thy chain in the CakeML project with a link to Silver. The Silver processor was
verified with ease thanks to a new proof-producing hardware generator that is
grounded in a semantics for the hardware description language (HDL) Verilog.
To produce machine code for Silver, we use the CakeML translator [43, 79]
and compiler [25, 99]. We obtain end-to-end correctness theorems by compos-
ing the CakeML compiler’s correctness theorem with the Silver processor’s
correctness theorem.

Our combination of Silver with CakeML yields a general method for verifi-
cation down to the hardware level. Given a high-level executable specification
of behaviour, our method produces machine code for Silver plus an end-to-
end correctness theorem stating that the verified Silver hardware will have
the observable behaviour of the original high-level specification, provided the
generated Silver machine code is initially present in memory.

We demonstrate our method on several applications taken from CakeML’s
library, including word-count, sort, a proof-checker for OpenTheory proofs [46],
and the CakeML compiler itself. To our knowledge, this is the first verified stack
development that scales to the point of executing a realistic compiler on top of
verified hardware, in a setting with a single correctness theorem that covers the
full end-to-end composition.

Previously, the CakeML compiler targeted only architectures without veri-
fied implementations [25], such as x86 and ARM. When the target architecture
has no correctness proof, the hardware and runtime environment must be
modelled as assumptions in the compiler’s correctness theorem. In this paper,
by targeting the verified Silver processor, we address the question “How can
the CakeML compiler (and other verified compilers) be extended to reduce
assumptions about the hardware and environment?” In explaining this, we

1As silverware may be used in consuming cakes and other food, Silver is hardware that can run
CakeML as well as other programs.

23

make the following contributions:

« We exhibit sufficient properties that, if proved about a compiler and
a processor, enable them to be used together for constructing verified
stacks. The shape of the correctness proofs in our method (§2.2) should
be informative for other verified stacks.

« We show how we constructed and verified (§2.3) the Silver processor
(§2.4) down to its implementation in Verilog, a mainstream low-level
hardware description language. (The software side of our method has
been described elsewhere [79, 99].)

« We address claims [59, 99] that the assumptions on the CakeML com-
piler’s correctness theorem (§2.5) are reasonable, by showing how they
can be satisfied (§2.6), and highlight minor changes that were required
(§2.6.1).

« Finally, we contribute the Silver processor and extensions to CakeML to
support Silver as reusable artefacts for constructing verified stacks.

The whole development, including the CakeML compiler and the Silver
processor, has been built using the HOL theorem prover [95]; the source code
and proofs are available at https://github.com/CakeML/cakeml and https:
//github.com/CakeML/hardware.

2.2 Approach

Our approach to building verified stacks divides concerns, just as in the tradi-
tional approach to building (unverified) systems, with steps including:

1. Write functional specifications for the application.

2. Implement the specifications as source code in a high-level programming
language.

3. Compile the source code to machine code.

4. Link the application machine code with code implementing any required
system calls.

5. Run the resulting machine code on a processor (connected to memory
and I/O devices).

24

https://github.com/CakeML/cakeml
https://github.com/CakeML/hardware
https://github.com/CakeML/hardware

The main omission is interaction with an operating system: at present, we focus
on applications that run on “bare metal”. In order to produce verified stacks, we
have a verification story for each of the steps above, and we produce a single
end-to-end theorem that composes the correctness theorems associated with
each step.

Now;, let us turn to the specific components we use to instantiate the tem-
plate above and their associated verification story. To make things concrete, we
consider an example application, namely, wc, a program that counts the words
it receives as input.

2.2.1 Specification

We write formal specifications in higher-order logic, specifically by defining
functions in the HOL theorem prover. For wc, these include functions used in
logical expressions such as: |tokens is_space input|, which is the length | . .. | of
the tokens function applied to the is_space function and input. We summarise
the specification for wc as a relation, wc_spec input output, between input and

output strings.

2.2.2 High-level implementation

We implement the application in CakeML, generating code from the specifica-
tion whenever possible. To do this, we use the CakeML translator [43, 79], which,
given specifications that are pure functions or monadic functions representing
impure computations, produces both an implementation in CakeML code and
a certificate theorem.? Ultimately, we obtain a proof that a CakeML program,
wec_prog in our example, successfully terminates® with output conforming to
the specification*:

F Jio.
cakeml_sem ([“wc”],fs;,, input) we_prog = { Terminate Success 0 } A (2.1)
we_spec input (get_stdout i0)

Here [“wc”] represents the command line, and fs;,, input represents the filesys-
tem state when the program starts, in this case with no files but with the string
input to be read on standard input.

2If parts of the desired implementation cannot be translated from the specification, we write
CakeML code by hand and verify it using Characteristic Formulae [35] in the tradition of Hoare
logic.

3CakeML supports correctness proofs for nonterminating programs, but we do not cover them
in this paper.

*Equality (=) binds tighter than conjunction (A\); termination and conformance are represented
by the two conjuncts.

25

2.2.3 Compilation to machine code

We compile the CakeML code to Silver machine code using the optimising
CakeML compiler, selecting the new target, Silver (ag32), that we have added
to the compiler backend. The compiler is proved correct once and for all, with
a correctness theorem of this form:

F cakeml_sem (cl,fs) prog = behaviours A
Fail ¢ behaviours A
compile confyy prog = Some compiled_prog A (2.2)
installedsg compiled_prog (basis_ffi cl fs) ms =
machine_sem (basis_ffi ¢l fs) ms C extend_with_oom behaviours

Here, basis_ffi ¢l fs models the behaviour of system calls that access the
command line ¢! and file system fs as expected by CakeML’s basis library;
machine_sem produces a set of behaviours by repeatedly stepping the machine
state ms, applying external interference and executing system calls according
to the basis_ffi model [25]; and extend_with_oom adds additional behaviours to
the compiled program, namely, allowing it to terminate prematurely with an
out-of-memory error, having done only a prefix of the correct I/O events.

We execute the compiler inside the theorem prover (essentially by rewriting
with its definition) in order to obtain a compiled program (i.e., bytes of machine
code), here wc_ag32, and a compilation theorem:

t compile confyg we_prog = Some wc_ag32 (2.3)

Instantiating the compiler-correctness theorem (2.2) with the compilation theo-
rem (2.3) and the application-semantics theorem (2.1), we obtain a correctness
theorem about the application machine code. For wc, the theorem is:

F installedag we_ag32 (basis_ffi [“wc”] (fs;y, input)) ms =
Jio.
machine_sem (basis_ffi [“wc”] (fs;, input)) ms C (2.4)
extend_with_oom { Terminate Success io } A
wec_spec input (get_stdout 0)

This theorem, relating the semantics of a machine-code program, wc_ag32, to
the high-level specification, wc_spec, is what the CakeML project provided
prior to this paper. Crucially, this theorem has an assumption constraining
the initial machine state, namely installedss wc_ag32 ..., which states that the
compiled program is loaded correctly and that the external environment (via
system calls and interference) behaves as modelled (§2.5). By targeting a verified
processor and verifying the system library, we reduce this assumption, replacing

26

substantial parts of it by proofs.

2.2.4 Verified system calls

CakeML programs interact with their environment via system calls for reading
command-line arguments and reading/writing to standard streams and files.
For Silver, we have realised the standard streams std{in,out,err}, and the
command line, as in-memory devices accessed by Silver machine code that we
have verified to implement the system calls required by CakeML. The input
devices are prefilled before execution, and the output devices are connected
to a text terminal. As we are developing bare-metal applications, the verified
system-calls code is included as part of the memory image loaded at startup.

Our theorems about the system calls (§2.6) enable us to replace the installed,g
assumption in theorem (2.4) with a simpler assumption, initsg ..., merely stating
that the compiled code, system-calls code, and input data are in memory. The
resulting theorem has this form:

F |input| < stdin_size A
initag we_ag32 ([“wc’],input) ms =
Jio k.
ok o . . (2.5)
machine_sem (basis_ffi [“wc”] (fs;,, input)) (Next® ms) C

extend_with_oom { Terminate Success 70 } A

wec_spec input (get_stdout 70)

Here, Next® ms is the result of k steps of execution from the initial machine
state ms, corresponding to execution of startup code that sets a few registers
to satisfy the initialisation assumptions of CakeML (§2.5); and stdin_size is a
constant representing the maximum amount of prefilled input we support
(about 5 MB).

Working through the definition of machine_sem (essentially, repeated ap-
plication of Next, using basis_ffi to handle system calls) and using our verified
system-calls code, we obtain the following version of this theorem phrased
entirely in terms of the Silver ISA and its next-state function Next:

F |input| < stdin_size A
initag we_ag32 ([“we’],input) ms =
Ji0. FG k.
wec_spec input (get_stdout 70) A
is_haltedsg (Next® ms) A
stdoutag (Nextk ms).io_events < get_stdout 0 A
(exit_code_0pg (Next® ms) =
stdoutyg (Next® ms).io_events = get_stdout i0)

(2.6)

27

We use the FG operator here to capture the notion that a predicate becomes true
at some unspecified point in the future and then remains true thereafter.> Thus
we see that the Terminate Success 70 behaviour of machine_sem corresponds to
execution for some number of steps, at which point the machine reaches a
halting state (is_halted,g . ..), which is a program-specific location where the
machine remains for any further steps. Furthermore, at this point, the trace
of writes to stdout (stdouty, ...) will be a prefix (<) of the specified output,
attaining equality if the machine exited successfully (exit_code_0,g . ..) without
running out of memory.

The assumptions on theorem (2.4) that we have proved to reach theorem (2.6)
cannot be discharged when developing applications for unverified operating
systems. In particular, to reach theorems (2.5) and (2.6), we must prove (see
§2.6) that the system calls run correctly under the same ISA semantics, Next,
that runs the application code.

2.2.5 Execution on a verified processor

We have proved that the Silver processor, as a hardware circuit, silver_cpu_verilog,
implemented in the HDL Verilog, implements the Silver ISA (with next-state
function Next). To prove this, we used our new proof-producing Verilog code
generator (§2.3). The processor-correctness theorem for Silver is as follows:

- let vstep = verilog_sem env silver_cpu_verilog init in
is_lab_env acc_env_verilog vstep env A
ag32_eq_init_isa_verilog (env 0) ms init =

Vk.3Im fin.
vstep m = Ok fin A
ag32_eq_isa_verilog (env m) (Next® ms) fin

(2.7)

Here, vstep m is the state of the Silver processor implementation after m
clock cycles. The env function is used to represent processor-external entities
(is_lab_env ...), such as memory. The two relations ag32_eq_init_isa_verilog and
ag32_eq_isa_verilog belong to a family of relations used to express equality
between processor states at different abstraction levels and specify the values
of various implementation-level registers (see §2.4). The theorem thus states
that any number of steps k taken by the ISA can be simulated by a number of
steps m by the implementation.

Combining theorem (2.7) with theorem (2.6), and working through some

>The FG operator, based on temporal logic, is defined as:
(FGt.Pt)E 3.V to<t=Pt

28

details about the processor state, we obtain:®

Flet vstep = verilog_sem env silver_cpu_verilog init in

|input| < stdin_size A

is_lab_env acc_env_verilog vstep env A

verilog_inits, we_ag32 ([“wc”],input) init env =

Joutput. FG m. 3 fin.

wc_spec input output A vstep m = Ok fin A
verilog_is_haltedyg fin A
stdoutsg (env m).io_events < output A

(2.8)

(verilog_exit_code_0yg fin =
stdoutag (env m).io_events = output)

Theorems of this form are our milestone: working from a high-level specification
(wc_spec), theorem (2.8) states that a piece of hardware (described in Verilog)
implements that specification. Importantly, the creative verification work of
the programmer is done at the high level of a CakeML program, not at the
hardware level of Verilog.

From the verified circuit silver_cpu_verilog, we have synthesised the Silver
processor for an FPGA board. (This is possible because our code generator
produces synthesisable Verilog.) If we load a memory image (§2.6) containing
the machine code wc_ag32, the input text, and the system-calls code onto the
board with the synthesised processor and set it running, the board outputs the
number of words in the input (i.e., it runs wc).

The software half of the approach (the production of verified machine code
from functional specifications) is explained in detail in previous work [25, 79,
99] that we do not repeat. Our focus is on the hardware side and the software-
hardware connection. We start by explaining how we developed and verified
Silver (§2.3, §2.4), then describe the connection to CakeML (§2.5) including
verification of the system calls (§2.6), and finally present the hardware-level
correctness theorem for the CakeML compiler itself (§2.7) and discuss what
remains in the trusted computing base (§2.8).

2.3 Producing verified hardware

We have developed a new proof-producing Verilog code generator that trans-
lates HOL functions modelling circuits to deeply embedded Verilog programs.
The Verilog programs are animated by a new operational semantics for a subset
of Verilog that we have developed in parallel with the code generator. The code
generator enables relating circuit verification results to a deeply embedded

®The predicates with a verilog_ prefix are analogues of those in theorem (2.6) defined at the
Verilog rather than the ISA level.

29

semantics for a mainstream low-level HDL (here, Verilog), which is novel (see
§2.9). The output from the Verilog code generator can be pretty-printed and
fed into synthesis toolchains, such as Xilinx’s Vivado Design Suite which we
have used, to produce FPGA artefacts.

Example. The code generator takes as input a circuit function in HOL. A
circuit function takes a world-state function enwv, a circuit-state s, and a clock n
and returns the circuit state after n cycles. Circuit functions are expressed
in terms of next-state functions representing Verilog processes. Our example
circuit AB consists of two processes A and B that count the number of pulses
(enw.pulse) and set done to true (T) after 10 pulses. Here 1w and 10w are word
literals (with lengths inferred from context); <4 denotes unsigned less-than;

with updates a record; and (.. .|} constructs a record:

Aenv s

if env.pulse then s with count := s.count + lw else s
Bs¥

if 10w <4 s.count then s with done := T else s

ABenvs0Zs

AB env s (Suc n) =
let s = AB env s nin
(count := (A (env n) §).count;

done := (B s').done|>

If, as in AB, the input processes do not interfere with each other—i.e., all
writes to variables used for communication between processes can be handled
by Verilog’s nonblocking assignment construct—then the code generator pro-
duces a (deeply embedded) Verilog process for each HOL next-state function and
then composes them into a complete Verilog module. For the AB example, the
code generator produces a Verilog module ABv containing the following code:

always_ff @ (posedge clk) // A
if (pulse) count <= count + 8'd1;

always_ff @ (posedge clk) // B
if (8'd10 < count) done = 1;

The code generator is proof-producing: for each run it produces a corre-
spondence theorem stating that the generated Verilog program has the same
behaviour as the input HOL circuit function. This correspondence theorem
enables us to transfer properties proved about HOL-level hardware descriptions
to the Verilog level. To illustrate, if we assume that the input pulse to AB is high

30

infinitely often,
pulse_spec env &V n. Im. (env (n + m)).pulse,
then we can easily prove
F pulse_spec env = I n. (AB env init n).done,

which in turn can be transported to the level of the Verilog semantics using the
generated correspondence theorem:

F pulse_spec env A vars_has_type s ABtypes =
In s’
verilog_sem env ABv s n = Ok §' A
verilog_get_var s’ “done” = Ok (VBool T)

Tool implementation. Our Verilog code generator is inspired by the CakeML
translator [43, 79], and the Verilog semantics that goes with it is based on the
official Verilog standard [48]. We aimed at soundly capturing the standard for a
restricted subset of Verilog that we found to be sufficient for describing simple
synthesisable synchronous hardware.

In our semantics, we consider a flattened module hierarchy, where all
processes correspond to always_ff procedural blocks waiting on a program-
common clock’s posedge. We limit the amount of concurrency we need to
model by only considering noninterfering processes, where all nonblocking
writes are saved in a queue during cycle execution. The contents of this queue
are merged into the program state at the end of every clock cycle.

The code generator translates HOL Booleans to Verilog Booleans and HOL
words to Verilog arrays. The Verilog Booleans in our semantics only take on
the standard Boolean values true (1) and false (@), as we do not consider wires
driven by multiple drivers (Z) in our formalisation, and unknown values (X) are
modelled using quantification inside the logic. The details of the code generator
and the semantics are described in more detail in L66w and Myreen [68].

2.4 The Silver CPU

In this section, we present the Silver ISA, the Silver FPGA implementation
and the environment it executes in, and the correctness theorem relating the
ISA and its implementation. Figure 2.1 outlines the relationships between the
different layers of the implementation of the Silver ISA.

31

(1) L3ISA
lUnveriﬁed compilation
(2) HOL ISA
I Correspondence proof
(3) Implementation as HOL next-state function
lProof—producing code generation
(4) Implementation as Verilog AST in HOL
JUnveriﬁed Verilog synthesis

(5) Implementation as bitstream for FPGA board

Figure 2.1. The layers involved in the construction and verification of the
Silver processor.

2.4.1 The Silver ISA

The Silver ISA (instruction set architecture) is the target of the CakeML com-
piler’s Silver backend. As shown in the topmost layer of Figure 2.1, the ISA is
written in the L3 language [24], a domain-specific language for ISAs that is
also used for the other CakeML compiler targets and can be transformed into
HOL definitions by the L3-to-HOL compiler. Neither the L3 ISA nor the L3-to-
HOL compiler are part of the trusted base of the Silver processor: L3 is merely
a convenient way to generate HOL definitions of the Silver ISA that can be
independently inspected. The generated ISA—the second layer in Figure 2.1—is
what is used in our proofs.

The Silver ISA in HOL is an operational semantics over a machine state
represented as a HOL record (...|). The machine state contains memory (a
function from addresses to bytes), registers (a function from register indices to
words), the current program counter (PC), some flags, and a trace of I/O events.
The semantics, Next, is a fetch-execute function that retrieves the bytes from
memory pointed to by the program counter, decodes them into an instruction,
then executes the instruction by updating the machine state. For example, the

32

execute part of Silver’s LoadConstant instruction is specified as follows:

LoadConstant (reg,negate,imm) s <

let v = w2w émm in
s with
(R := s.R(reg«if negate then —v else v));

PC := s$.PC + 4w)

Here w2w is an unsigned resizing of words, with updates a record, f (k< v)
denotes a function identical to f except that f k = v, and 4w is a word literal.
The reg, negate, and imm parameters are information from the instruction
decoder specifying which register to update with what content. We see that
the function LoadConstant updates the state-record fields R (registers) and PC
(program counter). There are similar semantics functions for each instruction
in the Silver ISA.

Instruction listing

The Silver ISA is a general-purpose RISC ISA designed to support CakeML. Each
instruction is 32 bits long and operates over 32-bit words. The Silver ISA has its
roots in Thacker’s Tiny 3 computer [101] but has since evolved significantly.

Loading constants into registers. The CakeML compiler frequently wants
to load large constants into registers. The Silver ISA supports loading a 23-
bit immediate (or its negation) into the lower bits of a register. With another
instruction, Silver supports loading a 9-bit immediate value into the upper bits
of a register.

ALU operations. The Silver ISA provides instructions for two-argument
ALU operations. The ALU supports integer addition, integer add with carry,
integer subtraction, increment by one, decrement by one, multiplication (with
64-bit output), logical and, logical or, logical xor, equality, unsigned less-than,
signed less-than, retrieving the current carry flag, retrieving the current over-
flow flag, and simply returning the second operand. The add and subtraction
operations update the carry and overflow flags.

Shifts and rotations. Separately from the ALU instructions, there are bit-
shift and bit-rotation instructions, in both signed and unsigned variants where
necessary.

Memory. Memory can be stored or loaded either as words or individual bytes.

33

Jumps. The Silver ISA supports conditional and unconditional PC-relative
jumps, as well as unconditional jumps to absolute addresses. Jump offsets (or
addresses) can be computed (i.e., obtained from a register), which is important
when tail-calling a closure or returning from a function (moving the value of
the link register into the PC).

Interrupt. The Silver ISA includes an Interrupt instruction, which is used for
notifying external hardware of an observable event. In the implementation,
Interrupt notifies external hardware and waits for a response before continuing
execution. In the semantics of the ISA, Interrupt silently records the current
state of memory by pushing it onto the trace of I/O events.

2.4.2 The Silver implementation

We have constructed a Silver processor, implementing the Silver ISA, that is
designed for the PYNQ-Z1 FPGA SoC board. The target board is relevant in
that any implementation must be adapted to the I/O and memory devices avail-
able. The centrepiece of our implementation is an environment-independent
processor core, which is connected to the runtime environment by a layer of
environment-dependent glue.

The PYNQ board hosts an FPGA chip, an ARM core running Linux which is
accessible over SSH, and a DRAM module that is shared between the FPGA chip
and the ARM core. In our “lab setup”, when we execute a program compiled by
the CakeML compiler, we use the ARM core first to load the synthesised Silver
processor, as an FPGA bitstream, onto the FPGA chip and then to preload the
shared DRAM module with the appropriate memory image (the image (§2.6)
contains machine code produced by the compiler, our system-calls code, and
data for the command line and standard input).

Formally, we represent the external environment the processor interacts
with as a function env from timesteps to the state of the world. The environ-
ment is assumed to include a memory interface (is_mem, the DRAM module),
an initialisation interface (is_mem_start_interface, notifying when memory is
correctly prefilled), and an interrupt-handling interface (is_interrupt_interface,
invoked when an Interrupt instruction is executed):

. def
is_lab_env accessors step env =
is_mem accessors step env A is_mem_start_interface env A

is_interrupt_interface accessors step env

The accessors argument is an implementation detail and makes the definitions
usable at multiple abstraction levels. As an example, the initialisation interface

34

is formalised as:

&

is_mem_start_interface env &
In.
(Vm. m < n = —(env m).mem_start_ready) A
(env n).mem_start_ready

In our lab setup, the interrupt interface is connected to the ARM core and it
is used to notify the core of, e.g., system calls it must react to, such as text-output
calls.

To produce a hardware description of the Silver processor inside HOL—that
is, layer 3 in Figure 2.1—we refined the HOL ISA step by step into a hardware
description. The implementation is not pipelined, executes instructions in-order,
and is consequently similar, at a high level, to the ISA.

The main difference between the implementation and the ISA is that the
implementation must interact with the external interfaces defined above, e.g.,
instead of updating an abstract memory map as in the ISA, the implementation
must access external memory (using the interface defined by is_mem). As a
result, the implementation has additional wait states that do not correspond
to any state in the ISA, as the processor sometimes has to wait for external
interfaces, such as memory, to respond to requests. Because of these additional
states, there are two different notions of time. In the ISA, a “step” corresponds
to an instruction cycle, whereas an implementation-level “step” corresponds
to a clock cycle; an instruction cycle takes multiple clock cycles to realise in
hardware.

Another important step in the refinement process was deduplication of some
elements of the ISA. For illustration, consider the definition of the instruction
LoadConstant given above. The computation of the next PC is computed directly
in the definition of the instruction’s semantics. This pattern is repeated for every
instruction (except, e.g., jump instructions, where the next PC is computed
by more complicated means). One does not want to translate descriptions
of instructions such as these to hardware naively, because then the hardware
component computing the next PC would be duplicated one time per instruction,
wasting hardware resources. Computing the next PC should instead be carried
out by a single, shared, hardware component. So, part of the manual refinement
process was to identify which parts of the ISA should be implemented by shared
hardware components and which could be implemented in a more direct way,
similar to the structure suggested by the ISA.

35

2.4.3 Algorithmic correctness of Silver

To show that the implementation correctly implements the ISA, we have proved
a simulation correspondence between the two levels, saying that for any n
instruction cycles the ISA can take, these steps can be simulated by running
the implementation m clock cycles:

Flet cstep = silver_cpu init env in
ag32_eq_init_hol_isa (env 0) init s A
is_lab_env acc_env cstep env = (2.9)
Vn.3dm.
ag32_eq_hol_isa (env m) (cstep m) (Next™ s)

The relation ag32_eq_init_hol_isa belongs to the family of state relations
mentioned in §2.2 and says that all ISA-visible state components at the two
levels must be equal, e.g., that the memories have the same content and the
registers are element-wise equal. The relation also says that some implemen-
tation registers must be in their start-up states. The relation ag32_eq_hol_isa
is similar to ag32_eq_init_hol_isa in that it also says that all ISA-visible state
components (again including memory) must be equal, but it differs by stating
that some implementation registers must now be in their in-execution states.
The two different state-equality relations are needed as the implementation
initially needs to wait for memory to respond with a first instruction before
it can proceed in in-execution mode. Lastly, silver_cpu is the HOL hardware
description of the processor, in the form of a next-state function expressed such
that it is accepted as input by our Verilog code generator.

The simulation correspondence is quite weak, as it does not provide any
information about what happens during the implementation’s execution of
an instruction. In particular, it does not tell us anything about the wait states
mentioned in the previous section. For example, in terms of the wc example in
§2.2, to prove theorem (2.8), beyond theorem (2.7) and theorem (2.6), we needed
a separate lemma saying that the processor “does nothing” after a CakeML
program has terminated; or, in other words, a lemma stating that the ISA-visible
state is unchanged at any clock cycle after program termination, not just at any
instruction cycle.

2.4.4 Correctness of the Verilog implementation

The correspondence between the HOL processor implementation and the Ver-
ilog processor implementation is more direct than the correspondence between
the HOL processor implementation and the processor ISA. More precisely, with
the help of the Verilog code generator invoked on the HOL processor, we can

36

prove the following theorem:

k- ag32_eq_hol_verilog init vs =
Jus’.
verilog_sem env silver_cpu_verilog vs n = Ok vs’ A

(2.10)

ag32_eq_hol_verilog (silver_cpu init env n) vs’

Here ag32_eq_hol_verilog is another relation from the state-equality family,
again requiring that its two parameters represent the same machine state at two
different abstraction levels. As seen previously, the verilog_sem function runs
Verilog programs in our Verilog semantics, and silver_cpu_verilog refers to the
Verilog program the translator built out of the HOL processor implementation
silver_cpu.

The derivation of theorem (2.10) is mostly automated by the code generator;
the main obligation to discharge as a user of the code generator is to express
the input circuit as a hardware description at the same level as the example
from §2.3. To derive the ISA and Verilog implementation-correspondence theo-
rem (2.7) from §2.2, we simply compose theorem (2.10) with the implementation-
correctness theorem (2.9).

For synthesis for our FPGA board, we have used the Verilog code generated
by the process described in this section in combination with some Verilog glue
to connect the processor to its environment (see the discussion in §2.8).

2.5 CakeML’s assumptions

The CakeML compiler’s correctness theorem makes a long list of assump-
tions regarding the execution environment of the generated code. This section
presents what the assumptions are, while the next section explains how we
have met these assumptions with the verified Silver processor and verified
implementation of system calls.

The compiler’s correctness theorem, an instance of which is theorem (2.2)
in §2.2.3, includes the following assumption:

installedyy compiled_prog (basis_ffi cl fs) ms,

which encapsulates the assumptions about the execution environment of the
generated code. It relates the generated code compiled_prog, the command-
line arguments cl, the state of the file system fs, and the Silver ISA machine
state ms. Informally, it requires that ms is set up correctly for execution of
compiled _prog to begin.

The formal definition of installed,, is too long to reproduce in full here, but

37

the following list outlines its contents:

(i) Registers 1-4 provide accurate information on where the part of memory
usable by compiled_prog is located in machine state ms.

(if) The read-only data of compiled_prog is stored in memory, where it is
expected to be (based on registers 1-4).

(iii) The machine code of compiled_prog is stored in memory, and the pro-
gram counter of ms points at the first address of this machine code.

(iv) The code and data sections do not overlap, and various pointers are
aligned to word boundaries.

(v) Calls to external functions (i.e., system calls) behave according to the
modelled behaviour of the filesystem fs and command line cl.

The last point (v) above is by far the most complicated assumption. It
requires that each time the CakeML-generated code jumps to external code
(e.g., code for reading external input), the external code will execute and safely
return to the CakeML code according to CakeML’s calling convention for
external calls. Furthermore, each execution of external code must adhere to the
CakeML basis library’s assumption basis_ffi ¢l fs, explained in detail below.

The formal definition (omitted) of (v) is slightly unintuitive because the
property is defined in terms of restricting the freedom of an oracle function.
This oracle function, which we call the interference oracle of the foreign-function
interface (FFI), is an argument to the operational semantics machine_sem that
is used in the correctness theorem for the CakeML compiler. For the most
part, machine_sem executes the next instruction using the Silver ISA’s next-
state function Next. However, when machine_sem encounters an entry point to
external code (an FFI call), the semantics consults the interference oracle to
determine what the resulting Silver ISA state should be.

The interference oracle is restricted to leave unchanged the part of the
machine state that is private to CakeML code; the oracle is obliged to write the
correct return value (according to basis_ffi ¢l fs, see below) to the shared array
that is used for communicating between CakeML code and the external code;
and the interference oracle is forced to set the program counter to the correct
return address (in order to continue execution of the CakeML code).

So, what is basis_ffi ¢l fs? It encapsulates the assumptions that the CakeML
standard basis library makes of its foreign-function interface. In the context of
bare-metal systems, this is the interface to system calls that support the I/O
functions in the basis library. Concretely, basis_ffi is defined as a record that
defines (1) an oracle function basis_ffi_oracle, which specifies the behaviour of

38

each call, and (2) the current state of the external world consisting of a command
line (cl) and a filesystem (fs). The basis_ffi_oracle recognises calls to: “read”,

“write”, “get_arg_count”, “get_arg_length”, “get_arg”, “open_in”, “open_out”,
“close”, and “exit”. An excerpt of its definition is shown below:

basis_ffi_oracle name (cl,fs) conf bytes &«

if name = “read” then
case ffi_read conf bytes fs of
FFIfail = Oracle_final FFI_failed
| FFlreturn bytes fs = Oracle_return (cl,fs) bytes
| FFldiverge = Oracle_final FFI_failed
else ...

When the FFI with name “read” is called, basis_ffi_oracle delegates the task
to ffi_read, which receives configuration conf, input bytes and the current state
of the filesystem fs as arguments. The conf and bytes values are arguments
that the CakeML programmer passed to the call at the source level. From the
programmer’s perspective, bytes is a byte array that they have made the FFI
call with, in this case, expecting it to be filled with characters from reading a
file. The function ffi_read is defined as:

ffi_read conf (bo:by:by:bz:bytes) fs <
do
assert (|bytes| > w22n [bo; b1] A |conf]| = 8);
(Lfs") < read (w82n conf) fs (w22n [bo; b1]);
FFlreturn
([Ow] ++ n2w2 || ++ [b3] ++ map c2w [++
drop |I| bytes) fs'
od otherwise (FFlreturn (1w:by:bo:bs:bytes) fs)

When ffi_read receives a bytes argument of sufficient length, it calls a read
function from the filesystem model. This read function (definition omitted) is
given a file handler, a filesystem state and the maximum length it is allowed
to read. The read function returns (I,fs"), where [is the number of bytes that
were actually read and fs’ is the new filesystem state. The complicated list
expression passed to FFlreturn specifies how the length of list [and its content
is communicated in the shared array on return. On failure, ffi_read returns 1w
in the first element of the array. All of the functions involved here are defined
in a monadic style (do. . . od, etc.) since there can be assertion failures at many
different points. The w22n, w82n, n2w2, and n2w functions are conversions
between bytes and natural numbers.

39

2.6 Setting up Silver for CakeML

In this section, we explain how we transition from theorem (2.4) to theorem (2.6)
in §2.2, i.e, how we prove the installeds; assumption in order to move our
correctness theorem from a property about CakeML’s machine_sem down to
Silver’s Next. We make this transition by fixing a memory layout that includes
code implementing the required system calls and verifying that code. The
memory layout that we use is shown in Figure 2.2.

Recall from §2.5 that machine_sem either takes an ordinary step of executing
a CakeML-generated Silver instruction or takes an interference oracle step
representing a call to a foreign function. To move from the machine_sem level to
the Silver ISA level, we define a predicate, interference_impltd, which states that
the effect of the interference-oracle step can be obtained by normal execution of
machine code located somewhere in memory (separate from CakeML-generated
code). This predicate bridges the gap between machine_sem and our verification
of the system-call code at the ISA level.

The first theorem we prove about the predicate interference_impltd connects
it to machine_sem. It states that interference_impltd Rz, for an arbitrary relation
R between the Silver machine state ms and FFI oracle state ffi, implies that
a terminating machine_sem can be replaced by a sequence of Next steps that
preserve Ryy. The FFI oracle states ffi, ffi’ in this theorem are records of the
same type as basis_ffi ¢/ fs. Recall that basis_ffi ¢/ fs is the initial FFI oracle
state from which a CakeML program is started (featuring, e.g., in theorem (2.6));
ffi and ffi’ are a pair of FFI oracle states reached by the CakeML program at
runtime. The md argument gives the memory domain (addresses) in which the
system-call code is expected to reside:

I interference_impltd Rg; md ms A Rgg ms ffi A
machine_sem ffi ms C
extend_with_oom { Terminate Success i0 } =
Ik f
Rpi (Next® ms) ffi’ A is_haltedss (Next® ms) A ffi’.io_events < i0 A
(exit_code_Oxg (Nextk ms) = [fi’.io_events = i0)

(2.11)

The second theorem provides a concrete relation, ffi_rel,s, and memory
domain, ffi_mem_domain,g, and proves that they satisfy interference_impltd:

... = interference_impltd ffi_relss ffi_mem_domaina, ms (2.12)

The omitted assumptions (. ..) are routine: e.g., that the FFI oracle state’s
command line and file system are well-formed, the code is correctly placed in
memory (e.g., within the domain), and so on. We omit these routine assumptions

40

here and below for brevity.

The proof of theorem (2.12) involves showing that each piece of system-call
code correctly implements the call as specified by basis_ffi_oracle, which we saw
in §2.5. We prove a theorem of the following form (shown here for “read") for
each system call:

F ... A md = prog_mem_domainy, ... A ffi_relg ms ffi A
index_of “read” ffi_names = Some index A
call_FFI ffi “read” conf bytes = FFI_return ffi’ bytes’ =
Jk.
ffi_interfersg md (index,bytes’,ms) = Next® ms A
ffi_relpg (Next® ms) ffi’

(2.13)

Here, call_FFI is a wrapper around basis_ffi_oracle that takes an initial FFI oracle
state ffi and returns a new FFI oracle state ffi’ along with the bytes returned
by basis_ffi_oracle. The conclusion of this theorem has two parts. First, it shows
that the FFI call (ffi_interferas, described below) is identical to stepping Next
k times. Second, it shows that the ffi_rels, relation is preserved across these
k steps.

So what is the ffi_interfer,, function? It is a concrete interference-oracle
instance for CakeML’s FFI semantics that specifies the effect on a machine state
ms of running a system call that returns bytes’. The md argument indicates the
memory domain (prog_mem_domain,g) that CakeML uses, i.e., the parts with a
CakeML prefix in Figure 2.2. The inder argument indicates which FFI call is
made (in this case “read"). The ffi_interfer,s function updates the machine state
by writing bytes’ to the part of md used for communicating with the external
call, updating registers and the PC according to the calling convention and,
based on index, updating memory (outside of md) used for bookkeeping by
the external FFI call. Thus to verify each piece of system call code, we must
show that executing the code has the effect of ffi_interfersg.

Each system call is verified in two refinement steps. The first step abstracts
from the machine code implementing a system call to a logical specification
of its effect. For example, the logical specification for the code implementing
“read” is a theorem of the form:

F...= Jk. Next® ms = ffi_read,; ms

The omitted assumptions (. ..) ensure, e.g., that the relevant code and data are
placed in memory correctly and that the program counter is currently pointing
at the start of the code. The theorem’s conclusion shows that stepping by &
steps yields the machine state given by ffi_reads, ms. This logical specification
(ffi_read,g) is the glue to the second refinement step.

41

CakeML-generated code+data

CakeML-usable memory (initially zeros)

system calls: called id | code

output buffer: id | length | contents

standard input: length | offset | contents

command line: length | contents

startup code (depends on size of code+data)

Figure 2.2. The memory layout for running CakeML programs bare-metal
on Silver. When preparing the initial memory, parts with a white back-
ground are application-independent, parts with an intermediate background
are application-dependent, and parts with the darkest background are input
for each execution.

The second step connects ffi_readyg to ffi_interfers; assuming the ffi_read
specification (§2.5) from CakeML’s basis library:

F ... A ffi_read conf bytes fs = FFlreturn bytes’ fs' =
ffi_readsg ms = ffi_interfer,s md (index,bytes’,ms)

As before, the omitted assumptions (. . .) are routine ones about how the initial
machine state ms is set up. At the point of writing, both refinement steps
were verified manually with the help of some specially written automation.
We are confident, however, that the first step can be fully automated with
decompilation tools [77].

As discussed in §2.5, the most complicated part of the existing CakeML
assumption are the ones asserting that the system calls are correctly imple-
mented according to CakeML’s basis-library assumptions. This assumption
is concretely discharged in a few steps but mainly using the composition of
theorems (2.11) and (2.12) discussed in this section. Discharging this assumption
is what allows us to go from theorem (2.4) to theorem (2.6) in §2.2. It is also in
this step where the routine (omitted) assumptions from earlier are discharged.
This discharging step is done automatically for concrete compiled programs
such as wc_ag32. Crucially, the only remaining assumptions are the ones shown
in theorem (2.6).

The remaining assumptions inside installedsg are straightforward compared
to the FFI ones. They concern putting the machine in an appropriate initial
state for CakeML code to run. Their verification did, however, lead to some
minor surprises as we detail next.

42

2.6.1 Changes to the assumptions

In proving installed,; to move from theorem (2.4) to theorem (2.6), we found that
some parts of installed,; were inconsistent, specifically point (iv) in §2.5 about
pointers being aligned (which is independent of the ag32 target). Although the
inconsistency was easy to fix, it was not caught previously and had appeared
in the final top-level theorem for the CakeML compiler. This highlights the
value of reducing the assumptions, ideally by proving them away, in any large
formal development.

More substantially, we made some changes to CakeML'’s target-machine
semantics, machine_sem. On the one hand, the design of machine_sem that allows
arbitrary interference to non-CakeML parts of the machine state whenever
an external call is made is vindicated by our instantiation of the interference
oracle with a concrete implementation of system calls. On the other hand,
the invariants about both CakeML steps and interference steps needed to be
strengthened: we needed to know, in both cases, that memory not used by
the currently running code does not change, and that the PC stays within the
correct part of memory. The invariants that are now present in our definitions
are sufficient for proving correctness of the sequence of calls from CakeML to
external code and back on the same machine.

Finally, the extend_with_oom feature of the CakeML compiler’s correctness
theorem was previously (ab)used to allow compiler-generated startup checks to
fail at runtime. They failed unexpectedly when we first tried running programs
on Silver, because we had the memory layout and startup code slightly wrong.
These dynamic checks have now all been replaced by checks that resort to a
valid default configuration instead of causing runtime failures; in other words,
CakeML’s new startup code will never cause an out-of-memory error.

2.7 Results

The process described so far does not just work for the word-counting (wc)
application. We can establish the same sorts of connection between other pieces
of verified software and the verified Silver platform, creating verified software-
to-hardware stacks for a variety of tools. These applications have all been
verified previously: the hard intellectual work has already been performed (at
the level of HOL and/or CakeML functions). Here, we confirm that the same
applications can be compiled for and executed on the Silver platform.

First, we have successfully run all of the programs mentioned in the intro-
duction (§2.1) on our FPGA board. Silver is not a high-performance processor,
but small programs such as sort complete almost instantaneously when run
on small inputs. Running sort on a 1000-line file takes a few seconds. Silver’s

43

low performance is more noticeable for larger programs, such as the compiler
itself. For example, compiling a one-line hello world program on a modern
Intel processor takes around two to three seconds, whereas compiling the same
program on Silver takes around four hours.

Second, the verification story (establishing HOL theorems of correctness)
for these applications follows the pattern already described in the paper to
this point. For example, the correctness statement for the CakeML compiler on
Silver (2.14) has much the same assumptions as for the wc example (2.8); that is,
the machine has been correctly initialised (verilog_inityg), and the input is not
too large, among others:

- let vstep = verilog_sem env silver_cpu_verilog init in
cl_ok ¢l A |input| < stdin_size A
is_lab_env acc_env_verilog vstep env A
verilog_inita, compiler_ag32 (cl,input) init env =
dstdout stderr. FG k. 3 fin.
compiler_spec input cl stdout stderr A
vstep k = Ok fin A verilog_is_haltedsg fin A
stdoutsg (env k).io_events < stdout A
stderryg (env k).io_events < stderr A

(2.14)

(verilog_exit_code_0yg fin =
stdoutag (env k).io_events = stdout A
stderrag (env k).io_events = stderr)

In addition, because the compiler takes the name of its input file as its comman-
dline argument, we have a predicate cl_ok asserting that the commandline is
well-formed (essentially, that it is not too large). As before, the conclusion states
that execution will eventually result in a final state (vstep k = Ok fin) satisfy-
ing the user-level specification of the compiler behaviour. That specification
(compiler_spec) describes how standard output contains a textual representation
of the machine code for the input program.
The definition of compiler_spec makes this clear:

compiler_spec input cl stdout stderr <
(stdout,stderr) =
if has_version_flag (tail ¢l) then
(explode current_build_info_str,*”)
else
let (cout,cerr) = compile_32 (tail ¢l) input in
(explode (concat (append cout)),explode cerr)

The compile_32 function mentioned here is a (somewhat complicated) wrapper
around a call to the compile function of our initial correctness result for the

44

compiler (2.2). In this way, our theorem asserts the correctness of the bootstrap
of CakeML on Silver.

2.8 Discussion

The promise of a verified stack is the ability to construct systems that have
formal evidence for their correct implementation. Such evidence, in the form
of mechanically checked proofs, is always subject to implicit and explicit as-
sumptions, which collectively represent the trusted computing base (TCB) of
the verified stack. The TCB is all the things that need to be trusted if we are to
believe the stack operates correctly. In stack constructions, alongside the proof
checker itself, only the top and bottom layers contribute to the TCB since there
are proofs in between.

In this section, we describe the TCB of the bottom layer of stacks constructed
using our methodology and discuss the (necessarily informal) ways in which
we can justify the trust we put into these assumptions. We also show where
we have reduced the TCB, compared to previous CakeML work, by replacing
assumptions with proofs.

Verilog semantics. We assume that our formal model of Verilog is accurate
with respect to the Vivado toolchain that takes Verilog input and produces our
hardware. Relatedly, we assume that:

« the printing of Verilog abstract syntax trees from HOL is faithful; and
« the Vivado toolchain taking Verilog to FPGA bitstreams is bug-free.

We address these assumptions by using a simple subset of Verilog, one where
the semantics is uncontroversial and where we can be relatively confident that
the implementation will be straightforward. Code implementing the pretty-
printing of ASTs is not complicated, so informal code inspection is helpful
with respect to this assumption. Though we have not done this, we could gain
assurance by implementing this code in CakeML, developing a parser for the
printed syntax, and proving that the composition of parser and printer is the
identity. The second item could be further addressed by standard industrial
tools such as formal equivalence checkers, but such tools would not produce
proofs composable with our formal development.

Hardware. In our lab setup (§2.4.2), we have aimed for convenience rather
than a minimal TCB. Consequently, some of the assumptions required by the
current lab setup could be significantly reduced with little effort. Concretely,

45

we are dependent on both the correct operation and the correct initialisation of
the various hardware components that realise our final system. For example,
we assume that:

« the FPGA chip works correctly;
« the shared DRAM module (and other board modules) works correctly;

« the Python script, running on the ARM core, that we use to preload
memory and handle interrupts (such as text output requests) sent to the
core is operating correctly; and

« the Verilog glue code used to connect the Silver processor to its envi-
ronment works correctly. E.g., some interfaces, such as to the DRAM
module, are exposed as AXI3 interfaces [65]—but as we are not inter-
ested in the details of AXI3 in particular, we expose simplified interfaces
to the processor.

The dependence on the ARM core (and the Linux operating system it is
running) for preloading memory and interrupt handling is clearly tangential
and could be improved by preloading memory by more primitive means and
using, e.g., seven-segment displays for text output.

Comparison to previous work. The bottom-layer TCB described above is
different to, and a clear improvement on, the bottom-layer TCB accompanying
verified software developed with CakeML previously. The assumptions about
Verilog and the hardware have replaced enormous, unverified components. In
particular, previous work [25, 59] had to assume:

« the correctness of the underlying operating system and its tools to link
and run our executables (loading it into memory, connecting it to I/O
streams, etc.);

« the correctness of our hardware semantics for targets such as ARM and
x86; and

« the correctness of those hardware semantics’ realisation in the silicon on
which the software was being executed.

2.9 Related work

The CLI stack. An early attempt at constructing a verified stack was made
in the late 1980s and early 1990s in the CLI stack project [9, 96], which was
built using the Nqthm theorem prover, a precursor to ACL2. The stack included,

46

among other components, a verified processor and two verified compilers,
for Pascal-like and Lisp-based languages, targeting the verified processor. A
version of the stack was built for the verified FM9001 processor. FM9001 was
described in a custom HDL called DUAL-EVAL, which was translated to LSI
Logic’s Netlist Description Language for fabrication by LSI Logic on a gate
array [16].

Moore [96], one of the stack’s principal architects, describes the compil-
ers’ languages as “too simple to be of practical use”, lacking e.g., I/O mech-
anisms. Furthermore, it was not possible to run the verified compilers on
top of their stack.

The Verisoft stack. A later attempt at a verified stack was made in the
2000s in the Isabelle/HOL-based Verisoft stack project [3]. The processor used
in the Verisoft stack is called VAMP, first developed in PVS [11] and later ported
to Isabelle/HOL [104]. Beyer et al. [11] call the CLI stack’s FM9001 processor
“very simple” and note that the VAMP is much more complex as it is both
pipelined and capable of out-of-order instruction execution. In comparison
with the VAMP processor, our Silver processor must also be described as “very
simple”. On the other hand, the VAMP processor was also synthesised for
FPGAs, but was not verified down to the Verilog code used for synthesis.
Instead, for the PVS version, a tool operating outside the formal development
called pvs2hdl [10] was used to produce the Verilog code out of a gate-level
PVS description. Similarly, i.e., also without proof, the Isabelle/HOL VAMP
version used an unverified tool called [HaVelt [104] to translate Isabelle/HOL
hardware descriptions to Verilog.

The Verisoft stack also included a verified compiler for C0 [62], a language
similar to a subset of C plus garbage collection. The C0O compiler provides
similar FFI functionality as the CakeML compiler, called XCalls, allowing pro-
grammers to embed VAMP assembly code inside C0O programs. Leinenbach and
Petrova [62] describe the compiler as “simple”. In contrast with CakeML, it does
not include any optimisation passes. The CO compiler consists of a verified
compilation algorithm accompanied by a partly verified CO implementation.
Unlike the CakeML compiler, the implementation is not automatically derived
from the compilation algorithm. Instead, a Hoare-logic-based CO0 verification
environment was used to prove the implementation correct. This means that
manual work is needed to keep the compilation algorithm and implementa-
tion in sync when new features are added to the compiler. Moreover, only the
code-generation implementation (approximately 1500 lines of C0) was proved
correct; parsing and I/O were left unverified. A VAMP-machine-code imple-
mentation is needed to run the compiler on top of the VAMP processor, but
they do not provide a way to compile, with proofs, the CO implementation to a

47

machine-code implementation (such as running the C0 compiler in-logic, as
the CakeML compiler does when compiling itself to machine code). In other
words, not all pieces for running the compiler on top of the VAMP stack are
present.

Other verified stack work. In the ongoing Coq-based DeepSpec stack
project [5], the Kami project [19] enables Bluespec development and verifica-
tion inside Coq. A pipelined in-order multicore processor has been developed
inside the Kami project as a case study but is not yet part of a larger stack. The
Coq world’s analogue to the CakeML compiler, the CompCert compiler [63],
does not have an implementation verified down to machine code, so obtaining a
correctness guarantee about running CompCert on top of a Cog-verified proces-
sor is nontrivial (as doing this requires having access to a verified machine-code
implementation).

There have also been processors developed and (sometimes partly) verified
without being part of full-stack projects. Though such components might fit
into a verified stack, without actually carrying out the necessary integrations,
this remains a “might” rather than a demonstrated “can”. Beyer et al. [11]
enumerate a few verified processors published before their PVS VAMP paper
and note that of the processor papers they cite, only papers about the FM9001
processor (i.e., the processor from the CLI stack) state that the processor has
been synthesized. By their account, the remaining processor papers rely on
“several simplifications and abstractions”. Given the controversies around the
Viper processor [20, 70], it is clear that when claiming a processor “verified”,
one must be precise about what has actually been proved and down to what
abstraction level the proofs reach.

Correct hardware. Neither the stack work cited in this section nor other
ITP hardware-verification work [15, 19, 45, 52, 87], have combined verification
with formal semantics for a mainstream low-level HDL such as Verilog or VHDL
(instead relying on, e.g., unverified extraction). Previous formal-semantics work
exists for Verilog [55, 73], but those projects do not seriously consider ITP
verification.

Verified low-level systems code. The verification of the software pro-
grams the stacks we have build are based on is not new (e.g., Goel et al. [28]
have verified a x86-machine-code word-counting program). Rather, is it the
inclusion of substantial programs in stack constructions that is the focus and
novelty in this paper.

Unlike high-level application code which can be compiled by the CakeML
compiler down to Silver machine code, we implemented and verified the system
calls for our stack by hand. This was manageable for the CakeML basis library,
but verifying more complicated system calls would require (or at least, be

48

significantly aided by) low-level programming and verification frameworks [17,
18, 81] and automated decompilation tools [77].

2.10 Conclusion

This paper has reported on a novel workflow for producing verified stacks
that connect verified hardware to verified programs that run on top of it. Our
approach connects the CakeML compiler to a new verified Silver processor.
We have a unique and novel contribution, which enables the proof of single
end-to-end correctness theorems for realistic user-level programs, such as the
CakeML compiler itself. In other words, not only does the CakeML compiler
have a new target, the verified Silver hardware design, but it can itself be run
on that hardware. This work is a relief: we now know that the assumptions
made at the bottom of the CakeML compiler proof can be met by underlying
verified hardware.

At certain points, we have taken the shortest route to our final end-to-end
results, which means that there is room for improvement in individual parts
of the project. Improvements of one part can be carried out independently of
other parts as long as the interfaces between all parts stay the same.

We intend to improve our hardware implementation of Silver. The proces-
sor ought to be pipelined and otherwise optimised to support higher clock
frequencies in order to produce faster applications. We will do this without
fundamentally changing the Silver ISA because we want to keep the ISA at
an abstraction level that does not expose implementation techniques in the
hardware implementation.

We also want to make it less labour-intensive to develop and set up verified
systems code that interfaces with the CakeML-generated code. The set-up work
required for this paper was significantly more labour-intensive than expected.

Acknowledgements. This work was partly supported by the Swedish Foun-
dation for Strategic Research.

49

50

CHAPTER 3
A Proof-Producing Translator
for Verilog Development in HOL

Andreas Lo6w and Magnus O. Myreen

Abstract. We present an automatic proof-producing translator targeting the
hardware description language Verilog. The tool takes a circuit represented as
a HOL function as input, translates the input function to a Verilog program and
automatically proves a correspondence theorem between the input function
and the output Verilog program ensuring that the translation is correct. As
illustrated in the paper, the generated correspondence theorems furthermore
enable transporting circuit reasoning from the HOL level to the Verilog level.
We also present a formal semantics for the subset of Verilog targeted by the
translator, which we have developed in parallel with the translator. The seman-
tics is based on the official Verilog standard and is, unlike previous formalization
efforts, designed to be usable for automated and interactive reasoning without
sacrificing a clear correspondence to the standard. To illustrate the translator’s
applicability, we describe case studies of a simple verified processor and verified
regexp matchers and synthesize them for two FPGA boards. The development
has been carried out in the HOL4 theorem prover.

Published at Conference on Formal Methods in Software Engineering (FormaliSE),
2019

51

52

3.1 Introduction

When building fully verified systems, so called verified stacks [3, 5, 96], soft-
ware and hardware cannot be treated as separate, disconnected worlds. For a
system to be fully correct, it is not enough that its software and the hardware
constituents are correct considered independently of each other: the software
and hardware components must also be integrated correctly. To be able to state
and prove all-encompassing system-correctness claims, the software, hardware,
and all integrations between them must be made available inside the same
formal system.

In a recent paper [67], we present a methodology to construct verified stacks
inside the HOL4 interactive theorem prover [95]. For the software side of the
stacks, we rely on (and extend) the CakeML project [25]. For the hardware side,
we introduce a new hardware-development methodology. In this paper, we
provide the technical details of this hardware-development methodology.

Formal verification already has an established position in (industrial) hard-
ware development, but only in a limited sense. The dominating formal-verification
approach consists of relying on so-called automatic verification tools, offer-
ing e.g. model checking and equivalence checking. Such tools, in any form
resembling the current state-of-the-art,

« cannot handle the intricacies of reasoning inside an explicitly stated formal
semantics for an industry-relevant hardware description language (HDL),
such as Verilog or VHDL, and consequently do not formally relate their
guarantees to such semantics,

» nor can they handle complex full-system specifications; instead, system-
externally justified simplifications, translations, and decompositions must
be introduced to make the complexity manageable for the tools.

The alternative approach of interactive theorem proving (ITP) has the
potential, we claim, to overcome the limitations listed above. This would be
because, inside ITP systems, such as HOL4, automatic and manual proofs can
be combined in logically safe ways. The ITP approach has been taken many
times before (see Sec. 3.8), and there has been previous work on formalizing
the semantics of mainstream low-level HDLs, and previous work on formally
verifying the correctness of concrete, or parameterized, circuits, inside ITP
systems. However, to the best of our knowledge, there has not been prior work
combining these two efforts, i.e. verification of nontrivial circuits with respect to
a detailed explicitly stated formal semantics for one such description language.

Our hardware-development methodology is designed to make hardware
verification easy in HOL and, at the same time, support a solid connection

53

to a formal semantics of a subset of Verilog. The heart of the approach is an
automatic proof-producing tool that, given a functional version of a Verilog
program in HOL, produces Verilog code and proves a correspondence theorem
stating that the Verilog code and the functional code have the same behavior
according to a formal semantics of Verilog we have developed. Furthermore,
the correspondence theorem enables transporting system-correctness results
for the functional code to the Verilog code, as illustrated in Sec. 3.2.
This paper makes the following contributions:

« We elaborate on our previously published hardware-development method-
ology that is centered around functional versions of Verilog programs in
HOL. (Sec. 3.2, 3.3, 3.9)

« We present the details of our automatic tool that makes the methodology
have a solid connection to our explicitly defined operational semantics
for Verilog. (Sec. 3.6)

« The description of our formal semantics for a subset of Verilog is also
a contribution. The semantics is carefully carved out to be faithful to
the Verilog standard, manageable in complexity for HOL proofs, and
sufficiently large to express interesting synthesizable hardware. (Sec. 3.5)

All source code for this work can be found at https://github.com/CakeML/
hardware.

3.2 Example

This section illustrates the ideas behind our hardware-development methodol-
ogy through an example. Subsequent sections provide technical details.

The first step in our methodology is to embed (express) the circuit-to-be-
verified inside HOL. To do this, the user must first define a new state-record
type containing the variables the circuit is to operate over. If the circuit is
to interact with the external world, a second state record representing world
states must be defined also. The user must then define the circuit in terms of
next-state functions operating over these two state records. For the purposes of
our example, consider the following HOL function AB as a model of a circuit:

A fext s £ if fext.pulse then s with count := s.count + lw else s

B s £ if 10w <, s.count then s with done := T else s
AB fext init 0 < init
AB fext init (Suc n) = let s’ = AB fext init n in

(count := (A (fext n) s’).count; done := (B s’).donel)

def

54

https://github.com/CakeML/hardware
https://github.com/CakeML/hardware

The HOL syntax s with © := y means setting field « to y in record s,
{...) constructs a new record instance, and <num>w is notation for constant
words. The AB circuit is a combination of two circuits, A and B. The A circuit
checks for an external pulse signal: A adds one to count whenever pulse is
detected. The parallel circuit B assigns true to done whenever count is larger
than 10. The combined AB function takes three arguments: a function fext
from time (a natural number) to the user-defined external-world state record,
modeling the circuit-external world; init, an instance of the user-defined circuit-
internal state record; and a third argument specifying the number of clock cycles
to evaluate the circuit for.

The second step in our methodology is to run the circuit through our proof-
producing translation tool. For AB, the tool generates an in-logic Verilog AST
ABv representing a Verilog module consisting of two processes corresponding
to A and B:

always_ff @ (posedge clk) // A
if (pulse) count <= count + 8'd1;

always_ff @ (posedge clk) // B
if (8'd10 < count) done = 1;

The tool is proof-producing, meaning that each run of the tool automatically
proves a correspondence theorem stating that the generated Verilog code ABv
behaves the same as the input function AB — thereby guaranteeing the correct-
ness of the translation. Crucially, these correspondence theorems moreover
allow us to transport properties proved about AB (by any means inside HOL)
to the generated Verilog code ABv without any manual reasoning involving
Verilog semantics.

The third step in our methodology is proving and transporting circuit prop-
erties. For our running example of the AB circuit, we prove a simple property
as follows. If we assume that the input pulse is true infinitely often,

pulse_spec fext =V n. 3m. (fext (n + m)).pulse,
then we can easily prove that done will eventually be set to true:

F pulse_spec fext = In. (AB fext init n).done.

Properties proved of HOL functions such as AB can easily be transported
to properties of its generated Verilog code thanks to the automatically proved
correspondence theorems. For our running example, we can prove the following,

55

(to repeat:) without manual reasoning about the Verilog semantics:

F pulse_spec_verilog fext A vars_has_type I" ABtypes =
dn I,
mrun fext ABv ' n = Inr I A
mget_var I/ “done” = Inr (VBool T).

Here mrun is the top-level Verilog semantics. The theorem states that there exists
some number of clock cycles n such that the Verilog semantics successfully
produces a state for the nth clock cycle, and in that state mget_var tells us that
done is set to true, i.e. Verilog value VBool T.

For synthesis, we ship a Verilog pretty-printer that can be used to print
the generated Verilog code ABv to a file to be used (after adding the necessary
module-boilerplate code) as input for off-the-shelf synthesis toolchains that
target (e.g.) FPGAs.

3.2.1 Larger examples

The example above was intentionally kept simple for ease of presentation.
However, the methodology has been shown to work on larger examples. Sec. 3.7
describes how we have applied it in our paper on verified stacks [67] to produce
a verified implementation of a processor for execution of CakeML programs. In
the same section we also describe how to build circuits that perform matching
against regular expressions.

3.3 Hardware-development methodology summary

Fig. 3.1 summarizes the flow the translator enables, from high-level specifica-
tions down to runnable FPGA application, as exemplified in the previous section.

We want to stress that just because we are working in HOL does not mean
that our approach is an instance of high-level synthesis (HLS). As can be seen
in the example from the previous section, the input and output languages are
at the same (relatively low) abstraction level. Even when writing HOL circuits,
we are still thinking in terms of hardware: we are thinking in terms of clock
cycles and logical gates. From one perspective, a HOL circuit is just another
HOL function (in other words, a functional program), expressed in a restricted
subset. This perspective is what enables using HOL circuits for reasoning. But
from another perspective, we have a circuit in almost Verilog, that can be turned
to actual Verilog by our proof-producing translator.

56

(1) Circuit specification

Manual correspondence proof
(in HOL)

(2) Circuit as HOL function

Automatic proof-producing
translation (in HOL)

(3) Circuit as Verilog AST in HOL
Automatic pretty-printing
(simple SML function)

(4) Circuit as Verilog text file

Verilog compilation/synthesis
(using an external toolchain)

(5) Circuit bitstream for specific FPGA

Figure 3.1. An overview of our hardware-development methodology. For non-
trivial circuits, human-guided proofs are needed for the connection between lay-
ers 1 and 2, whereas the other steps are always automatic. The correspondences
above the dotted line are proved functionally correct, and the correspondences
below the dotted line are not covered by our formal development. The main
focus of this paper is the translator connecting layers 2 and 3.

3.4 Overview

The following sections provide more technical detail: We will first describe
the subset of Verilog we target and its semantics (Sec. 3.5), followed by the
internals of the translator (Sec. 3.6). We then explain how we have applied
our methodology in two case studies (Sec. 3.7). Lastly, we discuss related work
(Sec. 3.8) and consider trusted-base issues (Sec. 3.9).

3.5 Verilog

In this section we describe the syntax and formal semantics of the subset
of Verilog targeted by the translator. Verilog is a large language; the current
standard [48] is more than 1300 pages long. But many parts of the standard
are irrelevant for describing hardware: these, nonsynthesizable, parts of the
standard include, e.g., concepts used to express test benches and other testing

57

infrastructure. We have not included all synthesizable constructs in our formal-
ization; rather, the subset we target consists of synthesizable constructs needed
in synthesizable behavioral process-based Verilog programs. Our aim is that
this subset should be large enough to describe simple synchronous hardware.
The subset has already been sufficient for the case studies we present in Sec. 3.7.

Our Verilog formalization is based on the standard’s event-driven simulation
semantics, which the standard defines in informal English prose. Two criteria
have guided our formalization work. First and foremost, we wanted a sound
semantics, in the sense that the functional correctness of a circuit in our seman-
tics implies functional correctness with respect to the standard. Furthermore,
it has been important to us that our semantics is usable for reasoning inside
an ITP. We have addressed both of these concerns by keeping the semantics
intentionally small and have tried to only include well-understood constructs.

3.5.1 Abstraction level (Verilog as an output language)

Verilog is the exit representation used in our hardware methodology, meaning
that Verilog is the communication medium used for interaction with external
synthesis pipelines.

We target behavioral process-based Verilog, with concepts such as integer
addition and multiplication available as primitive notions. We chose this level
because it is important to not work at a too-low level of abstraction when using
Verilog as the input language for synthesis tools.

It is all too easy to fall into the trap of thinking that “real” hardware consists
of “the standard gates”, such as ANDs, XORs, and flip flops, and consequently
that this should be our target representation. This is incorrect, as what real
hardware consists of is a technology-dependent question. In the case of FPGAs,
real hardware consists of LUTs, DSP blocks, BRAMs, etc., rather than some
homogeneous collection of gates. For example, if we compile away the notion
of addition by compiling to ANDs, XORs, etc. before handing off our circuits
to a synthesis pipeline, the pipeline might fail to exploit special-purpose hard-
ware constructs available for efficient addition computations (as noted by e.g.
Beyer et al. [10]).

3.5.2 Subset of Verilog included

We will now discuss the Verilog constructs included in our semantics and how
they relate to the standard. Fig. 3.2 gives an overview of the constructs included.

Programs. In Verilog, programs consist of hierarchically connected mod-
ules. Each module has a set of input and output ports, which are used to connect
the different modules together. Common top-level constructs inside a module

58

v = bool | [v]
op = +|x|<|&]>>] ...
e u= v literal constant
| =z variable reference
| elel indexing
| eln:m] slicing, for n,m € N
| e unary not
| eope binary operator
| e?e:e ternary if
s u= 5;8 sequential sequencing
| ifethenselses if-statement
| caseele: s]endcase case-statement
| e=e blocking assignment
| e<=e nonblocking assignment
p == [always_ff @ (posedge clk) s]

Figure 3.2. Verilog values v, expressions e, statements s, and programs p. Vari-
able declarations are not included in the figure.

beyond other instantiated modules include data declarations, procedural blocks
and continuous assignments.

In our formalization, to restrict the scope of the initial version of our project,
we consider a flattened module hierarchy (i.e., a program consists of a single
module). This can be understood as saying that we do not (formally) consider
code used to “glue” modules together. (Meredith et al. [73] take the same
approach in their Verilog semantics in the K framework; see the discussion in
Sec. 3.8.) We did not find an immediate use for continuous assignments in our
case studies as they did not include three-state buses and as all combinational
logic could be placed inside procedural blocks, so we did not include such
assignments in the formalization. As we are only interested in single-clock-
domain synchronous hardware, all procedural blocks in our formalization
are always_ff blocks waiting for a positive edge (posedge) from a program-
common clock. Consequently, a Verilog program p (Fig. 3.2) in our formalization
consists of a data-declarations section and a list of always_ff blocks. We use
the terms process and procedural block synonymously throughout.

Statements and expressions. In our formalization, statements s and ex-
pressions e (both in Fig. 3.2), the syntactical elements inside procedural blocks,
consist, beyond nonblocking assignments, mostly of standard imperative-language
constructs. The state update of a nonblocking assignment is not visible until the
next clock cycle, and such assignments are used for communication between
processes.

We only allow pure expressions, because the standard does not enforce an

59

evaluation order, and we want our generated Verilog programs to be portable
between Verilog toolchains. This means, e.g., that our expressions cannot con-
tain assignments.

Variables and nets. In Verilog, there are two kinds of data objects, namely:
variables and nets. Variables are included in our formalization as they are
used for holding temporary values (in other words, wiring subcircuits) and
describing registers capable of holding state between cycles. (Whether a variable
corresponds to a register is up to the synthesizer in use to decide, i.e., nothing
we have to concern ourselves with on our abstraction level [73].) Nets, however,
are mainly useful for handling cases where there are multiple (continuous)
drivers, which we are not interested in.

Values. Values v (Fig. 3.2) in our formalization consist of Booleans and
nestable (balanced) arrays.

Boolean values. Verilog Booleans can take on four values: 0, 1, X, and Z.
However, we can still use standard Booleans in our formalization. We do not
include Z as a possible Boolean value because it is only used for nets (with
multiple drivers), and nets are not covered in our formalization. The value X
represents an unknown value. Such a value might be useful in simulation-based
testing, but for proving we do not need an explicit representation of “unknown”,
because inside ITPs we already have access to such concepts directly in the
logic. For example, if we want to prove that a circuit is correct regardless of the
initial value of some particular Boolean variable (as we did in the example in
Sec. 3.2), we simply quantify our theorem statement over all possible Boolean
values for that variable.

Array values. We support packed arrays, both 1-dimensional and nested
variants, in our formalization. Arrays are indexed as if all levels were declared
as logic[msb:Isb] arr with msb > 0 and Isb = 0. The formalization in-
cludes modulo-arithmetic operations over 1-dimensional arrays. Arrays are
represented as nested HOL lists in our formalization.

Array resizings. Verilog is well-known for its many idiosyncrasies. We
have tried to the extent possible to avoid including any obscure or complex con-
structs in our formalization, to minimize the risk of formalization bugs caused
by us misunderstanding the Verilog standard. But for Verilog’s idiosyncratic
handling of array resizings and signed numbers, one is not left with much
choice, as these concepts are implicitly part of every Verilog expression.

In particular, some Verilog expressions are context-determined, both with
respect to size and signedness. The size and signedness of a context-determined
expression are not decided just by the subexpressions of the expression but
also by the context the expression is part of. For example, for three Verilog
arrays a, b, and c, where a and b are of length 16 and c of length 32, the

60

addition in the expression ¢ = a + b will be a 32-bit addition as c is considered
part of the context of the addition. To limit the amount of context taken into
consideration by context-determined expressions, one can nest expressions
inside the concatenation operator, whose operands are self-determined: e.g., ¢
= { a + b } expresses a 16-bit addition. As for signedness, i.e. (here) if a and
b are zero-extended or sign-extended, c is not considered part of the context
even in the concatenation-less expression. That is, if a and b are signed, then
they will be sign-extended, regardless of the signedness of c. But if one of a
and b is unsigned and the other signed, then both will be zero-extended.

Not only are context-determined expressions an obstacle to overcome when
formalizing the language, they also make up an obstacle when translating
to Verilog from strongly typed languages with explicit resizing annotations,
such as the subset of HOL we are using to describe circuits. Such resizing
annotations cannot blindly be removed in translation, as Verilog’s implicit
resizings semantics do not necessarily result in the same kinds of resizings.
Fortunately, explicit resizing annotations are also available in Verilog. In our
formalization all resizing operations are explicit, so we can translate explicit
resize operations to explicit resize operations in our translator.

This should be sound for Verilog programs produced by the translator but
is not entirely satisfactory. A better approach would be to also formulate the
implicit-resizing rules, so that the translator could have proved that no such
implicit resizings occur in its translated expressions (i.e., even in the presence
of the implicit-resizing rules, the translation is still correct). (Furthermore,
the translator could have also removed explicit resize operations where the
implicit-resize rules already imply the resizing, making the output code a little
cleaner.)

Signed and unsigned operations. Signedness matters not only for resiz-
ings, i.e. to decide whether to do zero-extension or sign-extension, but also for
operations such as arithmetical shifts, less-than comparisons, and similar com-
parison operators. For example, whether a < b is a signed or unsigned less-than
operation in Verilog depends on whether a and b are both signed or not (and
more generally, the signedness of various elements in the context the operation
occurs in). We do not formalize these signedness rules directly but instead keep
all variables and expressions unsigned (so that we can ignore all signedness
rules) and only convert to signed values (and then directly back to unsigned
values) temporarily when needed using explicit sign casting. For example, to
make sure to get a signed less-than operation one can write { $signed(a) <
$signed(b) } where the single-element concatenation operation again limits
the context considered. Concretely, this means that in the formalization there
are two different (e.g.) less-than operands, one for signed less-than and one

61

for unsigned less-than, and in pretty-printing sign casts are introduced for the
signed variant.

Types. We have not formalized Verilog’s static type system. Instead, type
errors are checked at runtime in our formalization.

3.5.3 Formal semantics

Our formal semantics is a clocked functional operational semantics in three
layers. The two first layers consist of an evaluation function erun for expressions
and an evaluation function prun for stepping a process one clock cycle. Stepping
processes one clock cycle always terminates in finite time, so there is no need for
clocks in these layers. The third layer consist of a clocked evaluation function
mrun (for “module run”) that steps a program forward a specified number
of clock cycles, by stepping every process in the program once per cycle by
calling the prun function. Runtime errors are handled by returning a sum value,
indicating either failure, Inl, or success, Inr. If an error occurs in a process, then
the entire program execution is aborted (by returning failure).

Most concepts on the expression and statement level, such as array indexing,
if-statements, and case-statements, are formalized in a straightforward manner.
For example, in relational style, because it is easier to show part of the semantics
in this way, if-statements follow the obvious rules:

erun fext s ¢ = Inl err

prun fext s (IfElse ¢ pt pf) = Inl err’

erun fext s ¢ = Inr (VArray a)

prun fext s (IfElse ¢ pt pf) = Inl TypeError’

erun fext s ¢ = Inr (VBool T) prun fext s pt = s’

)

prun fext s (IfElse ¢ pt pf) = s

erun fext s ¢ = Inr (VBool F) prun fext s pf = s

prun fext s (IfElse ¢ pt pf) = s

Here, the parameter s represents the current circuit state, and we recognize
fext from the example from Sec. 3.2, allowing modeling of circuit-external
behavior, such as e.g. memory modules or nondeterministic input sources. In
the expression-level and statement-level Verilog semantics, fext is a function
from variable names (strings) to Verilog values, as time is handled on the module
level, as will be illustrated. The semantic rule for reading external inputs is

62

straightforward as well:

fext var = res

erun fext s (InputVar var) = res

We will now focus on the most interesting parts of the formalization, namely,
how concurrency is handled, how the Verilog event queue is modeled, and how
blocking and nonblocking assignments interact with the event queue.

At the module level, a Verilog program is a list of processes, with an as-
sociation list I' assigning values to variables. During execution of a cycle, all
nonblocking assignments are stored in another association list A (of the same
type as I') used as a queue. The semantics is defined in monadic style in the
actual development, but here we present functions (that we have proved equal
to the original functions) with the monadic combinators unrolled for clarity. A
function

mstep fext [| s < Inr s
mstep fext (p:ps) s £ case prun feat s p of
Inle = Inle
| Inr s’ = mstep fext ps s’

steps all processes in a given list one clock cycle starting in state s. Another
function

mstep_commit fext ps I' = case mstep fext ps (I',[]) of
Inle = Inle
| Inr (F/,A/) = Inr (A/ 4 F/)

constructs a new initial state for a new cycle (with an empty nonblocking-writes
queue), executes all given processes, and, lastly, “commits” all of the queued
nonblocking writes by appending them to the program variables. The top-level
function

def

mrun fext ps I' 0 = Inr I’
mrun fext ps I' (Suc n) £ case mrun feat ps I' n of
Inle = Inle
| Inr I = mstep_commit (fext n) ps I’

allows for stepping a collection of processes, that is, a program, a specified
number of cycles.

Note that mrun runs processes in the order they occur in its input list ps. In
Verilog, processes are executed concurrently in an interleaved and nondeter-
ministic manner. But we are only interested in processes that do not “interfere”

63

with each other, so program execution can be modeled faithfully without con-
sidering nondeterministic interleavings. If we let vwrites denote the variables
written to blockingly by a process, vnwrites denote the variables written to
nonblockingly by a process, vreads denote the variables read by a process, and
disjoint denote that two sets are disjoint (i.e., disjoint s ¢t = s N ¢ = 0)), then we
can formalize noninterference as follows:

valid_program ps o

Vij.
0<int<lengthps ANO<jAjJ<lengthps Ai#j=
letp = elips; g = eljpsin
disjoint (vreads p) (vwrites ¢) A

disjoint (vnwrites P U vwrites p) (vwrites q U vnwrites q).

The definition makes sure that processes only communicate through nonblock-
ing assignments. As nonblocking assignments do not propagate during cycle
execution, the order of execution among processes does not matter — and
Verilog’s event-driven semantics collapses into what we have above — which
simplifies matters significantly, as the semantics can stay deterministic. As
valid_program is purely syntactical, satisfaction can be checked by evaluation
inside HOL.

As for the expression-level and statement-level semantics, the only construct
that interacts with the queue of nonblocking writes is in fact nonblocking
assignments; meaning that reads are always based on I'. The semantics of
(successful) blocking (=) and nonblocking assignments (<=) for, e.g., Boolean
variables are given by the following rules:

erun fext (I, A)e=1Inrv (x,0") €T same_shape v v’
prun fext (I'; A) (x =€) = Inr ((z,v):: T, A)

i

erun fext (I, A)e=Inrv (x,0") €T same_shape v v’
prun fext (I'; A) (z <=e) =Inr (I', (z,v)::A)

Two points are worth making here. Firstly, we make sure that the assigned
variable’s type does not change by ensuring that the value shape is the same
before and after (using same_shape), rather than utilizing a separate static type
system. Secondly, assignment rules for arrays (not shown here) are similar, but
more complex. For arrays, one has to support writes to part of an array (e.g.,
a[5] <= a[3]), but such generalizations are straightforward. Conceptually,
such writes only update part of the array written to, but, for simplicity, in our
semantics we store the entire updated array in the queue of nonblocking writes.

64

3.5.4 Validation

To validate our reading of the Verilog standard we have compared the result of
running 30 small handwritten expression-level examples (available in the source-
code repository) in our semantics to simulating them using Icarus Verilog (10.2),
Xilinx Vivado Design Suite (2018.2), and Verilator (3.926). The examples exercise
a subset of the operators supported by the semantics and include array resizings
and computations involving signed numbers. We focused on the expression
level, rather than the statement level, as we in particular wanted to validate
that our current handling of resizings and signed numbers works at least for
small expressions. The arrays the examples operate over are all of short length
(3-5 elements), meaning that testing all possible inputs was feasible. We did not
find any discrepancies between our semantics and the three simulators. (When
experimenting, we did, however, find bugs in Icarus Verilog related to resizing
and sign handling. The bugs were resolved immediately by the maintainers.)

Another source of validation, which exercises also the statement-level
semantics, is that our case studies (Sec. 3.7) worked as expected.

3.6 The translator

For any formal hardware-development methodology, it is important to consider
how circuits are modeled in the prover:

1. Are the circuits shallowly embedded? In other words: are circuits just
normal logic functions that ought to be understood as circuits?

2. Or are the circuits deeply embedded? In other words: is the syntax of
circuits explicitly modeled and a separate evaluation function/relation
gives them their meanings?

Reasoning about shallow embeddings is significantly simpler than reasoning
about deep embeddings. However, deep embeddings offer a far more clear
correspondence between the embeddings and the entity being modeled than
shallow embeddings do.

Our proof-producing translator allows users to do reasoning in a shallow
embedding and yet have the benefit of the deep embedding (i.e., a clear corre-
spondence to the target representation) since properties proved of the shallow
embedding can effortlessly be transported to the deep embedding.

3.6.1 Inputlanguage

The input language of the translator should be thought of as a hardware de-
scription language in the same sense as Verilog is a hardware description

65

language. More precisely, the input language should be thought of as a lan-
guage describing Verilog programs, which in turn describe hardware. When
a programmer writes their HOL circuits (that is, HOL functions), they should
have in mind what the translator’s Verilog output will look like and what in
turn those Verilog constructs mean in terms of hardware. In this sense, we are
doing Verilog development.

We decided to use standard HOL words (bit vectors) and Booleans for the
input language rather than some custom data types modeling the Verilog data
types in a more direct fashion because using standard data types allows us to
reuse theories and proof tools from the HOL standard library when proving
circuits correct. For example, there are prebuilt tools for bit-blasting HOL words
for using SAT solvers to find HOL proofs.

3.6.2 Implementation overview

As the translator is proof-producing, to trust the output of the translator we only
need to trust the correctness of our Verilog formalization (that is, that it correctly
captures the standard document) rather than the translator implementation
itself; an implementation bug in the translator can at most result in the translator
failing to produce a translation-correctness proof.

As shown in the example in Sec. 3.2, the translator takes input in the form
of a circuit represented as a next-state function consisting of smaller next-
state functions. The translator translates the top-level circuit function into a
Verilog program, with one process per inner next-state function. In cases where
processes communicate, the translator introduces nonblocking assignments.

The translator implementation is split into two passes. A first, proof-producing
pass that operates on one function at a time turns each function into a Verilog
process, where all assignments are blocking. A second, verified pass replaces
blocking assignments with nonblocking assignments where needed and com-
bines the processes produced by the first pass into a single complete Verilog
program.

3.6.3 Pass one: process translation

The first pass is a proof-producing SML function, operating through the HOL4
APL To exemplify, the first pass turns the A function from the example from
Sec. 3.2 into:
always_ff @ (posedge clk)
if (pulse) count = count + 8'd1;
Note that the assignment is not yet nonblocking, as introducing such assign-
ments is the responsibility of the second pass.

66

The first pass operates on one function at a time. Each input function is
turned into a process (except the top function, which is AB in the example of
Sec. 3.2). There is no need to support auxiliary helper functions since all helper
functions can be inlined by rewriting rules in HOL before translation.

The translator constructs its proofs using relations between various HOL
(shallow) and Verilog (deep) entities. The translator defines relS to relate the
input circuit’s state record with Verilog states. Similarly, relS_fextv relates the
external-state representations. These relations are used to define EvalS, which
is central to the proof automation. We define EvalS fext s I' s' vp to say that,
if states s and I" are related, then execution of Verilog program wvp results in
some Verilog state I that is related to new shallow state s’:

def

EvalS fext s I' s' vp =

VY fextv A.
relS s I' A relS_fextv fextv fext =
ar A,
prun fextv (I',A) vp = Inr (I, A”) A
relS s’ I".

We write EvalS fext s I' (f s) vp to state that Verilog program vp is related to
HOL function f.

Internally, the first pass, following the Verilog process semantics, is sepa-
rated into two layers: one layer for expressions and one layer for statements. For
the expression level, there is an EvalS-like Eval relation, used to state translation
correctness on the expression level:

Eval fext s ' P e &
VY fextv A.
relS s I' A relS_fextv fextv fert =
Jv. erun fextv (I',A) e =Inrv A P v.

In our semantics, evaluating an expression never changes the program state;
evaluation simply results in some Verilog value. Because of this, the Eval predi-
cate is parameterized by a postcondition predicate P that can be instantiated to
various predicates stating what an expression should evaluate to. The translator
uses the predicates BOOL, WORD, and WORD_ARRAY for expressing translation
correspondences between Booleans, words, and functions from words to words
(representing arrays), respectively. For example, the definition of BOOL is sim-
ply that the corresponding HOL Boolean should be wrapped in the Verilog

67

semantics’ Boolean constructor:

def

BOOL b v = v = VBool b.

To make things more concrete, consider the expression translator (which
produces Eval theorems) and consider the simple HOL expression 1w & 2w.
For this input, the translator responds with

F Eval fext s I' (WORD (lw @ 2w))
(ABOp (Const (w2ver 1w)) BitwiseXor (Const (w2ver 2w))),

where (ABOp ...) is the resulting Verilog code as represented in the inter-
nal AST. To produce the above theorem, the translator utilizes the preproved
theorem

F Eval fext s I' (WORD wy) v1 A
Eval fext s I' (WORD wz) vg =
Eval fext s I' (WORD (w; @ ws)) (ABOp vy BitwiseXor v3).

To discharge the antecedent of the theorem, the translator recursively calls
itself with the operands of the input expression. These recursive calls can be
resolved directly as translating literals is a base case in the translator’s recursive
algorithm; so, the calls will return the needed Eval theorems directly.

This kind of syntax-directed divide-and-conquer approach is the main
mechanism behind the entire translation process. The algorithm has access to
a repertoire of similar preproved theorems and can use them to translate other
operations, such as arithmetic operations and array indexing. The same kind of
decomposition is possible on the statement level, for, e.g., if-statements, where
the following theorem is used for translations:

F Eval fext s I' (BOOL C) Ce A EvalS fext s I' L Lv A
EvalS fext s I' R Rv =
EvalS fext s I' (if C then L else R) (IfElse Ce Lv Rv).

For if-statements, the statement-level algorithm calls the expression-level algo-
rithm to discharge the Eval part of the antecedent and recursively call itself to
discharge the two EvalS parts in the antecedent.

Not all constructs can be translated by specializing preproved theorems.
Some constructs, such as case-expressions, need special, but ultimately straight-
forward and uninteresting, machinery for their translation. We leave out most
of such details here but make a few remarks in what follows.

One construct that needs special translation treatment is variables. Be-

68

cause our input is shallowly embedded circuits, some hardware concepts must
be modeled indirectly. Temporary local immutable variables are modeled na-
tively as let-expressions, but imperative concepts, such as state between clock
cycles and local mutable variables, are modeled indirectly through HOL state-
record fields. Both types of variables (let-expressions variables and state-record
fields) are translated to standard (mutable) variables in Verilog. For example,
the HOL function

def

Rs=lets = swith{a := lw; b := 2w);

s = s’ witha = s'.a+ lw;
tmp = lw
in case s”.c of
Ow = s" withc := tmp
| v = §" withc := Ow

produces the following output when used as an input circuit:

always_ff @ (posedge clk)
b =8'd2; a =8'dl;
a=a+ 8'dl; tmp = 8'd1;
case c

8'do : c = tmp;

default : ¢ = 8'do;
endcase

In the example we see that let-expressions are used both for binding inter-
mediate states and local (immutable) variables. Both types of let-expressions
are, unsurprisingly, translated by divide and conquer. For let-expressions used
for binding intermediate state, input functions are only allowed to refer to the
most recent “state variable” (in R first s, then s’, and then s”’), which makes
translating such let-expressions straightforward. Let-expressions used to intro-
duce local variables require more work. When an unknown variable is reached
during translation, the output EvalS and Eval theorems will be weakened by
preconditions on their environment I" constraining it to include the encoun-
tered variable. The constructed Verilog code and the generated precondition
are coupled using a free HOL variable, and when the recursion, on its way
up, reaches the relevant let-binding site, the precondition can be weakened
to only require that the variable in question has the correct shape. The shape
precondition is required for the blocking assignment the matching let-binding
site introduces to not fail with a (runtime) type error. The shape precondition
is then propagated to the top because we need to keep track of which variables
to declare at the top level in the generated Verilog program.

Furthermore, in the same example we see that the translator supports nested

69

record updates. Some care must be taken when translating such expressions,
consider eg. (a := Ow; b := s.a)and (b := s.a; a = Ow),
where s is the current state record: in HOL the expressions are equivalent,
but if refined naively into Verilog as sequential mutable variable updates they
are no longer equivalent. This is an important point, as for an expression to
be translatable, its syntax must allow a dual reading in which the HOL and
Verilog semantics coincide.

Lastly, we have yet to discuss multidimensional arrays. Such arrays are
represented as functions from words to words in the input language. The current
machinery for multidimensional arrays is simple and quite limited and only
supports arrays up to three dimensions.

Returning to the input-language discussion, the function R above is fairly
representative of what kind of functions are accepted as input by the translator.
That is, functions consisting of nested let-expressions, in turn consisting of
operations that fairly directly, in a syntactical sense but not necessarily seman-
tical sense, map to our subset of Verilog. Of course, larger functions than R,
with more nesting, can be translated.

The translation approach taken here is inspired by Myreen and Owens’
HOL-to-CakeML proof-producing code generator [79]. Translating from HOL
to Verilog is both easier and more difficult. It is easier, at least in our case,
because we accept a smaller and more specialized subset of HOL as input, and
it is more difficult because the distance between HOL and Verilog is larger than
the distance between HOL and CakeML.

3.6.4 Pass two: full program translation

The second pass takes EvalS theorems produced by the first pass and composes
them into a theorem for a whole Verilog program. In terms of the example from
Sec. 3.2, the first pass produces two EvalS theorems, one for A and one for B, and
the second pass takes them as input and produces a correspondence theorem
for the whole circuit AB.

The second pass is verified instead of proof-producing, and it consists of
a HOL function intro_cvars and associated proof infrastructure. The function
operates over Verilog syntax and takes a user-provided list of “communication
variables” (in the Sec. 3.2 example, just count) and replaces all assignments to
these variables with nonblocking assignments. The proof infrastructure helps
to build a whole-program correspondence theorem out of the process theorems
produced by the first pass.

The second pass requires that processes do not read from communication
variables they have written to earlier in the same cycle. This style require-
ment should be seen as a strategy to shallowly embed nonblocking assign-

70

ments, as, process-locally, if a variable is not read after being written to, it
does not matter if the writes to it are blocking or nonblocking. More pre-
cisely, the style requirement ensures that intro_cvars is semantics preserving
in the sense that for any Verilog process p without nonblocking assignments,
prun fext (I'; A) p = Inr (I', A’) implies that there exist I, and A’ such
that prun fext (T, A) (intro_cvars ¢s p) = Inr (I, AL,), and (IV, A’) and
(T, AL,) only differ in that writes to communication variables c¢s have been
moved from I to A/ _.

The correspondence theorems for whole programs, the target output of
second pass, are in the same form as the process-level EvalS theorems. Namely,
state equivalence between a HOL state and a Verilog state is invariant under
stepping. The proof infrastructure available for intro_cvars in combination with
a small amount of circuit-specific boilerplate setup code can be used to combine
the collection of processes generated by the first pass into a single complete
Verilog program and generate a whole-program correspondence theorem if the
processes satisfy the above style requirement and the valid_program predicate.

3.7 Case studies

We present two case studies: a verified processor, built to be usable in verified-
stack constructions, and a method to construct verified regexp (regular expres-
sion) matchers.

3.7.1 Processor case study

As part of our paper on verified stacks [67] referred to in the introduction, we
showed how we have designed, verified, and synthesized a simple processor
using the hardware-development methodology that is elaborated in this paper.
The processor is capable of hosting programs compiled by the (verified) CakeML
compiler [25], including the compiler itself. One of the main results in the paper
is a theorem stating that running the compiler correctly compiles programs even
when running on top of the processor (down to the Verilog level). The processor
and CakeML compiler work that was required for this result is described in more
detail in our verified-stacks paper, but we briefly recapitulate some hardware-
relevant points here as the case study illustrates that the translator scales
beyond the small examples presented in the paper so far.

The processor implements a small custom RISC instruction-set architecture.
We designed the processor to be as simple as possible (it is, e.g., not pipelined)
but still capable enough to host compiled CakeML programs. For this case study
we targeted a PYNQ-Z1 board, using the board’s DRAM for data and instruction

71

memory. The processor has support for hardware accelerators and consists of
two processes: one for the processor itself and one for the hardware accelerator
currently in use. (We have yet to develop any hardware accelerator beyond a
placeholder integer-addition accelerator.) The processor’s external environment,
such as the DRAM module and an interrupt interface used for communicating
with the external world, is modeled by an fezt function. An earlier unverified
but translatable version of the processor consisted of three processes, where the
third process modeled a BRAM module used for data and instruction memory;
illustrating that BRAMs can also be modeled in the translator’s input language
(modulo a minor problem with packed vs. unpacked arrays).

Running the Verilog translator on the processor takes just a few seconds
(compiling everything from scratch, including the “preproved theorems” needed
by the translator, takes a few minutes). The output Verilog code is around
300 lines of code.

Using the Vivado toolchain, the synthesized processor can be clocked at
40 MHz. The processor loaded onto the FPGA board is capable of running
programs compiled by the CakeML compiler. In particular, as the compiler
can compile itself, we have been able to run the compiler itself on top of the
processor.

3.7.2 Regexp-matcher case study

Our second case study is a method to construct verified regexp matchers im-
plemented in Verilog. The method is based on an existing HOL tool! that can
compile regexps to DFAs represented as a simple driver function and (poten-
tially large) next-state tables. To enable this new hardware-producing flow,
we first translated the driver function to a circuit in HOL. The circuit is a
one-process program and has a serial interface that can receive one character
per clock cycle and one output bit indicating whether the string formed by the
characters seen so far is accepted or not. There is also a reset input bit to start
a new match. We then proved that the circuit accepts the same language as the
original DFA when they both follow the same next-state table.

To show that the flow works, we constructed a matcher implementation for
the simple regexp fo+bar. The regexp-to-DFA compiler tool is proof-producing,
and as our Verilog translator is proof-producing as well, running the flow,
we were able to compose the above manual circuit-correctness theorem and
the two generated correspondence theorems into a theorem stating that the
Verilog circuit accepts the same language as the initial regexp. Being able to
compose theorems from different developments in this way illustrates one of
the advantages of embedding circuits inside ITPs over relying on traditional

IThe tool is located in examples/formal-languages/regular in the HOL4 distribution

72

verification methods such as model checking. We also synthesized the Verilog
circuit with some glue code for a Basys 3 FPGA board connected to a keyboard,
and the circuit worked as expected. As only the table differs between different
regexp matchers, generating matchers for other regexps is straightforward. (Our
driver is register-based; for larger regexps, a BRAM-based driver would be more
appropriate. Such a driver would require another round of manual verification.)

3.8 Related work

Producing correct hardware with the help of an ITP has been addressed in many
ways. For example, two earlier verified-stack projects [3, 5] report synthesizing
for FPGAs: The pre-Verisoft PVS VAMP processor was specified in a custom-
built gate-level language which relied on an unverified pvs2hdl tool [10] for
translation to Verilog for synthesis, and a tool with similar functionality was
available for the Isabelle/HOL version of VAMP [104]. In contrast, the DeepSpec
Kami project [19] is based on the high-level HDL Bluespec and relies on the
usual unverified Bluespec toolchain for synthesis.

More generally, it seems that one common synthesis strategy is to do verified
or proof-producing compilation down to a “simple” or “low-level” language
(or simply start from such a language) that can “easily”, but without proof,
be translated to some mainstream low-level HDL, such as Verilog or VHDL,
and then feed this output to some external synthesis toolchain. For example
Iyoda [52], Pizani Flor et al. [87], and Braibant and Chlipala [15] follow this
approach. But also the opposite direction is possible; Hunt et al’s [45] tool
instead loads final-product Verilog programs into their ACL2 setup. In the
context of hardware security, tools capable of loading (subsets of) VHDL and
Verilog into Coq are available [12, 36]. The vital difference between our project
and earlier projects is that earlier projects have not provided proofs all the way
down to an explicitly stated Verilog/VHDL semantics.

As for Verilog-semantics work, the most complete Verilog formalization we
are aware of is Meredith et al’s rewriting-logic-based K-framework formaliza-
tion [73], later ported to Isabelle/HOL by Khan et al. [55]. Meredith et al. model
alarger subset of Verilog than we do, including e.g. continuous assignments and
nonsynthesizable concepts such as delayed statements. This requires a more
complete, and complicated, event-queue model and event-execution model. For
other previous Verilog-semantics work, see the related-work section of Zhu et
al. [115]. But whereas we have applied our Verilog semantics for verification
by utilizing it in our translator, by in turn having applied the translator by
extracting our case studies, missing from the mentioned and earlier Verilog
formalization initiatives are convincing applications, where the authors apply

73

their semantics in nontrivial circuit-verification work. For example, Khan et al.
prove that multiplication by two and left-shifting by one are equivalent in their
semantics and then note that “proving more general theorems about complex
designs would be extremely difficult”.

3.9 Discussion

We will now discuss the trusted computing base (TCB) of our hardware-
development methodology. To trust our methodology it is necessary to trust,
beyond the usual suspects, an external synthesis toolchain (to be used in the
final step of the methodology) and the soundness of our Verilog formalization.

Ideally, analogously to the situation in software development [59], our cir-
cuits would exit our ITP at the lowest possible level of abstraction. In hardware
development, what the lowest level is depends on what technology we are tar-
geting. For FPGAs, which we are interested in, the lowest level is at the level of
FPGA bitstreams. Targeting this level from our input level would require access
to a combination of proof-producing and verified tools for technology mapping,
placement and routing, etc. At the time of writing, no such toolchain exists.
There are multiple reasons for this; one of them being that the FPGA bitstream
formats rarely have publicly available documentation. Instead, for transporting
our Verilog circuits to FPGA bitstreams, our hardware-development methodol-
ogy relies on existing unverified tools.

Synthesis toolchain. Here, to trust a synthesis toolchain means trusting
it to compile our generated Verilog code to an FPGA bitstream in a semantics-
preserving manner with respect to Verilog’s simulation semantics. When relying
on external tools, some confidence in the correctness of the final bitstream can
be built by employing standard industrial techniques such as testing and formal
equivalence checking. Unfortunately, the evidence produced via testing and
equivalence checking is not connected to any formal semantics and can thus
not be properly connected to our proofs.

Verilog formalization. Also the communication channel between our ITP
developments and the external synthesis tools must be trusted. As Verilog is our
communication medium between these two parts, trusting our methodology
means trusting our reading and formalization of the Verilog standard.

An inherent risk with targeting a large standard-defined language like
Verilog without an official formal semantics is that it is impossible to prove
readings of such language standards correct. Consequently, when arguing for
our formalization’s correctness, we have to fall back on empirical methods,
such as testing our semantics against Verilog simulators and carrying out case
studies based on our methodology. An alternative means of validation, which we

74

have not pursued, would be to prove a correspondence between our semantics
and a semantics at the level of detail of Meredith et al’s semantics [73]. In
this approach, one would, e.g., show that the order of process execution does,
indeed, not matter for Verilog programs satisfying valid_program. This would
validate our semantics further, but would not address the question why the
more detailed (and therefore more complicated) semantics is correct.

3.10 Conclusion

We have constructed a proof-producing translation tool from HOL circuits to
Verilog circuits and, as a prerequisite for this, developed a formal semantics for
a subset of Verilog. The semantics is carefully written to faithfully model the
Verilog standard, while still being simple enough to use for reasoning. The latter
is important for our proof-producing translator, which must carry out automatic
reasoning to construct proofs guaranteeing that its translations are correct.
The translator enables a hardware-development flow where users develop
theorems and theories based on shallowly embedded HOL circuits that can
easily be transported to corresponding deeply embedded Verilog circuits.

Acknowledgments. We thank Carl-Johan Seger and Koen Claessen for help-

ful feedback. This work was partly supported by the Swedish Foundation for
Strategic Research.

75

76

CHAPTER 4
Lutsig: A Verified Verilog Compiler
for Verified Circuit Development

Andreas Loow

Abstract. We report on a new verified Verilog compiler called Lutsig. Lutsig
currently targets (a class of) FPGAs and is capable of producing technology-
mapped netlists for FPGAs. We have connected Lutsig to existing Verilog
development tools, and in this paper we show how Lutsig, as a consequence
of this connection, fits into a hardware-development methodology for verified
circuits in the HOL4 theorem prover. One important step in the methodol-
ogy is transporting properties proved at the behavioral Verilog level down to
technology-mapped netlists, and Lutsig is the component in the methodology
that enables such transportation.

Published at Conference on Certified Programs and Proofs (CPP), 2021

77

78

4.1 Introduction

We envision a future where hardware development can be carried out entirely
inside an interactive theorem prover (ITP). As a step towards this future, we
present a methodology for the development of correct hardware artifacts and
provide the tools needed for the methodology.

First, to motivate the methodology, we take a short detour into the software
world. In today’s formal-methods ecosystem for software development, we
find tools for the following development methodology: (i) prove a correctness
theorem about your program at the source level, (ii) use a verified compiler
to transform your program to machine code, and, lastly, (iii) transport the
source-level program-correctness theorem down to the generated machine
code by composing the source-level program-correctness theorem with the
compiler-correctness theorem. When carried out inside an ITP, the development
methodology is capable of producing artifacts with remarkably small trusted
computing bases (TCBs) [59]. For example, the verified CakeML compiler [100]
with its accompanying formal-methods tools hosts such a development method-
ology inside the ITP HOL4 [95]. To put trust in the correctness of software
produced inside an ITP according to the methodology, users need only to trust
the correctness specification used in the program-correctness theorem, that the
formalization of the target machine’s instruction set architecture (ISA) used to
model the behavior of the machine code accurately captures the actual behavior
of the target machine, and the ITP itself.

Returning back to the hardware world, we believe the above development
methodology is equally useful when applied to hardware as when applied to
software. When applied to the hardware, the methodology enables the produc-
tion of hardware artifacts with the same TCBs as the software TCBs outlined
above except that we will have to trust a formalization of a model of hard-
ware instead of a formalization of a target machine’s ISA (i.e., a model of a
target machine). In the hardware world, however, no toolchain for carrying out
hardware development entirely inside an ITP exist today. Instead, hardware
development must be carried out by connecting together multiple (unverified)
tools, resulting in a much larger TCB. Also, individual tools and intermediate
formalisms and languages need to be trusted.

In this paper, we describe a new compiler, called Lutsig, for the hardware de-
scription language (HDL) Verilog that we have verified using the ITP HOL4 [95].
The compiler targets technology-mapped netlists. As a result, for the first time,
the above development methodology can be carried out in the hardware world
down to technology-mapped netlists inside an ITP. This improves the state
of the art (Sec. 4.8) but does not (yet) allow us to carry out all of hardware

79

development inside an ITP as compilation steps following technology mapping
still have to be carried out outside HOL4 (Sec. 4.3). Specifically, we make the
following contributions:

« we develop and describe a verified compiler from a subset of Verilog, by
far the most widely used HDL today [23], down to netlists, and a hybrid
verified translation-validation-based technology mapper for (a class of)
FPGAs, together forming our compiler Lutsig;

« we connect the compiler to existing development tools for proving Verilog
circuits correct [68]; and

« we show that the compiler and the connected Verilog development tools
can host the above small-TCB development methodology - in particular,
we show how to map correctness theorems proved at the Verilog level
down to the technology-mapped-netlist level.

All source code and proofs are available at https://github.com/CakeML/
hardware.

4.2 Why existing approaches to hardware devel-

opment are insufficient

This section further motivates moving hardware development inside an ITP
by further outlining problems with today’s non-ITP methodologies. We again
focus on transporting theorems from the source level down to some target level.

One problem for non-ITP development methodologies we highlight is the
problem of individual correctness of the compilation tools used. But the main
problem for non-ITP development methodologies is that they do not provide a
way to avoid intermediate compilation steps ending up in the TCB.

Individual tool correctness. Of course, it is important that each tool in-
volved in the compilation is correct. Today’s unverified tools, however, contain
bugs [41]. This problem can to some extent be addressed in non-ITP method-
ologies by relying on translation validation [88] (or as it is known in the
hardware world, logical equivalence checking or formal equivalence checking).
A translation-validation tool for a compilation tool takes the input given to the
compilation tool and the output produced by the compilation tool and finds
an equivalence proof between the input and the output. This means that we
no longer need to trust the compilation tool to be correct. Instead, we only
need to trust the translation-validation tool (or its associated proof checker,

80

https://github.com/CakeML/hardware
https://github.com/CakeML/hardware

if such a checker is available). However, it is not enough that each individual
tool functions correctly when we want to transport a source-level correctness
theorem down to our target level; the tools and the correctness theorem must
also “fit together”, and this problem is not addressed by translation validation.
We consider this problem next.

Intermediate compilation steps in the TCB. When transporting correct-
ness theorems from the source level down to our target level, we will pass by
many different representations and tools on our way. For the transportation to
succeed, these tools and our correctness theorem must fit together — they must
be composable. In an ITP setting, if the transportation succeeds, then, when all
steps have been composed together, intermediate steps will have been removed
from the TCB. This is not the case in a non-ITP setting.

One composition problem we will face is that the prover we used to prove
the source-level correctness theorem we want to transport and the compilation
tools in use might (subtly) differ in how they interpret the HDL we have im-
plemented our circuit in. If we do not check our compositions mechanically,
which is not done in today’s methodologies, bugs stemming from composi-
tion problems might go unnoticed. This problem is particularly important in
hardware development, because today’s two most used HDLs, Verilog and
VHDL, are infamous for their gotchas and idiosyncrasies (for Verilog, see e.g.
Sutherland and Mills [98]). To address this, instead of checking compositions
mechanically, numerous attempts at designing new HDLs have resulted in a
small ecosystem of HDLs meant to replace or supplement Verilog and VHDL,
such as e.g. Lava [13], Bluespec [82], and Chisel [6] (see also Gammie [26]).
Using a well-designed language instead of Verilog and VHDL shrinks the TCB,
but the replacement language still contributes to the TCB. In other words,
replacing Verilog and VHDL improves the situation but does not resolve the
situation entirely. Moving hardware development inside an ITP, on the other
hand, completely eliminates the language used to express the source-level cir-
cuit from the TCB. As a result, from a TCB perspective, the choice of language
does not matter.

A similar composition problem occurs when composing tools together into a
compilation chain down to the abstraction level we are targeting. The tools must
communicate with each other, and if the languages used for communication
are interpreted differently by the tools there is a risk of bugs being introduced
in the compilation process. One can (also here) introduce new, supposedly
well-designed, languages for communication between tools to address this
problem. New such languages include LLHD [92] and FIRRTL [53]. Indeed, for
communication between tools, compared to Verilog and VHDL, (e.g.) “LLHD’s

81

simplicity offers a much smaller ‘surface for implementation errors’” [92]. In
contrast, moving hardware development inside an ITP renders communication-
language choice unimportant from a TCB perspective — the move eliminates the
“surface for implementation errors” completely. Again, improving the languages
involved can shrink the TCB but still leaves the languages in the TCB rather
than removing them from the TCB.

4.3 Compiler overview

This section gives an overview of Lutsig’s compilation passes and shows how
Lutsig fits into the ITP development methodology described in the introduction
of this paper.

Fig. 4.1 shows a compilation chain we have made Lutsig part of. The chain
goes from HOL circuits down to FPGA bitstreams. In this chain, the compilation
from HOL circuits (A) to Verilog circuits (B) is handled by the proof-producing
Verilog translator described in L66w and Myreen [68]. We chose to use this
translator because it was simple to connect to Lutsig because Lutsig’s Verilog
semantics is based on the Verilog semantics used by the translator. However,
we should keep in mind that this connection just illustrates one particular use
of Lutsig. Lutsig is not limited to using this particular translator as its front-
end; combining Lutsig with any front-end tool capable of somehow providing
HOLA4 correctness proofs for circuits implemented in terms of Lutsig’s Verilog
semantics gives us a toolchain for hosting the ITP development methodology
we are interested in here.!

Continuing down the compilation chain, regardless of front-end used, Lutsig
handles the compilation of Verilog circuits (B) down to technology-mapped
netlists (I). All steps between (B) and (I) are verified except the last step (i.e., (H)
to (I)), which is instead based on translation validation. The compilation steps
below the dotted line in Fig. 4.1 are carried out outside the formal development.
That is, we currently rely on (unverified) external Verilog-based tools to handle
the last stages of compilation; in particular placement and routing, but also
(among others) clocking and details such as encoding the compilation result as
an FPGA bitstream. Moving those stages of compilation into HOL4 is left as
future work since we expect an approach similar to the translation-validation
approach taken in the second part of Lutsig’s technology mapper (i.e., the step
from (H) to (I)) to be applicable for those compilation steps as well — we have,

10f course, Lutsig can also be used in combination with a Verilog front-end tool not capable
of providing HOL4 proofs - but the combination of such a tool with Lutsig does not give us a
solution to the problem of removing intermediate compilation steps out of the TCB as outlined in
Sec. 4.2. Nevertheless, if we simply want to use Lutsig as a trustworthy Verilog compiler without
transporting proofs, then a simple unverified Verilog parser would suffice as a front-end.

82

(A) HOL circuit

Proof-producing compilation

(B) Verilog circuit

Type checking and type annotation (Sec. 4.5.1)

(C) Type-annotated Verilog circuit

Preprocessing of case statements
and array lookups (Sec. 4.5.2)

(D) Preprocessed Verilog circuit

Netlist compilation (Sec. 4.5.3)
(E) Netlist

Remove registers never read
(F) Netlist

Determinize netlist (Sec. 4.5.4)

(G) Deterministic netlist

Technology mapping of high-level cells
and blasting (Sec. 4.6.1)

(H) Partly technology-mapped netlist

Translation-validation-based
technology mapping (Sec. 4.6.3)

(I) Fully technology-mapped netlist

Unverified Verilog pretty-printing

(J) Fully technology-mapped Verilog netlist

Unverified placement and routing

(K) FPGA bitstream

Figure 4.1. An overview of Lutsig’s compilation passes and illustration of how
Lutsig fits into circuit development.

83

however, not investigated this in detail yet. In terms of TCB, this means that
we are not yet fully independent of Verilog.

In Sec. 4.7, to show how the suggested compilation chain of Fig. 4.1 works
in practice, we present a case study following the setup. But first, we describe
the different components of Lutsig in the coming sections.

4.4 Source language and target language

As a first step towards describing the compiler, we describe the source language
and target language of the compiler.

The source language of Lutsig is a subset of Verilog. The Verilog semantics
used is based on earlier work on Verilog semantics by Lo6w and Myreen [68]. In
the earlier work, it was important that the Verilog semantics soundly captured
the Verilog standard [48]. For this paper, sound capture of the standard is not
important for circuit-correctness results, as the Verilog semantics is not part of
the TCB of circuits developed according to the development methodology we
follow. However, faithfulness to the standard is important in order to be able to
call the compiler a Verilog compiler.

The target language of Lutsig is a simple custom language for netlists
consisting of lookup tables (LUTs), cells for arithmetic hardware found in the
class of FPGAs we target, and registers. The same netlist language is used for
representing intermediate circuits during compilation; intermediate circuits are
expressed in terms of high-level cells that are later mapped to the final target
cell set.

4.4.1 Source language: Verilog

Lutsig supports the subset of Verilog described in Fig. 4.2. The syntax is animated
by a functional big-step operational semantics [83] designed with the aim of
being a sound simplification of the simulation semantics provided by the Verilog
standard [48]. The semantics is based on previous work [68], which should be
consulted for details on the semantics.? The syntax and semantics is, since this
paper, accompanied by a no-frills type system.

In Lutsig’s Verilog semantics, the top-level construct is a module module
[(v,t)] [d] [p] consisting of type declarations for inputs [(v, t)], variable decla-
rations [d], and processes [p]. The semantics of a module is given by a function
run fext fbits (Module exttys decls ps) n expressed in a sum monad where
errors are represented by Inl and success by Inr. On success, run returns an

2The same scope limitations as described in Lo6w and Myreen [68] still hold. In particular, we
do not consider Verilog’s implicit resizing of arrays (which would be simple but uninteresting to
support).

84

c == b|[b for Boolean b
t = logic| logic[n] forn € N
op u= &&|[|[=]+
e u= c literal constant
| v variable
| wlel array indexing
| —e unary not
| eope binary operator
s 1= 5;s sequencing
| ifethenselses if statement
| caseele: s]s?endcase case statement
| e=e blocking assignment
| e<=e nonblocking assignment
| e=X blocking X assignment
| e<=X nonblocking X assignment
d = tv=c
| tv=X
p == always_ff @(posedge clk) s
m == module [(v,?)] [d] [p]

Figure 4.2. Verilog values c, Verilog types t, expressions e, statements s, variable
declarations d, processes p, and modules m. The notation [z] denotes a list of
xs, and x?7 denotes an optional z.

environment with the variables in decls. In the semantics, nondeterminism is
modeled using the two functions fext and fbits and quantification in theorems
where the semantics is used; see Lutsig’s correctness theorem in Sec. 4.6.2
for an example. The function fext : N — string — error 4 value represents
the world outside the circuit and maps clock cycles to states of the external
world. The variables read from snapshots of the external world must be typed
according to ezttys. The function fbits : N — bool represents an infinite stream
of nondeterministic bits and is used to give semantics to nondeterministic con-
structs in the language (described below). Executing the semantics consists of
initializing all variables according to decls and then running the processes ps
for n clock cycles. The Verilog standard allows for processes to be interleaved
nondeterministically. In the compiler, we did not find a use for the additional op-
timization freedom such nondeterministic interleavings offer, and consequently,
a clock cycle in the semantics consists of executing processes sequentially in
declaration order.

Verilog processes consist of statements s and expressions e, and they in
turn mostly consist of the usual imperative-language constructs. We highlight
two constructs that stand out among the crowd of otherwise usual constructs.

85

The first construct we highlight is X assignments. In Lutsig’s Verilog semantics,
an assignment v = X overwrites the variable v with nondeterministic bits
from fbits. This semantics deviates from the standard, and the deviation is
motivated in Sec. 4.4.1. The second construct we highlight is nonblocking
assignments, written <=, which are used for communication between processes.
Blocking assignments, written =, have the usual imperative-language semantics.
To be able to express the semantics of nonblocking assignment, Lutsig’s Verilog
semantics has two separate environments I" and A that are used to keep track of
variables’ state during execution. Variable reads and blocking assignments only
interact with I'. Nonblocking assignments, on the other hand, do not update
I' directly but instead update A, which is merged into I' at the end of each
clock cycle, such that the updates in A become available in I" in the next clock
cycle. Informally, nonblocking writes do not interfere with the execution of
the current clock cycle and will instead only be made available to all processes
from the next clock cycle.

Simulation and synthesis semantics?

One of Verilog’s (many) idiosyncrasies that must be taken into consideration
when developing a compiler is that Verilog, in practice, is understood as having
two semantics: one simulation semantics and one synthesis semantics. The
most recent (System)Verilog standard [48] provides a simulation semantics for
Verilog (called scheduling semantics in the standard). However, the standard,
unfortunately, does not provide any synthesis semantics: That is, it does not
define which language constructs are synthesizable (a “synthesizable subset”
of the language) and how these synthesizable constructs should be synthe-
sized. Effectively, this leaves it up to each Verilog compiler to provide its own
synthesis semantics.

Before Verilog was merged into SystemVerilog, the (now superseded) Ver-
ilog standard [49]°® had an accompanying synthesis standard [105]. This synthe-
sis standard could be used as a starting point for a formal synthesis semantics.
However, recall the context set up in the introduction of this paper: We are
interested in building a compiler that allows us to transport theorems from the
Verilog level down to the netlist level. In this context, the problem is not finding
a starting point for the formalization of a synthesis semantics: Rather, we want
a single semantics used everywhere, because having theorems expressed in a
simulation semantics and a compiler proved semantics-preserving with respect
to a (separate) synthesis semantics opens up problems with composing said the-
orems with the compiler-correctness theorem. Similar composition problems

3Verilog 2005 [50] was published between Verilog 2001 and the merge of Verilog into SystemVer-
ilog, but Verilog 2005 is a minor update of Verilog 2001.

86

occur in informal settings. Indeed, Mills and Cummings [75] outline some “RTL
coding styles” (antipatterns) that yield simulation and synthesis mismatches.

To avoid mismatch problems and ensure simple composability of circuit-
correctness theorems with the compiler-correctness theorem, Lutsig takes
Verilog’s simulation semantics as its synthesis semantics, except for X values,
as described below. Consequently, the top-level correctness theorem for Lutsig
(Sec. 4.6.2) is stated in terms of Lutsig’s formalization of Verilog’s simulation
semantics.

X values

We make one important deviation from Verilog’s simulation semantics in Lut-
sig’s Verilog semantics. The deviation concerns Verilog’s (in)famous X values [74,
97, 103]. The simulation semantics for X values provided by the standard is not
a good fit for synthesis purposes; this section motivates our deviation from the
standard and provides our alternative X semantics. Lutsig’s determinization
pass, presented in Sec. 4.5.4, illustrates one example of an optimization enabled
by having an X value semantics fit for synthesis.

For background: In Verilog, a bit can take on four different values: 0, 1, X
and Z. The value Z is only relevant for constructs not supported by Lutsig (such
as nets with multiple drivers), so we do not consider it here. The values @ and 1
are the two standard bit values. What remains to be explained, then, is X. In the
Verilog standard [48, p. 83] the value is said to “represents an unknown logic
value” We now enumerate some aspects of the standard’s X value semantics
and then conclude that (some of) these aspects stand in the way for the “don’t
care” usage of X values commonly seen in synthesis.

One concern related to X values is how the standard logical operators should
be extended to handle X inputs (in other words, how to handle “X propagation”).
Some operators are extended in an intuitive way by the standard: For example,
for logical and && [48, pp. 265-266], we have that both 1’b@ && 1’bx and 1’bx
&& 1’b0 evaluate to 1’b0@, and e.g. 1’b1 && 1’bx and 1’bx && 1’bx both
evaluate to 1’ bx. Bitwise and & [48, p. 266] is extended similarly, and we have
that e.g. 3’b00x & 3’b100 evaluate to 3’b@00. Also, the conditional operator
is given an intuitive extension, e.g. 1’bx ? 4’b@1xx : 4’b00x1 evaluates to
4’ bOxxx.

Some other operators, however, are extended in less intuitive ways. For
example, addition is one example of an operator that can be considered too
“X-pessimistic” (a term used in discussions on X value semantics): “[I]f any
operand bit value is the unknown value x [...], then the entire result value shall
be x” [48, p. 261]. So, e.g., 3’b@00 + 3’b0O0Ox evaluates to 3’ bxxx. Similarly, for
a variable a, e.g. a * 0 does not necessarily evaluate to @, nor does a - a.

87

At the same time, other constructs in the language are seemingly too “X-
optimistic”. One example of such a construct is if statements. For example, after
executing the following code fragment, the (1-bit) variable a will always be 1’ b@:

if (1'bx)
a=1'bl;
else

a = 1'bo;

This is because the first branch is taken if and only if the condition expression
evaluates to “a nonzero known value” [48, p. 299]. Another too X-optimistic con-
struct is array assignments: An assignment to an array a such as e.g. a[3”bxxx]
= 1’b0 “shall perform no operation” according to the standard, because an
index containing Xs is considered invalid [48, pp. 148-149].

Another peculiarity with Verilog’s X semantics is illustrated by the equality
operators provided in the language. The operators do not keep track of when an
X value is compared with itself: None of Verilog’s equality operators provides
the intuitive semantics that comparing 1’bx with 1’bx is 1’bx, but comparing,
say, a 1-bit variable, a with itself is always 1’b1. Indeed, let a = 1’bx and
consider the following table [48, pp. 264-265]:

op 1’bxop1’bx aopa 1’b1op1’bx

== 1’ bx 1’ bx 1’ bx
=== 17b1 17b1 1bo
==? 1’b1 1’ b1 1’b1

The above semantics is not fit for synthesis purposes, since one important
usage of X values in synthesis is to signal “don’t care”. For example, if we assign
X to a variable, we signal to the compiler that we do not care about the value of
the variable in the situation it was assigned, and the compiler is free to assign
any value to the variable. This opens up optimization opportunities for the
compiler. However, clearly, this way of using X values is not compatible with
the simulation semantics outlined above. For example, recall the if statement
above with the condition 1’bx. If we replace the condition 1’bx with 1’b1,
then a will always be equal to 1’b1 after the if statement. That is, replacing X
values with concrete values can add behavior to programs!

To solve this problem and to get an easy-to-understand semantics, Lutsig’s
Verilog semantics deviates from the standard. In Lutsig’s semantics, bits can only
take on the two standard values @ and 1. This means that no special attention
needs to be given to how X values propagate through the operators supported
by Lutsig. X assignments are given meaning by interpreting them as sources of
nondeterminism: Formally, bits from fbits are used to overwrite the old left-
hand side. Other sources of X values are handled by aborting the execution: For

88

example array out-of-bounds accesses abort the execution instead of returning
X [48, pp. 148-149, p. 279].*

4.4.2 Target language: netlists

The syntax of Lutsig’s target netlist language is described in Fig. 4.3. Cells are
connected together with members of the cell_input type, called 7 in Fig. 4.3. A
“variable” in the context of cell inputs refers to the output of another cell,
a register, or a circuit input. The syntax is animated by a functional big-
step operational semantics that runs a provided circuit for n clock cycles:
circuit_run fext fbits (Circuit exttys regs nl) n. Execution starts by initializing
the registers regs, and for each clock cycle all cells n/ are executed in order and
registers with inputs are updated after all cells have been executed. The formal
semantics is a straightforward implementation of this evaluation scheme. For
example, executing all cells in order is done by folding (in the sum monad) with
the cell semantics function cell_run. For cell_run in turn, e.g. the semantics of
and cells with Booleans inputs is particularly simple:

def

cell_run fext s (Cell2 CAnd out iny ing) = do
iny < cell_input_run fext s ing;
ing < cell_input_run fext s ing;
iy < get_cbool iny;
g < get_cbool ing;
Inr (cset_var s (NetVar out) (CBool (iny A ins)))
od

The exact set of cells available for use in technology-mapped netlists de-
pends on which hardware technology is targeted. For this paper, we target
Xilinx 7 series FPGAs [1]. Lutsig’s technology-mapped output netlists for this
class of FPGAs contain only k-LUT (with £ < 6) and carry4 cells (and regis-
ters) — the other cells in the netlist language are only used for intermediate
compilation steps (and are consequently not part of the TCB).

We now describe the cells included in the netlist language. £-LUT cells are
k-bit input 1-bit output lookup tables that can be configured to implement any
Boolean function with the same number of input and output bits. The (maxi-
mum) value of k depends on the specific FPGA targeted. carry4 cells represents
the carry-chain logic available in the kind of FPGAs we target [107]°. Lutsig uti-

“We leave it up to future case studies to decide if this is a good design decision or not. In
retrospect, we could have followed the standard more closely here while at the same time avoiding
the problems outlined in this section by returning nondeterministic bits from out-of-bounds
accesses.

°In our formalization, we have merged the two inputs CYINIT and CI into one input.

89

c = b|[b] for Boolean b
t = logic|logic[n] forn e N
i = c literal constant
| v variable
| wlc] array indexing
cell == wv=ndet(t),v =not(i),v = and(ig, 1),
v = or(ig,41),v = equal(ig,i1),v = add(ip, 1),
v = mux(ig, i1,42),v = array_write(igp, n, 1),
v = k-LUT([4]), (vo,v1) = carry4(ig, [i], [])
d = tv=/¢i?)
| tov=(X1?)
cir = circuit [(v,t)] [d] [cell]

Figure 4.3. Netlist values c, types t, inputs 4, cells cell, register declarations d,
and circuits cir.

lizes carry4 cells to implement addition and wide equality checks (see Sec. 4.6).
The semantics of ndet(t) is that the cell nondeterministically (using fbits) gen-
erates a value of type t. The semantics of mux(ig, 1, 42) is that the cell outputs
i1 when i is true, otherwise io. The semantics of array_write(ig,n,i1) is
that the cell outputs the array input ¢¢ with element 7 replaced by the value of
input ¢;. The remaining cells have the obvious semantics.

4.5 Verilog-to-netlist compilation

In this section we describe, in order, the different compilation passes an in-
put Verilog program goes through when Lutsig transforms it into a not-yet-
technology-mapped netlist. Technology mapping is explained in the next sec-
tion.

We have composed the correctness theorems for the different passes to-
gether with the verified part of the technology mapper into a top-level correct-
ness theorem for Lutsig, and the theorem is presented in the next section (in
Sec. 4.6.2).

4.5.1 Type checking and type annotating

Compilation starts with a type-checking and type-annotation pass. The type
annotations are needed in subsequent preprocessing passes (Sec. 4.5.2), and the
main Verilog-to-netlist pass (Sec. 4.5.3) needs to know that the input Verilog
program is well-typed. The type checker typecheck takes an input Verilog pro-
gram, type checks and type annotates the program, and returns the annotated

90

program on success, otherwise signaling a type error.
The type checker is sound in the following sense:

F typecheck (Module exttys decls ps) =
Inr (Module exttys’ decls’ ps') =
exttys’ = exttys A decls’ = decls A
vertype_prog (K None) (Module ezttys’ decls’ ps') A
run fext fbits (Module exttys’ decls’ ps') n =
run fext fbits (Module exttys decls ps) n

That is, if the type checker terminates successfully, then ezttys and decls
are unchanged, the annotated program is well-typed and correctly annotated
(vertype_prog) in an empty typing environment (K None), and furthermore the
annotated program behaves in the same way as the input program.

4.5.2 Preprocessing

Before the main Verilog-to-netlist pass (Sec. 4.5.3), nonconstant-index array
lookups and case statements are compiled away by a series of Verilog-to-Verilog
preprocessing passes. We now outline these preprocessing passes.

Array lookups. The preprocessing passes for handling array reads and array
writes with nonconstant-index lookups both compile away such lookups by
replacing them with case statements built out of constant lookups only. Given
how similar the two passes are, we only cover the array-reads preprocessing
pass in this paper.

For an array a, e.g. a[1] is considered a lookup with a constant index,
whereas a[i + 1] where i is a variable is considered a lookup with a non-
constant index. All read lookups with nonconstant indices are preprocessed
away by the pass. As an example, say an array a has (Verilog) type logic[n,],
another array i has type logic[n;], and two variables b and ¢ have type logic,
then the preprocessing pass would transform the following code fragment

b = ali] & c;

into the following code fragment

case (i)

Q: tmpvar34 = a[0];
1: tmpvar34 = a[1];
2: tmpvar34 = a[2];
3: tmpvar34 = a[3];

91

n: tmpvar34 = alnl;
endcase

b = tmpvar34 & c;

where tmpvar34 is a fresh variable and n = min(n,, 2"). The index length n;
is retrieved from the annotation in the Verilog AST added by the type checker.
When the index is, like in the example, simply a variable, n; can easily be
recomputed by looking up the variable in the typing environment, but for
more involved expressions, like e.g. i + 1, (redoing part of) type inference
would be needed if the type checker did not add annotations. Lastly, note that
all remaining array-read lookups are in-bounds after the preprocessing pass
(which simplifies compilation to netlists further down in the compilation chain).

Case statements. Case statements, both those introduced by the array-
lookup preprocessing passes and those from the input program, are transformed
into series of if statements by a case statements preprocessing pass. We illustrate
the compilation scheme involved by the following example

case (i + 1)
8'b0000_0000: j
8'b0000_0001: j
default: j = 12;

endcase

1
[]

which would be transformed into
tmpvar66 = i + 1;

if (tmpvar66 == 8'b0000_0000)
j=0;

else if (tmpvar66 == 8'b0000_0001)
j=5;
else

=12

where tmpvar66 is a fresh variable.

The pass simplifies subsequent passes, because they do not have to take case
statements into consideration. But, clearly, the compilation scheme is highly
inefficient: We do not need two 8-bit-wide equality checks to differentiate
8’b0000_0000 from 8’ b0000_0001. We, however, leave it as future work to
implement a more efficient compilation scheme.

92

4.5.3 Verilog-to-netlist compilation

The Verilog-to-netlist pass in Lutsig is based on the unverified Verilog compiler
CSYN’s compilation algorithm [34]. We now outline some interesting aspects
of the compilation algorithm as implemented in Lutsig.

Compiling expressions. The two most important compilation functions
are compile_stmt and compile_exp, which compile Verilog statements and Ver-
ilog expressions. We explain compile_exp first. Grossly simplified, (part of) the
correctness theorem for compile_exp is:

F compile_exp s e = Inr (8',nl,inp) A
erun vfext venv e =Inr vo A ... =
Inenv’ nv.
sum_foldM (cell_run nfext) nenv nl = Inr nenv’ A
cell_input_run nfext nenv’ inp = Inr nv A

same_value vv nv

That is, the theorem states that after executing the generated netlist nl, the cell
input inp has the same value as the input expression e evaluates to.

The pass targets a set of high-level cells, and consequently most compila-
tion schemes for expressions are straightforward. For example, compiling an
addition expression is simply a matter of recursively invoking the expression
compiler twice and merging the results from the two resulting netlists with a
new addition cell CAdd:

compile_exp s (Arith e Plus 62) £ do
(s,nl1,inp,) < compile_exp s ey;
(s,nla,inpy) <— compile_exp s e;
(s,tmpvar) = fresh_tmpvar s;
newcell = Cell2 CAdd tmpvar inp; inpsy;
newvar = NetVar tmpuvar;
Inr (s,nly 4 nla 4 [newcell] Varinp newvar None))

od

Mapping the CAdd cell to cells actually available on FPGAs is the responsibility
of technology mapping (Sec. 4.6).

Compiling non-X assignments. We now explain some interesting parts of
compile_stmt, and we start with the compilation of non-X assignments. We first
remark that each variable in the input Verilog program is mapped to a register.
A separate postprocessing pass not detailed in this paper removes registers

93

never read, to avoid unnecessary registers. For each register, the compilation
algorithm needs to generate a net for its next-state function induced by the
input Verilog program. This is done by two stacks of maps oy, and oy, which
the compilation algorithm carries around as state. The stack structure mirrors
the block structure of the input program and is explained later in this paper
when the compilation of if statements is explained. The maps in each stack map
variable names (string) to cell inputs (cell_input option). A stack forms a map by
delegating lookups to the maps in the stack and letting maps on top shadow
maps below. If a variable is mapped by no map, the stack maps the variable to
the register allocated for it. During compilation, the stacks of maps are updated
as described below.

Blocking assignments update oy, and nonblocking assignments update oy
For a blocking assignment without indexing, the following compilation scheme,
where the cset_net call updates oy, (var) to inp, compiles the assignment:

compile_stmt s (BAssn (Nolndexing var) (Some ¢€)) = do
(s,nl,inp) < compile_exp s €;
Inr (s with bsi := cset_net s.bsi var inp,nl)

od

For blocking assignments with indexing, the compilation scheme is similar
except that we also need to generate an array_write cell. Generating the
array_write cell is simple because after the preprocessing passes (Sec. 4.5.2)
have been run, all array indices are in-bound constants.

The compilation schemes for nonblocking assignments are identical, except
that oy, is updated instead of oy,

Compiling a variable read boils down to a lookup in oy, i.e., the contents of
o does not matter for reads:

compile_exp s (Var var) < Inr (,[].cget_net s.bsi var)

The contents of o,,, become relevant at the end of compilation, similarly
to how the contents of A becomes relevant at the end of each clock cycle in
Lutsig’s Verilog semantics. Informally, oy, tracks I" and oy, tracks A, and as
the contents of A override the contents of I' at the end of each clock cycle,
an initially reasonable-looking compilation approach is to let oy, override oy,
in the cell input generation for each variable’s register in the sense that oy,
decides the cell input if it contains an entry for the variable, otherwise oy, is
used as a fallback. This idea works for simple programs such as

module // ...
always_ff @(posedge clk) begin

94

a<=#0; a=1;

b=1; b<=09;
end
endmodule

where according to Verilog’s simulation semantics both a and b should be @
at the end of each clock cycle (as nonblocking assignments always shadow
blocking ones). Before we can present an example program that is miscompiled
by the suggested compilation scheme, we must explain how if statements are
compiled.

Compiling if statements. If statements if (c) then st else sf are
compiled into muxes in the following way: The expression c is compiled by
compile_exp such that we get a cell input inp. and a netlist nl. for the expression,
and st and sf are compiled by recursively calling compile_stmt in accordance
with the following pseudocode (ignoring other state components beyond oy,
and o, and denoting maps in the two stacks by sigmas as well):

compile_stmt (o, :: Oy, 0¢ :: Oyp) St =

(o8t on, 055 1t Onp, Nlst),

compile_stmt (0, :: Oy, 0¢ 11 Oyp) ST =

(o5F 2 on, 08F 2 o, nlsr)
where o, is an empty map. To update oy, for each variable var in either o3® or
aﬁf, create a new cell

mux(inpe, (o3 = op) (var), (o5F :: o) (var))
and add a mapping to o}, from var to the new mux. Lastly, generate muxes for
and update o, in the same way except use o5t and o3f instead of ot and o'

One interesting aspect of this compilation scheme is that it causes the
generated netlists for both branches to always be executed, including netlists
for dead branches. This is different from when targeting a language with jumps,
such as e.g. an assembly language. As an example, for an if statement if
(c) then st else sf, consider some condition c that is always true and a
statement sf that always crashes with a runtime error. That sf always crashes
does not affect the if statement’s behavior, because the code will never be
executed. However, as the generated netlist for the if statement will consist of
nl. followed by nls; followed by nls¢ followed by the muxes used to merge
the results from the two branches, the netlist for sf executes every clock cycle.
Consequently, it must be ensured that no Verilog code, not even dead code,
can generate a netlist that crashes with a runtime error. To ensure that no

95

bad netlists are generated, the pass assumes its input to be well-typed. From
well-typedness and array-lookup preprocessing, it follows that no output netlist
will crash with a runtime error.

Compiling non-X assignments, continued. Now understanding the com-
pilation scheme for if statements, we understand why the following program
would be miscompiled by the earlier suggested compilation scheme for non-X
assignments saying that oy, should simply shadow oy, in register input genera-
tion:

module // ...

always_ff @(posedge clk) begin
if (a)
b <= 9;

b=1,;

end

endmodule

If we would let oy, shadow oy, then starting from a = b = 0 we would get
b = 1 from the Verilog program but b = 0 from the generated netlist, because
the cell mux(a, 0, b) (where a and b refer to the registers for a and b) generated
from the if statement would overshadow the blocking assignment (since oy, (b)
will map to the mentioned mux, and oy,(b) will map to 1 after the always_ff
block has been processed).

Instead of designing a more complex compilation scheme, we have restricted
Lutsig to only accept modules not containing blocking and nonblocking assign-
ments to the same variable.® As a result, o, never shadows anything in o}, and,
it turns out, the earlier suggested compilation scheme for register inputs now
works without problems. The same restriction can be found in other compilers:
For example Vivado Design Suite [108, pp. 233-234] introduces a “usage re-
striction” saying not to mix blocking and nonblocking assignments (although,
Vivado can synthesize programs with mixed assignments “without error”), and
(as of this writing) the latest Yosys compiler [113] silently miscompiles (some)
programs with mixed assignments.

Compiling X assignments. When compiling a blocking X assignment, a
new ndet cell is generated, and oy, for the left-hand-side variable is updated to
map to the cell output of the new ndet cell. Again, the compilation scheme for
nonblocking assignments is the same except that oy, is updated instead.

®Because of the same restriction, we were able to take a small shortcut in Lutsig’s Verilog
semantics, storing complete arrays in A rather than parts-to-be-updated, because we know A will
never shadow anything in I.

96

Because the netlists for both branches of (all) if statements in the input
Verilog program are executed each clock cycle, we cannot “reuse” the fbits
stream of nondeterministic bits from the Verilog level at the netlist level in
Lutsig’s correctness theorem. Consider the following code fragment:

if (¢)
a = 1'bx;

For this code fragment, one bit of fbits will be consumed if ¢ evaluates to
true, otherwise no bits will be consumed. At the netlist level, the generated
netlist will always consume one bit of fbits regardless of what c evaluates
to. This means that we cannot state a correctness theorem guaranteeing that
the output netlist has the exact same behavior as the input Verilog code if
we simply reuse fbits. Instead, as seen in the top-level correctness theorem in
Sec. 4.6.2, we say that for every nfbits on the netlist level, there is a vfbits on
the Verilog level such that the behavior of the Verilog code coincides with the
behavior of the netlist (Inr case) or Verilog evaluation aborts with an error (Inl
case). The resulting theorem may initially seem too weak to be useful, but the
circuit-correctness theorems we are interested in transporting from the Verilog
level to the netlist level include the claim that no runtime errors occur in the
Verilog code, and consequently we will never reach the Inl case in the theorem.

4.5.4 Netlist determinization

A determinization pass removes all nondeterminism from the circuit as the
target cell set does not include any nondeterministic cells. In the pass, for the
registers, all X initializations are replaced with zero initializations. For the cells,
it would be possible to similarly replace all ndet cells with zeros. But, in some
cases, by carefully picking another value to replace an ndet cell with, we can
optimize away other cells as well in the determinization process. To illustrate
this, consider the following Verilog code:

if (c) begin
/] ...

a = 1'bl;

/] ...
end else begin
/] ...

a = 1'bx;

/] ...
end

The Verilog-to-netlist pass will (as long as a is not assigned in any of the
branches after the assignments highlighted in the above example) generate a

97

mux cell to merge the two writesa = 1’b1 and a = 1’bx. Note that if we
replace the 1’bx value with 1’b1, rather than naively replacing all X values
with zeroes, we can optimize away the mux because it will now always output
the same value.

The mux optimization idea illustrated in the example is the core idea of the
determinization pass, except that the pass operates on the netlist level rather
than on the Verilog level. To be able to select appropriate replacement values,
the pass traverses the netlist twice: (1) During the first traversal appropriate
replacement values are identified, and (2) during the second traversal ndet cells
and cells that become redundant after replacing the ndet cells with the values
from the first traversal are removed.

(1) Finding replacement values. The first traversal incrementally builds
up a map o : cell_input — dfill option where dfill = TBD ctype | HBD cvalue. We
call cell inputs with TBD (“to be determined”) entries in o TBD inputs and cell
inputs with HBD (“has been determined”) entries HBD inputs.

Before the traversal, the map is empty. For all ndet cells visited, a TBD entry
is added to the map to keep track of which inputs can be replaced with new
values. An HBD entry is added when a cell can be optimized away by setting
a TBD input to a specific value. In our simple implementation, only mux cells
add HBD entries. Specifically, if a mux has one TBD input and the other input is
constant (the condition input does not matter), the TBD entry for the TBD input
is replaced with an HBD entry with the constant from the constant input. One
can easily imagine other ways to add HBD entries: For example, addition cells
with one TBD input could add HBD entries filled with zeroes as the addition cell
could then be optimized away (regardless of what the other input to the cell is).

(2) Replacing ndet cells. The o built up during the first traversal is used
during the second traversal. During the second traversal, TBD cell inputs are
replaced by constant zero inputs, and HBD cell inputs are replaced by the values
contained in the inputs’ HBD entries. All ndet cells and mux cells with inputs
that are constant and equal (after processing based on o) are removed.

Correctness. Consider again Lutsig’s top-level theorem in Sec. 4.6.2. After
the determinization pass, the circuit is independent of nfbits because it no
longer contains any nondeterministic constructs — and clearly we can always
find a vfbits because the determinization pass never adds new behaviors to the
circuit.

98

4.6 Technology mapping

Technology mapping in Lutsig is divided into two passes: The first pass is
verified (Sec. 4.6.1), and the second pass is based on translation validation
(Sec. 4.6.3). The first pass maps high-level cells and furthermore functions as
a preprocessing pass for the second pass by splitting all low-level array cells
into Boolean cells. The second pass maps all low-level (now-Boolean) cells not
mapped by the first pass to LUTs. The second pass is based on translation valida-
tion to allow future developments, as we expect running a realistic optimizing
technology mapper in-logic would be too computationally expensive.

4.6.1 Verified technology mapping

The first pass maps high-level cells such as addition cells to cells natively
available on the target FPGAs and splits — or “blasts” — low-level cells that
operate over arrays to cells that operate over Booleans. As a result, when
the second pass finalizes the mapping process, it only has to map Boolean
cells. The second pass is based on graph covering, and after the first pass’
preprocessing we know that we will always be able to find a covering since a
k-input Boolean cell can always (if needed) be covered by a k-LUT. Because
the FPGAs we target only offer Boolean registers, the first pass also blasts all
array registers into Boolean registers.

We have proved that the first pass is correct in the sense that the following
relation between a nonblasted circuit state s and a blasted state bs is invariant
under running a nonblasted circuit and its blasted version:

blast_reg_rel s bs s
Y reg.

case cget_var s (RegVar reg 0) of
Inle = T

| Inr (CBool v) =
cget_var bs (RegVar reg 0) = Inr (CBool v)

| Inr (CArray v) =
V.4 < length v =

cget_var bs (RegVar reg i) = Inr (CBool (el ¢ v))

Informally, Boolean registers remain untouched, and each array register is
blasted into a series of Boolean registers each containing one bit from the array
register they were blasted out of.

The pass functions as follows. When the pass traverses a netlist, a blast

99

map o : cell_input — cell_input list’” is maintained to keep track of which cells
have been blasted where. For low-level cells, blasting is straightforward; for
example, blasting a mux cell v = mux(ig, i1, 42) with two array inputs 41, iz of
length n results in n mux cells

vo = mux(c(in), o(i1)[0], o (i2)[0]),
v = mux(o(io), o (i1)[1], o (i2)[1)),

Vp—1 = mux(o(ig),o(i1)[n — 1], 0(iz)[n — 1])

where vy, ...,v,_1 are fresh variables. Note how cell inputs are updated using
0. In case no mapping for a cell input exists, the cell input is left untouched. After
the mux cell has been blasted, o is updated such that o(v) = [vg, ..., vp—1]

Blasting high-level cells requires more attention. For example, addition can
be implemented purely in terms of LUTs, but the class of FPGAs we target has
special hardware support for addition which we want to exploit. In our imple-
mentation, we tried to mirror how existing compilers for the class of FPGAs
we target map addition operations: A network of carry4 cells in combination
with xor cells implemented as LUTs, such that the fast carry chains available on
the FPGAs we target are exploited. Our implementation likewise maps equal
cells to networks of LUTs and carry4 cells.

Another special case is array_write cells. Blastingv = array_write(ig, n,41)
does not generate any new cells: It is sufficient to update o(v) such that o (v)][i]
equals o(i1) if i = n and o (ig)[i] otherwise.

4.6.2 Lutsig’s top-level correctness theorem

Composing the correctness theorems for the different passes of the verified
compiler (Sec. 4.5) and the verified technology mapper (Sec. 4.6.1) results in
the following top-level theorem for the verified part of Lutsig:

Flet m = Module exttys decls ps in

compile keep m = Inr circuit A writes_ok ps A
vertype_fext exttys vfext A same_fext vfext nfext =
3 cenv vfbits.

circuit_run nfext nfbits circuit n = Inr cenv A

case run vfext vfbits m n of

Infe = T
| Inr venv = verilog_netlist_rel keep venv cenv

"The actual type is a little more involved, but for this paper this level of detail is sufficient.

100

A few details are worth mentioning: The keep argument to compile is a list of
registers that must not be optimized away. One example usage is keeping regis-
ters that are never read internally but will later be exposed as circuit outputs.
The predicate writes_ok prohibits blocking and nonblocking assignments to the
same variable (see Sec. 4.5.3). The predicate verilog_netlist_rel is similar to the
predicate blast_reg_rel from Sec. 4.6.1 but only guarantees correspondence for
registers in keep (as other registers might have been optimized away).

4.6.3 Translation-validation-based technology mapping

The second pass maps cells not mapped by the first pass to LUTs. The output
netlist from the pass is fully mapped, consisting only of cells natively available
on the FPGAs we target. The pass first (1) finds a mapping and then, as a
separate step, (2) proves the mapping correct.

(1) Finding a mapping. The first step does not involve any kind of proof:
The responsibility of the first step is to find, by any means, a mapping to later be
validated by the second step. For this purpose, we have implemented a simple
unverified placeholder technology mapper in SML. The technology mapper is
based on conventional graph-covering techniques [47]. The technology mapper
does not carry out any optimization when finding a covering: The mapper
constructs coverings and selects a covering to use using a simple greedy al-
gorithm. For the purpose of this paper, finding any covering is sufficient: As
no proofs are required, if a “good” covering (for some definition of good) is
needed, the problem of finding a covering can be outsourced to any existing
mapper instead of relying on our placeholder mapper. For this paper, we opted
for implementing a placeholder mapper because it was simpler than integrating
an existing mapper.

(2) Proving the mapping correct. The responsibility of the second step is
to generate a theorem on the form

F...=>
circuit_run fext fbits (Circuit exttys regs nly) n =
circuit_run fext fbits (Circuit exttys regs nla) n

where nl; is the fully mapped netlist produced by the first step and nls is the
partially mapped netlist that was given as input to the first step. Note that
the registers regs are left untouched. Thus, if we can prove each register’s cell
inputs in the two circuits equivalent, the equivalence of the two circuits easily
follows. Cell output names are preserved by our technology mapper, making

101

matching outputs between the two netlists simple. As a result, the second step
functions as follows: For each cell output in nl;, prove the cell output equal
to the cell output with the same name in nly. With the help of some in-logic
computations needed to sanity-check nl; as the netlist was generated outside
the logic, the equivalence of the two circuits easily follows from the equivalence
of the cell outputs.

For already mapped cells, given that their inputs are equal in the two netlists,
the equality of their outputs follows directly. For cells mapped to LUTs, the
equivalence is shown as follows for each LUT:

(2a) generate a Boolean expression for the LUT and a Boolean expression for
the cells covered by the LUT using HOL4 automation,

(2b) prove the two expressions equivalent using a SAT solver,

(2¢) conclude using further HOL4 automation that the equivalence of the
LUT and the cells follows.

Step (2a) works in a fashion similar to the proof-producing HOL-to-Verilog
translation tool from the Verilog development tools [68] connected to Lutsig.
The following predicate

Eval fext st nl inp b =
v st’. is_initial_state st A
sum_foldM (cell_run fext) st nl = Inr st’ =
cell_input_run fext st’ inp = Inr (CBool b)

allows the automation to express that after running the netlist n/ starting from
state st, reading the cell input inp will return the Boolean b. When we generate
a Boolean expression for a cell input, we say that we are Boolifying the input.

We have proved theorems similar to the following theorem for all cells that
can occur at this stage of the compilation:

F all_distinct (flat (map cell_outputs nl)) A
mem (Cell2 CAnd out inq ing) nl A
Eval fext st nl iny inl1b A Eval fext st nl ing in2b =
Eval fext st nl (Varlnp (NetVar out) None) (inlb A in2b)

Informally, the theorem says that if no cell shadows any other cell (all_distinct .. .),
there is an and cell with inputs én; and ing in the netlist n/, and the two inputs
have been Boolified to in1b and in2b, respectively, then the Boolification of
the and cell’s output out is in1b A in2b. Using this set of theorems we have

102

proved, Boolifying a set of cells is simply a matter of visiting each cell in netlist
order and for each cell specializing the theorem for its cell type.

Step (2b) utilizes the existing SAT infrastructure available in HOL4 [109].
HOL4’s SAT infrastructure relies on the presence of an external (unverified)
SAT solver, like e.g. MiniSat [21], from which the infrastructure can reconstruct
a HOL proof based on the output from the SAT solver. That is, the SAT solver
itself remains outside the TCB. The proof obligations delegated to the SAT
solver consist of proving the Boolifications from step (2a) of the LUT output
and the corresponding cell output in the partially mapped netlist equivalent.
Because each LUT is processed separately, the Boolean expressions sent to the
SAT solver are kept small.

Step (2c¢) is straightforward given the theorem proved by the SAT infras-
tructure in HOL4 in the previous step.

4.7 Case study and evaluation

We now show an example of how to use Lutsig in verified circuit development
and then compare Lutsig to a mature unverified commercial compiler.

Example usage. As a case study, we follow Fig. 4.1 and show how to prove
an implementation of a moving-average filter correct with the help of Lutsig.
Both the correctness criteria and the HOL implementation of the circuit (A)®
are defined in terms of the HOL word library. Using the helper function

def

presignal fext n shift =
if n < shift then Ow else (fext (n — shift)).signal,

we say that the output signal from our moving-average filter is correct if it is
the following signal:

avg_spec fext n =

if n =0 then Ow
else if (fext (n — 1)).enabled then
(presignal fext n 1 + presignal fext n 2 +
presignal fext n 3 + presignal fext n 4) // 4w
else (fext (n — 1)).signal

8The parenthesized letters refer to the stages introduced in Fig. 4.1.

103

A straightforward but space-inefficient implementation is given by the HOL
circuit avg (A):

def

div_by 4 s = let

s = swith sum := (0 :+ word_bit 2 s.sum) s.sum;
s = swithsum := (1 :+ word_bit 3 s.sum) s.sum;
s = s withsum := (2 :+ word_bit 4 s.sum) s.sum;
s = s withsum := (3 :+ word_bit 5 s.sum) s.sum;
s = swithsum := (4 :+ word_bit 6 s.sum) s.sum;
s = swithsum := (5 :+ word_bit 7 s.sum) s.sum;
s = swithsum := (6:+F) s.sum;
s = swithsum := (7:+F) s.sum
in s

avg step fext s = let
s = swith h3 := s.h2;

s = swith h2 := s.h1;
s = swith hl := s.ho;
s = swith ho := fext.signal;
s = s with sum := s.h0 + s.h1 + s.h2 + s.h3;
s = div_by 4 s
in
if fext.enabled then s with avg := s.sum
else s with avg := fext.signal

avg fext s 0 = s

def

avg fext s (Suc n) = avg_step (fext n) (avg fext s n)

As Lutsig does not support division, we implement division by bit-shifting,
and as Lutsig does not support bit-shifting, we implement bit-shifting using
array operations. That shift-based division implementation div_by_4 is a correct
implementation of division can be proved with almost no effort:

Fdiv_by_4 s = s with sum := s.sum // 4w

Proving the whole implementation correct is also trivial and gives us the fol-
lowing theorem:

F (avg fext avg_init n).avg = avg_spec fext n (4.1)
We now derive a Verilog implementation vavg (B) from avg. The core com-

ponent of the Verilog development tools [68] we have connected to Lutsig is a
proof-producing translator from shallowly embedded Verilog-like HOL circuits

104

to deeply embedded Verilog circuits. For example, as part of the translation of
avg, the translator derives the following Verilog code from avg_step:

always_ff @(posedge clk) begin

h3 = h2;
h2 = h1;
h1 = ho;
ho = signal;

sum = h@ + h1 + h2 + h3;
sum[@] = sum[2];

sum[1] = sum[3];

sum[2] = sum[4];

sum[3] = sum[5];

sum[4] = sum[6];

sum[5] = sum[7];

sum[6] = 0Q;

sum[7] = ©@;

if (enabled)

avg = sum;
else

avg = signal;
end

For each run of the translator, the translator produces a theorem stating that the
input HOL circuit and the output Verilog circuit have the same behavior. Com-
posing the theorem produced by the translator and the HOL-circuit-correctness
theorem Thm. 4.1, we can easily produce a Verilog-circuit-correctness theorem:

F lift_vfext vfext fext =
3s. run ufext vfbits vavg n = Inr s A (4.2)
get_reg s “avg” = Inr (w2ver (avg_spec fext n))

Now having procured the Verilog implementation vavg (B), the verified part
of Lutsig (Sec. 4.6.2) can compile vavg to a partly technology-mapped netlist
navg’ (H). Now, translation-validation-based technology mapping (Sec. 4.6.3)
provides us with a fully technology-mapped netlist navg ().

At this point, we have all theorems needed to derive the final correctness
theorem for the netlist navg. Composing the Verilog-circuit-correctness theorem
Thm. 4.2, Lutsig’s correctness theorem (Sec. 4.6.2), and the theorem produced by
translation-validation-based technology mapping (Sec. 4.6.3), we have derived

105

the following correctness theorem for the netlist implementation of the filter:

F lift_nfext nfext fext =
3s. circuit_run nfext nfbits navg n = Inr s A
get_reg_blasted s “avg” (w2net (avg_spec fext n))

This is as far down the abstraction hierarchy our current development
takes us inside HOL. To produce an FPGA bitstream (K) out of navg that can be
loaded onto an FPGA, we need to consult external tools. For communication
with external tools, we have developed a (unverified) pretty-printer that can
print technology-mapped netlists to Verilog netlists (J). The pretty-printed
netlists can be simulated and synthesized to FPGA bitstreams by tools such as
Vivado Design Suite, which is the tool we used in this case study. According
to the manual testing we have carried out, the circuit works according to its
specification both during simulation and when loaded onto an FPGA board.

Evaluation. We now provide a short evaluation of the compiler. The compiler
performs reasonably on the moving-average-filter case study. Vivado 2018.2
(with default settings) compiles the Verilog program derived from avg to 29
LUTSs’, 2 carry4 cells, and 32 registers. Lutsig compiles it to 32 LUTs, 6 carry4
cells (two cells for each (8-bit) addition in the program), and 32 registers.

However, Lutsig stands no chance against mature tools like Vivado on larger
examples. The formally verified high-level compiler Vericert [40] that compiles
from CompCert C to Verilog bases its Verilog semantics on the same Verilog
semantics Lutsig bases its Verilog semantics on and is therefore a good fit for
generating test input for Lutsig — since they consequently deal with similar
subsets of Verilog. However, as Vericert is verified in Coq rather than HOL4,
Vericert cannot provide us with HOL4 correctness proofs for the Verilog code
it produces. But since we for the moment are only interested in evaluating the
performance of Lutsig, we do not need correctness proofs from the front-end
used. Concretely, we use the following C program to evaluate Lutsig:

int main() {
int max = 5, acc = 0;

for (int i = 0; i != max; i++)
acc += 1i;

The exact number of LUTs depends on what we mean by a LUT. For example, for the class of
FPGAs we target, LUTs have two outputs and sometimes two small one-bit-output LUTs can be
merged into one such LUT. Taking this into consideration when counting gives us 24 two-bit-output
LUTs rather than 29 one-bit-output LUTs.

106

return acc + 2;

3

Vericert compiles this program to two Verilog processes each containing an
t:10

11-cases case statemen
module main(reg_7, reg_8, clk, finish, ret);
input [0:0] reg_7;
input [0:0] reg_8;
input [0:0] clk;
output reg [0:0] finish;
output reg [31:0] ret;

reg [31:0] state;
reg [31:0] reg_1;
reg [31:0] reg_2;
reg [31:0] reg_3;
reg [31:0] reg_4;

always @(posedge clk)
if (reg_8 == 1'd1)
state <= 4'd11;
else
case (state)
4'd8: state <= 3'd7;
3'd4: state <= 3'd7;
2'd2: state <= 1'd1;
4'd10: state <= 4'd9;
3'd6: state <= 3'd5;
1'd1: state <= 1'd1;
4'd9: state <= 4'd8;
3'd5: state <= 3'd4;
2'd3: state <= 1'd1;
4'd11: state <= 4'd10;
3'd7:
if (reg_1 == reg_3)
state <= 2'd3;
else
state <= 3'd6;
default: ;

The C program and the Verilog program are taken from Yann Herklotz’s talk at the PLDI’20
student research competition. We had to slightly modify the C program, as we had to replace the
loop exit condition 1 < max with i != max because Lutsig does not support less-than comparisons.
We also had to slightly modify the Verilog program such that it would fit the subset of Verilog
Lutsig supports.

107

endcase

always @(posedge clk)
case (state)
4'd8:
3'd4: ;
2'd2: reg_4 <= 32'do;
4'd10: reg_2 <= 32'do;
3'd6: reg_2 <= reg_2 + (reg_1 + 32'd0);
1'd1: begin
finish <= 1'd1;
ret <= reg_4;
end
4'd9: reg_1 <= 32'do;
3'd5: reg_1 <= reg_1 + 32'd1;
2'd3: reg_4 <= reg_2 + 32'd2;
4'd11: reg_3 <= 32'd5;
3'd7: ;
default: ;
endcase

’

endmodule

Vivado compiles the Verilog program to 59 LUTs, 27 carry4 cells, and 138
registers. Lutsig compiles the program to 1087 LUTs, 92 carry4 cells, and 225
registers. Case-heavy programs are a particularly bad fit for Lutsig: The large
number of cells is a result of the inefficiency of Lutsig’s preprocessing-based
compilation of case statements (and the lack of optimization passes in Lutsig).
For this example program, the verified part of Lutsig takes around 1 second
to execute in logic, the in-logic validation of the netlist generated by Lutsig’s
unverified technology mapper takes around 8 seconds, and Lutsig’s SAT-based
translation-validation pass takes around 50 seconds. If we replace the 32-bit
registers generated by the int variables in the C program with 8-bit registers,
then Vivado compiles the program to 49 LUTs, 2 carry4 cells, and 36 registers
and Lutsig compiles the program to 326 LUTs, 30 carry4 cells, and 57 registers.
For this smaller program, all of compilation takes around 10 seconds.

4.8 Related work

In the software world, realistic verified compilers such as the CakeML com-
piler [100] and the CompCert compiler [64] exist. In the hardware world, equally
mature verified compilers are nowhere to be found. Previous work on verified
hardware compilers is limited but exists.

108

The verified hardware compiler implemented in Coq by Braibant and Chli-
pala [15] shares many similarities with our work, but their source and target
languages are different from ours. Their source language is a Bluespec-inspired
language called Fe-Si. Fe-Si programs share many similarities with the subset
of Verilog Lutsig supports, but Fe-Si programs are more high-level as they do
not specify cycle-by-cycle behavior. Unlike our source language, Fe-Si does
not include X values. The Fe-Si compiler, like Lutsig, targets netlists. Neither
the Fe-Si compiler nor Lutsig succeeds in moving all of hardware development
entirely inside an ITP, but Lutsig comes one step further towards this goal as
the Fe-Si compiler does not include a technology mapper.

Bourgeat et al. [14] provide another verified hardware compiler imple-
mented in Coq for another Bluespec-inspired language called Koika. With
Koika, Bourgeat et al. try to address one of the drawbacks of working on a
higher abstraction level than traditional HDLs like Verilog allow. Specifically,
Koika allows the hardware designer to specify a schedule that can be used
to verify that the Koika compiler builds the kind of hardware the designer
had in mind when implementing their design in Koéika. Mismatch problems
between designer intent and what is constructed by the hardware compiler
can happen in Verilog as well, one (infamous) example being the unintended-
inferred-latches problem. Whether one should design and verify hardware on a
high or low abstraction level depends on the context the work is carried out in,
and there are pros and cons to both alternatives. A good high-level language
brings advantages, e.g. by enabling rapid prototyping, but also, as illustrated
by Kéika, disadvantages in terms of compiler understandability — the more
abstract the language, the more magical the black boxes known as the compilers
associated with the language become for language users.

Another previous project is the partly verified BEDROC high-level synthesis
system [61]. Designed with verification in mind, the aim of the project was full
verification, but the work was never finished. A small part of the system was
verified inside an ITP (Nuprl), and the rest of the verification was carried out
by non-ITP means.

Beyond the above-mentioned projects, efforts for applying ITPs to hardware
development seem to have been focused on topics outside compiler verification:
In particular inventing and embedding hardware DSLs and verifying circuits
have received more attention [19, 31, 45, 71, 87].

4.9 Conclusion

We have presented a new verified compiler called Lutsig that compiles Verilog
programs down to technology-mapped netlists for FPGAs. We have also illus-

109

trated the utility of the compiler as a tool in small-TCB hardware development
by transporting properties proved at the compiler’s source level down to the
compiler’s target level.

Our case studies tell us that further work is needed on improving compiler
output quality (e.g. in terms of number of LUTs). Moreover, the subset of Verilog
Lutsig currently supports is arguably too closely tied to the kind of Verilog
code produced by the proof-producing Verilog translator used in our main case
study. For Lutsig to be more widely applicable, a larger subset of Verilog must
be supported. Adding support for constructs commonly seen in production
Verilog code not currently supported by Lustig, such as always_comb blocks and
continuous assignments, is therefore part of future work. Another important
missing feature is support for Verilog designs consisting of multiple modules.
Our plan is to add support for important missing features incrementally now
that all initial components of Lutsig are in place.

Acknowledgments. This research was supported with funding from the

Swedish Foundation for Strategic Research. We thank Magnus Myreen for
comments on drafts of this paper.

110

CHAPTER 5

Lutsig 2.0: Verilog, Synthesis-Tool
Verification, and Circuit-Verification
Methodology

Andreas Loow

Abstract. In software development, verified compilers like the CompCert
compiler and the CakeML compiler enable a software-development-and-verifica-
tion methodology that allow software developers to establish program-correct-
ness properties on the compiler’s target level. Inspired by verified compilers
for software development, the verified Verilog synthesis tool Lutsig enable the
same methodology for Verilog hardware development. In this paper, we extend
the subset of Verilog supported by Lutsig. Specifically, we extend Lutsig with
support for always_comb blocks — one of Verilog’s features that must be under-
stood as a hardware construct rather than as a software construct. In extending
Lutsig’s Verilog support, we are required to revisit Lutsig’s circuit-development-
and-verification methodology to clarify where hardware constructs such as
always_comb fit into the methodology. All development for this paper has been
carried out in the HOL4 theorem prover.

Paper draft, not yet published

111

112

5.1 Introduction

In software development, verified compilers enable the following interactive-
theorem-proving-based verified-program development (VPD) methodology:

1. develop and compile your program exactly as when using an unverified
compiler;

2. prove a source-level correctness theorem about your program (by what-
ever means are available — the methodology is independent of how the
correctness theorem is established); and, lastly,

3. transport the source-level program-correctness theorem down to the com-
piler’s target level by simple composition of the source-level program-
correctness theorem and the compiler’s (program-independent) correct-
ness theorem.

VPD has been deployed in many different software contexts, such as e.g.
imperative programming [64], functional programming [60], concurrent pro-
gramming [93], just-in-time compilation [7, 78], compiler-implementation
correctness (by compiler bootstrapping) [60, 76], usability such as compo-
sitional/separate compilation [85], security such as constant-time preserva-
tion [8], and performance such as time/space reasoning [4, 29, 84]. For some
contexts, the methodology applies directly. For other contexts, modifications
or extensions are required.

In this paper, our interest lies in hardware development rather than software
development. Previous work [14, 15, 66] on verified hardware-synthesis tools —
also known as hardware compilers — show that VPD is applicable to hardware
development, thereby providing a circuit-verification methodology. In this
paper, we augment existing work on VPD in hardware contexts by considering
source-level language Verilog features that must be understood as hardware
constructs rather than as software constructs. Concretely, we extend the verified
Verilog synthesis tool Lutsig [66]. Lutsig compiles synchronous Verilog designs
to technology-mapped netlists for (a class of) FPGAs.

Specifically, we extend Lutsig with support for always_comb blocks, which
allows hardware designers to declare that certain parts of their behavioral
Verilog code are to be synthesized to combinational logic. Combinational logic
is stateless logic and stands in contrast to sequential logic (modeled as e.g.
always_ff blocks), which is stateful logic. Moreover, beyond allowing hardware
designers to express design intent, adding support for always_comb extends
the expressivity of the subset of Verilog Lutsig support: In the new version of
Lutsig, any Mealy machine can be encoded (see Sec. 5.8.1).

113

The main problem in extending Lutsig with always_comb support is keeping
VPD intact. Both traditional Verilog development (TVD) and VPD fundamen-
tally revolve around compilation; however, at times TVD and VPD do not mix
well. Keeping VPD intact turns into a balancing act between TVD, with both
its strengths such as synthesis-tool control and its problems like simulation-
and-synthesis mismatches, and VPD, allowing transportation of source-level
correctness theorems down to the compiler’s target level.

All in all, we make the following two contributions:

« We add support for always_comb blocks to Lutsig, the Verilog semantics
used in Lutsig, and a proof-producing Verilog code generator associated
with Lutsig.

« We combine VPD, i.e. the traditional development methodology based
on verified compilers, with TVD, i.e. traditional Verilog development, in
a way that inherits the strengths of TVD while simultaneously avoiding
its main weaknesses.

All the work for this paper has been carried out in the HOL4 theorem
prover [95] and all source code and proofs are available at https://github.
com/CakeML/hardware.

5.2 Background: VPD and TVD

This section serves two purposes: firstly, it introduces VPD and TVD in more
detail, and, secondly, it establishes notation and terminology used in the rest of
the paper.

5.2.1 Verified-program development (VPD)

We now give a more detailed description of VPD, following Leroy’s [64] ex-
position. In VPD, we start off with a source program Ps implemented in a
source language S and a compiled program Pr implemented in a target lan-
guage T produced by a compiler: Comp(Ps) = OK(Pr). If the compiler is
unable, for whatever reason, to compile Pg, then a compile-time error is re-
ported: Comp(Ps) = Error. The source language S has a semantics Lg, and
the target language 7" has a semantics L. The two semantics Lg and Ly
associate sets of observable behaviors B to source and target programs. We
write P |l;, B to denote that a program P executes with observable behavior
B under semantics L.

114

https://github.com/CakeML/hardware
https://github.com/CakeML/hardware

We say that a compiler Comp is verified when we have proved
VPS PT, C'omp(PS) = OK(PT) - PS ~ PT

for some notion of semantic preservation ~. The only notion of semantic
preservation we use in this paper is backward simulation: Ps ~ Pp <=
VB, Prl., B = Ps |1, B;thatis, any behavior of the target program
must be a behavior allowed by the source semantics.

Compiler users, however, are not ultimately interested in the correctness
of the compiler Comp they are using; rather, when interacting with a com-
piler, users are interested in the correctness of the program Pr produced by
the compiler. This is, of course, also part of VPD. Since it is easier to prove
the correctness of Pg and transport the result to Pr than it is to prove the
correctness of Pr directly, VPD is as follows: Following Leroy’s exposition,
users are asked to formalize what they mean by their program being cor-
rect by providing a predicate Spec(B) over observable behaviors. We write
P Er Spec for VB, P |l B => Spec(B). Now, for a successful compiler
run Comp(Ps) = OK(Pr), if the user’s compiler Comp has been verified (with
backward simulation as the notion of semantic preservation), then the user
can derive Pr =1, Spec (i.e., what the user is ultimately interested in) from
Ps =14 Spec by simple composition.

5.2.2 Traditional Verilog development (TVD)

We now turn to TVD. As Weste and Harris [110, p. 699] put it, hardware
description languages (HDLs) like Verilog are “better understood as shorthand
for describing digital hardware” than programming languages. Continuing,
Weste and Harris describe TVD as follows:

1. “[...] begin your design process by planning, on paper or in your mind,
the hardware you want”

2. “Then, write the HDL code that implies that hardware to a synthesis
tool”

In TVD, an important means of communication with the synthesis tool the
hardware designer has available is modeling idioms, which enable the hardware
designer to express not only the function of their design but what kind of
hardware they want. Modeling idioms is what allows the hardware designer to
“write the HDL code that implies” the hardware design they have formed “on
paper or in [their] mind”

One example of modeling idioms are the always_ff and always_comb blocks,
allowing hardware designers to specify if combinational or sequential logic

115

should be inferred by the synthesis tool. In general, what model idioms are
available depends on what technology is targeted. For example, the synthesis
manual [108, p. 111] for Xilinx’s unverified synthesis suite Vivado contains
modeling idioms and guidelines for modeling block RAMs (BRAMs), a type of
memory available in Xilinx FPGAs. The modeling idioms related to BRAMs are
presented as Verilog design fragments, instructing the hardware designer how
to write their Verilog code such that the synthesis tool will infer features such
as write enable inputs, byte write enable inputs, optional output registers, etc.

5.3 Problems in combining VPD and TVD

In this section, we provide an analysis of the problem of combining VPD and
TVD. We identify the two semantics of Verilog as the core of the problem.

Since we are here interested in applying the VPD methodology to Verilog
hardware development, we must specialize Comp, S, Lg, T, and Ly to appro-
priate hardware instances. Since we, in this paper, are working with Lutsig, we
set:

« Comp = Lutsig,
« S = Verilog (sometimes abbreviated “ver”), and

« T = technology-mapped netlist for (a class of) FPGAs (sometimes abbre-
viated “nl”).

For Ly, Lutsig uses a simple custom netlist language. What remains to specify
is Lg, and this is where our problems begin.

The problems associated with Lg arise from the fact that to support both (1)
simulation and other forms of program reasoning and (2) synthesis, Verilog is
equipped with two semantics: one simulation semantics L$™ and one synthesis
semantics LYy (based on, among other things, modeling idioms).

From the perspective of TVD, the presence of a synthesis semantics is
motivated by the hardware designers’ need for a way to control their synthesis
tools (using modeling idioms); however, having two source semantics breaks
the theorem-transportation step of VPD since in VPD it is assumed that we
have one single semantics Lg for our source language S. The VPD problem
is as follows: If we prove our Verilog design P, correct with respect to LSi®

ver?
. . . t
ie Py = Lsm Spec, and prove our synthesis tool correct with respect to Ly ,

we can no longer transport the design-correctness result to the netlist level, i.e.
derive Py =1, Spec, by simple composition. In fact, the same problem occurs
in TVD, where this composition problem resulting from the two semantics
makes itself known in the form of simulation-and-synthesis mismatches.

116

The underlying idea that guided the design of the first version of Lutsig - i.e.,
that hardware-synthesis-tool verification is just software-compiler verification
but for hardware, in other words, straightforward application of VPD, essentially
ignoring TVD - runs into problems when Lutsig is extended with features such
as always_comb which must be understood as hardware constructs rather than
as software constructs. We need the perspective of TVD to even make sense of
hardware language features like always_comb. (If this is not clear at this point,
it will hopefully be more clear after Sec. 5.10.1, where some concrete problems
with synthesizing always_comb blocks are enumerated.)

Before we describe Lutsig’s solution (Sec. 5.5) to the problem outlined in this
section, we must first discuss Verilog’s two semantics in more detail (Sec. 5.4).

5.4 A closer look at Verilog’s two semantics

i synt .
sim and Ly for Verilog as a source of

problems, we now take a closer look at the two semantics and the relationship

Having identified the two semantics L

between them.

5.4.1 Simulation semantics

The simulation semantics L™ is given by the (System)Verilog standard [48].
The semantics is large, complicated, and full of gotchas [98], but at the end of
the day, is an informally specified event-based operational semantics centered

around a stratified event queue.

5.4.2 Synthesis semantics

The situation for the synthesis semantics Liﬁ?t is less straightforward. Since
the Verilog standard does not provide a synthesis semantics and the Verilog
synthesis standard [105] has been withdrawn, it is up to each synthesis tool to
provide their own synthesis semantics. However, current tool-specific synthesis
manuals, such as e.g. the synthesis manuals for Vivado [108] and Quartus [51],
largely contain similar material as the withdrawn synthesis standard (modeling
idioms, design and coding-style recommendations, etc.), except specified in a
more detailed fashion since such manuals are both tool- and target-technology-
specific. We therefore use the withdrawn Verilog synthesis standard as the
basis for our discussion here.

Beyond synthesis idioms, the synthesis standard defines Verilog’s synthesis
semantics in terms of how it relates to Verilog’s simulation semantics. Now, we
therefore go into the relationship between the two standards.

117

5.4.3 Relationship between the two semantics

The relationship between Verilog’s simulation semantics and synthesis seman-
tics is complicated: The synthesis standard both builds on and deviates from
Verilog’s simulation semantics. Some parts of the synthesis standard are best
understood as describing how to use the syntax and semantics of Verilog, as
defined in the Verilog 2001 standard [49], to model hardware; in other words,
how to use the simulation semantics to model hardware. Other parts of the
synthesis standard, however, clearly deviate from the simulation semantics.
Some of these deviations are highlighted in (the informative) App. B in the
synthesis standard. E.g., we are warned that the following module! will cause a
simulation-and-synthesis mismatch since the assignments to y and tmp are “mis-
ordered™

module andorlb(output reg y, input a, b, ¢);
reg tmp;

always @x begin

y = tmp | c;
tmp = a & b;
end
endmodule

In the same appendix, we are warned that “making a Verilog x-assignment to a
signal tells the simulator to treat the signal as having an unknown value and
tells the synthesis tool to treat the signal as a don’t care” This means that e.g.
the following Verilog fragment, with a of type logic, will cause a mismatch:

if (a)
a=1;
else
a = 0;
According to Verilog’s simulation semantics [48, p. 299], a must be 0 after
executing the fragment. Clearly, this is not compatible with any “don’t care”

interpretation of X values.

5.5 Lutsig’s VPD methodology for Verilog

We are now at a point where we can present the circuit-verification methodology
offered by Lutsig to hardware designers.

!Here presented verbatim, using an always @x block rather than an always_comb block
since the synthesis standard was published before the SystemVerilog standard.

118

Per the discussion up till now, we cannot simply abandon either VPD and
TVD since both provide value to Verilog hardware development. Instead, a
balance between the two is needed. In our view, combining VPD and TVD is
made complicated by the complicated relationship between Verilog’s simulation
semantics and synthesis semantics. This complicated relationship also affects
informal Verilog development; this can be made clear by looking at today’s
synthesis tools, in where simulation-and-synthesis mismatches are, within
the same tool, handled along the whole spectrum of: silently miscompiling
Verilog designs, issuing warnings, and aborting the compilation process entirely.
This means that the result of a successful synthesis run is unclear for hardware
developers, since a successful run does not mean an actually successful synthesis
run.

Lutsig’s solution to the above consist of two parts: (1) a multipurpose Verilog
semantics (Sec. 5.5.1), (2) a fail-fast synthesis algorithm (Sec. 5.5.2). The guiding
design goal for both the semantics and the synthesis algorithm is that hardware
designers must be able to trust that if Lutsig runs successfully, then the synthesis
process was actually successful.

Clear? synthesis-error handling is Lutsig’s contribution to TVD: Beyond
this new error-handling guarantee, the Verilog design methodology for Lutsig
is the same as for unverified-synthesis-based development (i.e., TVD), that is,
both approaches follow the same synthesis idioms and guidelines. This is by
design, since we want Lutsig-based development to be as familiar to hardware
designers as possible.

5.5.1 Part 1: Lutsig’s multipurpose Verilog semantics

To allow theorem transportation, as in VPD, and avoid simulation-and-synthesis
mismatches, unlike TVD, Lutsig is based on a single Verilog semantics: a Verilog
simulation semantics for verification and synthesis L%Ermg.

For theorem transportation, we have proved Lutsig semantics preserving
with respect to L‘];:Fig. The full theorem is presented in Sec. 5.11, but in short
the theorem states that if Lutsig compiles a Verilog design successfully there
can be no simulation-and-synthesis mismatches.

The semantics is defined formally in HOL and is the same semantics as in
the first version of Lutsig, with the exception that we have added support for
always_comb blocks. The extension to the semantics is described in Sec. 5.8. The
aim of the semantics is to capture Verilog’s simulation semantics except where

we have deemed Verilog’s simulation semantics and synthesis semantics to be

2We write “clear” here, rather than “fail fast”, since we expect some future Lutsig features, such
as BRAM handling, to require more involved error handling than the current fail-fast approach.
This, however, is future work.

119

too incompatible. At such points of disagreement, we must opt for synthesis-
oriented behavior, since ultimately the semantics is used for synthesis. Up till
now - that is, for the subset of Verilog that Lutsig supports as of this paper —
the only intentional incompatibility between Lutsig’s Verilog semantics and
Verilog’s simulation semantics is that X values have “don’t care” semantics in
Lutsig’s semantics.?

5.5.2 Part 2: Lutsig’s synthesis algorithm

The semantics L‘L,::Sig is, however, not the full story for avoiding simulation-
and-synthesis mismatches in Lutsig. The semantics L%:rmg is part of Lutsig’s
synthesis story since it is not feasible in practice to handle all simulation-and-
synthesis mismatches in Lutsig’s synthesis algorithm (in particular, mismatches
based on X values). In the end, it is the combination of L%;mg and the design
of Lutsig’s synthesis algorithm that allow for the clean circuit-development
methodology offered by Lutsig.

One interesting aspect of Verilog development is that you can write down
Verilog designs that simply do not make sense. The construct we add support for
in this paper, always_comb, provides examples of this. For example, what should
be happen when sequential logic is put inside an always_comb block? In Lutsig,
this is handled in the synthesis algorithm, by aborting the synthesis process.
The general approach followed in the synthesis algorithm implementation is
to fail fast. If there is a risk for a simulation-and-synthesis mismatch, Lutsig
aborts the synthesis process. This approach ensures a uniform treatment of
simulation-and-synthesis mismatches, such that a successful synthesis run is
always free of mismatches.

The semantics, on the other hand, has no problem with sequential logic
inside always_comb blocks, and in this sense simulation-and-synthesis mis-
matches are possible even when using Lutsig. The guarantee that there are no
simulation-and-synthesis mismatches only hold for designs for which Lutsig
runs successfully. For a design with sequential logic inside an always_comb
block, Lutsig will abort unsuccessfully (as explained in more detail in Sec. 5.10).
Alternatively, one could have handled this in the semantics, but this would
complicate the semantics and deviate from Verilog’s simulation semantics.
Therefore, handling mismatches is done by both Lutsig’s Verilog semantics and
Lutsig’s synthesis algorithm.*

30pting for synthesis-oriented behavior at points of disagreement means that Lutsig (at such
points) is not compatible with Verilog simulators based on Verilog’s simulation semantics. One
might ask if this means that Lutsig really is a Verilog synthesis tool. In our view, Lutsig is a Verilog
synthesis tool: we simply make the X value convention followed by unverified Verilog synthesis
tools explicit.

4Here follows a longer design rationale: While this approach allows for a simpler semantics,

120

5.5.3 Synthesis modeling idioms and Lutsig

The synthesis modeling idioms implemented in Lutsig take largely a back-
ground role in the formal development. The idioms influence both the design
of the semantics Lve® and how Lutsig’s synthesis algorithm interprets Ver-
ilog designs, but the synthesis idioms are for example not visible in Lutsig’s
functional correctness theorem.

We opted for not proving that Lutsig strictly complies with the modeling id-
ioms it implements, since, to not rule out too many optimization opportunities,
a synthesis tool might sometimes have to diverge from what the user-provided
modeling idioms tell the synthesis tool to do. Indeed, the Verilog synthesis stan-
dard’s correctness criterion for synthesis tools [105, p. 13] is oriented around
the behavioral equivalence of Verilog designs and synthesized netlists rather
than strict idiom compliance. The standard “do[es] not take into account any
optimizations or transformations” and states that “a specific [synthesis] tool
may perform optimization and not generate the suggested hardware inferences
or may generate a different set of hardware inferences [...] provided the synthe-
sized netlist has the same functionality as the input model” Moreover, inferring
designer intent from Verilog designs is in general fragile. Hence, strictly enforc-
ing idiom compliance is less useful than it may seem at first. Specifically, we
do not want to use the same input design for both implementation and specifi-
cation. E.g., it is easy to accidentally specify latched logic (i.e., level-sensitive
stateful logic) when combinational logic was intended by simply forgetting one
assignment in a large always block.

With that said, in some cases Verilog does allow hardware designers to
specify their intent independently from the implementation they provide. Ver-

one downside of the approach is that there is no clean mathematical description of Lutsig’s Verilog
synthesis behavior (in other words, Lutsig’s Verilog synthesis semantics) — instead, the behavior is
given by the combination of Lutsig’s Verilog semantics and Lutsig’s synthesis algorithm (much like
unverified synthesis tools). However, for hardware development, no such description is needed: it
follows from Lutsig’s correctness theorem that if Lutsig runs successfully, the semantics of Lutsig’s
Verilog (simulation-like) semantics is preserved. This guarantee is sufficient for circuit-correctness
theorem transportation.

What we have is, effectively, four different Verilog semantics: Verilog’s simulation semantics
L$™ (defined informally by the Verilog standard), Verilog’s synthesis semantics Lf,?r't (unclear
what should be the authoritative definition: one version of the semantics is defined informally by
the Verilog synthesis standard, but this version lacks a succinct description and is instead defined

in terms of a combination of synthesis idioms and how it relates to L$™), Lutsig’s (multipurpose)

. ver X
Verilog semantics L%:rmg (defined formally in HOL, aiming to be as close to L{i} as possible while

still being fit for synthesis purposes), and Lutsig’s Verilog synthesis semantics (which, like Ly
lacks a succinct description, as described in the previous paragraph).

What the lack of a succinct description means in practice is that Lutsig’s Verilog synthesis
semantics must be presented to hardware designers in the same way as unverified synthesis tools
present their Verilog synthesis semantics: by modeling idioms. What we gain from using Lutsig,
because of Lutsig’s VPD-inspired approach, is that simulation-and-synthesis mismatches will never

introduce bugs into our designs.

121

ilog’s always_comb, always_ff, and always_latch are examples of such cases:
they allow hardware designers to declare if they intend combinational logic,
sequential logic, or latched logic. Furthermore, such intent is robust under
optimizations. An unverified synthesis tool can of course check such intent
annotations, but a verified synthesis tool can check and enforce the intent
annotations with mathematical rigor.

5.6 The rest of the paper

What we should conclude from the discussion up till now is that VPD and
TVD mutually benefit from being combined: TVD provides VPD with the
conceptual toolbox needed to make sense of Verilog’s hardware features such
as always_comb, and VPD saves TVD from simulation-and-synthesis mismatches
and provides circuit-correctness theorem transportation to Verilog developers.

The rest of the paper consist of putting our discussion up till now into
practice by adding support for always_comb to Lutsig and surrounding com-
ponents. Previously, Lutsig only supported always_ff blocks. After we have
presented the updates to Lutsig, Lutsig’s full correctness theorem is presented
in Sec. 5.11, and, in Sec. 5.12, going beyond functional correctness, we discuss
a nonfunctional property about Lutsig we have proved that captures (part of)
that always_comb must generate combinational logic.

5.7 Using Lutsig in practice

Before heading into technical details, we here make the discussion up till
now more concrete by demonstrating how hardware designers can use Lutsig
in combination with a proof-producing Verilog code generator, developed in
conjunction with Lutsig, to transport correctness properties down to the netlist
level

Example module We let the Verilog module in Fig. 5.1, implementing a
moving-average filter, serve as a running example in this section. Sec. 5.8
provides more details on Lutsig’s Verilog support and the expressiveness of the
supported subset. Note that the module utilizes the new always_comb support.

SLike any Verilog synthesis tool, Lutsig can be made part of different hardware-development
flows. E.g., there is also a (unverified) Verilog-text-file front-end for Lutsig available such that Lutsig
can be used like a conventional Verilog synthesis tool. But since we in this paper are interested in
VPD-inspired flows, in this section we do not describe alternatives flows.

122

module avg(input logic clk,
input logic[7:0] signal,
output logic[7:0] avg);

logic[7:0] he = 0, h1 = 0, h2 = 0, h3 = 0;

always_ff @(posedge clk) begin
ho <= signal; h1 <= h@; h2 <= h1; h3 <= h2;
end

always_comb begin
avg = ho + h1 + h2 + h3;

// Div by 4 by shifting

avg[0] = avgl[2]; avg[1] = avgl[3];
avgl2] = avgl[4]; avgl[3] = avg[5];
avgl[4] = avgl[6]; avg[5] = avgl7];
avgl6]l = 0; avgl7] = 0;

end

endmodule

Figure 5.1. Example Verilog module

Proving Verilog designs correct Lutsig is accompanied by a proof-producing
Verilog code generator. The code generator is explained in more detail in Sec. 5.9.
In short, the code generator constructs a Verilog module P, given a HOL
embedding Pyoy of a Verilog circuit. It is important to emphasize that an em-
bedded Verilog circuit is still a Verilog circuit, meaning that for example the
synthesis idioms of HOL-embedded Verilog circuits are the synthesis idioms
of Verilog. Since the code generator is proof-producing, the code generator
enables hardware designers to transport properties proved about the input HOL
circuit Pyor, e.8. PaoL F Lo, SPec, to the generated Verilog module Py, i.e.
Pyer |=p1sis Spec, by simple composition.

The {Efrerilog module in Fig. 5.1 was in fact generated by the code generator
from a HOL circuit. With the help of the code generator, we have proved that
if we by s[n] mean the value of signal s at clock cycle n, then the generated
Verilog module satisfies the specification (in 8-bit modular arithmetic) avg[n| =
Z?:l signal[n — i

7 , 1.e., the module is correct.

Going to the netlist level Now having both a Verilog module (Fig. 5.1) and
a correctness result for the module, we can synthesize a netlist implementation
of the module, by invoking Lutsig, and transport the correctness result to the

123

netlist implementation, by composing the Verilog-level correctness result with
Lutsig’s correctness theorem (i.e., in general notation, derive Py =1, Spec
from Py, = [Lusie Spec). We discuss Lutsig in more detail in Sec. 5.10 and the
functional correctness of Lutsig in Sec. 5.11.

FPGAs At this point, our formal development ends. To run the netlist imple-
mentation produced by Lutsig on top of an FPGA, the netlist needs to be placed
and routed onto the FPGA chip and then encoded into a bitstream for the chip.
In our experiments, we used the unverified synthesis suite Vivado 2020.2 for
these last steps. According to our manual testing, the netlist Lutsig synthesizes
for the Verilog module in Fig. 5.1 runs correctly on top of an FPGA board we
have available.

5.8 Formal semantics

In this section we first describe the updated source language of Lutsig (Sec. 5.8.1
and 5.8.2); that is, we describe the subset of Verilog that Lutsig supports and
Lutsig’s Verilog semantics LY2S€ for this subset. We then describe the updated

target language of Lutsig (Sec. 5.8.3), that is, Lutsig’s netlist language.

5.8.1 Expressiveness

Our initial motivation for working on a new version of Lutsig was to extend the
kind of hardware Lutsig can produce. With the new support for always_comb
blocks, any Mealy machine can be implemented using Lutsig. Recall that a
Mealy machine is a tuple (S, sg, X, T, A, G) where S is a finite set of states,
so € S the initial state, ¥ an input alphabet, T' : S — ¥ — S a transition
function, A an output alphabet, and G : S — ¥ — A an output function.
Before the support for always_comb blocks, every circuit output had to be the
direct output of a register, and consequently only trivial output functions G
could be encoded in Lutsig’s Verilog subset. Now, with support for always_comb
blocks, any output function G can be encoded.

5.8.2 Lutsig’s Verilog semantics

Lutsig’s Verilog semantics is designed to be usable for both circuit verification
and compiler verification. Lutsig’s Verilog semantics is much smaller than the
semantics of full Verilog since we are only concerned with synthesizable Verilog
code (e.g. test benches are out of scope for our semantics, since HOL already
provides all proof and testing infrastructure we need). The semantics presented

124

here is the same semantics as presented by Lo6w [66] but with added support
for always_comb blocks.
In Lutsig’s Verilog, a Verilog module consists of

« a set of input signals (including a clock signal c1k),
« a set of variables, some marked externally visible,
« a set of always_comb blocks, and

. a set of always_ff @(posedge clk) blocks.

Handling multiple modules and module instantiations is future work. Lutsig’s
Verilog semantics is a functional operational semantics that takes four inputs:

« a Verilog module m to execute,
« the number of clock cycles n to execute the module,

» afunction fext : N — string — value modeling snapshots of the nonde-
terministic world outside the module, and

» afunction fbits : N — bool modeling a stream of nondeterministic bits.

In Lutsig’s Verilog semantics, there are two kinds of values: Booleans (i.e.,
logic) and (packed) 1-dimensional arrays (e.g., logic[3:0]). In full Verilog,
a bit can take on four different values: 0, 1, X, and Z. In Lutsig’s Verilog, a
bit can only take on the values 0 and 1. This is because we do not support
tristate logic, and no explicit representation of X values is needed since X
assignments (and uninitialized variables) are given semantics by assigning
nondeterministic bits from fbits instead of a symbolic X value. See Lo6w [66]
for a longer discussion on this.

Since Lutsig’s Verilog must be convenient to use in formal reasoning, Lut-
sig’s Verilog is not, in contrast to full Verilog, based on nondeterministic event
processing. Since Lutsig targets synchronous designs, the complexities of an
event-driven semantics can be fully avoided. In short, Lutsig’s Verilog process-
level semantics for executing one clock cycle is:

« For clock cycle zero, i.e. before the first clock tick, initialize all variables
(for a variable without a specified initial value, assign a nondeterministic
value) and then run all always_comb blocks in dependency order.

« For all other clock cycles, run all always_ff blocks in declaration order
followed by all always_comb blocks in dependency order.

125

We now describe the process-level semantics of Lutsig’s Verilog in more
detail. A Verilog module, in Lutsig’s view, is not an entity that, like in full
Verilog, reacts to a series of external events (by propagating them through the
module); rather, a Verilog module is driven by a clock input c1k, and every new
clock cycle a new snapshot of the external world is given to the module through
fext in one go. In other words, the semantics is simplified by not modeling
modules’ combinational behavior between clock cycles.

A module’s always_ff blocks are, in Lutsig’s Verilog, executed in declaration
order since the order of execution does not affect the final result of execution as
long as not more than one process writes to the same variable and all writes to
variables that are read by processes other than the process making the writes
are nonblocking.

A module’s always_comb blocks are, in Lutsig’s Verilog, executed in depen-
dency order since the order of execution does matter since blocking writes are
used even for variables shared between processes. All always_comb blocks are
sorted before execution by their variable dependencies in the sense that no
process writes to a variable that has been read by an earlier process. If the
processes cannot be sorted in this way, the semantics aborts with an error.
Sorting the processes complicates the semantics, since a sorting algorithm is
embedded into the semantics. (We have, however, proved that the algorithm
sorts correctly.) The sorting algorithm picks one particular permutation, but
users of the semantics should think of it as an arbitrary permutation of the input
always_comb blocks that satisfy the mentioned dependency-order criteria.®

Our intention is that Lutsig’s Verilog semantics should coincide with the
simulation semantics of full Verilog (modulo X values) as long as good coding
style is followed, e.g. not writing blockingly in an always_ff block to a variable
shared between processes as mentioned above. (Formally proving a correspon-
dence between the two semantics would be a worthwhile endeavor.) For using
the semantics in proving the implementation of Lutsig correct, coding-style
checks are needed in some cases in Lutsig’s implementation — in other cases,
Lutsig’s synthesis algorithm happens to generate netlists behaviorally equiv-
alent to the input design even for suspicious Verilog code so no checks are
needed.

5.8.3 Lutsig’s netlist semantics

Lutsig’s netlists are used for multiple purposes: such as representing inter-
mediate compilation results, representing non-technology-mapped netlists

®Picking one particular permutation rather than an arbitrary permutation simplifies some proofs
in the development. But since picking an arbitrary permutation would simplify the user-facing
presentation of the semantics, it might be worth revisiting this choice.

126

consisting of high-level cells such as addition cells, and representing technology-
mapped netlists for (a class of) FPGAs. See Loow [66] for more details.

For this version of Lutsig, to support the compilation of always_comb blocks,
we split registers into two groups: pseudoregisters and real registers. Pseu-
doregisters are only needed to represent intermediate compilation results - i.e.,
pseudoregisters are always compiled away before the compilation process is
finished. We explain how pseudoregisters are used in the compilation process
in Sec. 5.10. After adding pseudoregisters, a netlist in Lutsig consists of two
lists of cells and two lists of registers: one list of cells for the real registers and
one list of cells for the pseudoregisters.

There is a formal semantics in functional-operational style associated with
Lutsig’s netlists. The semantics takes the same kind of arguments as Lutsig’s
Verilog semantics except a netlist is given rather than a Verilog module. Netlist
execution is similar to Lutsig’s Verilog execution. We say that a netlist step
consists of running all pseudoregister cells, updating all pseudoregisters, and
then running all remaining cells. With this terminology in mind, we can describe
the full semantics:

« For clock cycle zero, initialize all registers and then do a netlist step.

» For all other clock cycles, update all real registers and then do a netlist
step.

It is important that the netlist semantics is simple since the semantics is
part of the trusted base of circuits produced with the help of Lutsig. In fact, for
netlists without pseudoregisters (such as those generated by Lutsig), it is easy
to prove that the above semantics collapses into the following clean semantics:

« For clock cycle zero, initialize all registers and then run all cells.

« For all other clock cycles, update all registers and then run all cells.

5.9 The proof-producing Verilog code generator

The proof-producing Verilog code generator bundled with Lutsig can generate
a deeply embedded Verilog circuit given a shallowly embedded Verilog circuit.
To shallowly embed a Verilog circuit means to express it as a HOL function
(i.e., a functional program). Shallowly embedded circuits are convenient to
work with since HOL4 has well-developed infrastructure for reasoning about
functional programs. The code generator is proof-producing in the sense that
it, for every run, proves a HOL theorem (using the HOL4 API) ensuring that
the input circuit and output circuit have the same behavior.

127

For this paper, we have extended the code generator with support for
translating always_comb blocks. We have also changed how nonblocking assign-
ments are shallowly embedded, such that a larger set of Verilog designs can be
embedded.

The code generator assumes that circuits are embedded in the style we
now describe. Verilog processes must be embedded as next-state functions over
(module-specific) state records. For each process, the generated Verilog code
closely mirrors the given input HOL function. E.g., recall that the always_ff
block in the Verilog module in Fig. 5.1 is simply:

always_ff @(posedge clk) begin
h® <= signal; h1 <= h@; h2 <= h1; h3 <= h2;
end

The next-state function the block is generated from is:

def

avg_ff fext s ' = let

s’ = s with ho := fext.signal;
s’ = s with h1 := s.ho;

s’ = s’ with h2 := s.h1in

s’ with h3 = s.h2

Note how field updates are translated to assignments in Verilog in a straight-
forward manner (the syntax r with f := v means that field f of record r is
updated to value v). Also note how two state records s and s’ are passed around;
these two state records are the basis for the new nonblocking-assignments
embedding style. The record s contains the values of all variables at the start
of the current clock cycle, and the record s’ contains the current values of all
variables. To see why both records are needed, consider e.g. the assignments
to ho and h1 in the generated always_ff block: since the assignment to ho is
nonblocking, the updated value of ho is not available until the next clock cycle,
and the HOL embedding of the h1 assignment must therefore read the value of
he from the s record (not the s’ record) to model Verilog’s semantics correctly.

The rest of the HOL circuit embedding style closely mirrors Lutsig’s Verilog
semantics. First, there is a function

procs [| fext s s’ L
’

procs (pups) fext s s' = procs ps fext s (p fext s s')

for combining a list of next-state functions into one single next-state function.
The function allows for building one next-state function for all always_ff
blocks in the module and one next-state function for all always_comb blocks. One
important caveat is that the always_comb blocks must be provided in dependency

128

order, otherwise the HOL circuit will not correctly mirror Lutsig’s Verilog
semantics since Lutsig’s Verilog semantics sorts all always_comb blocks by
dependency before execution. The resulting two next-state functions formed
by composing all always_ff blocks and always_comb blocks, respectively, using
procs, can then be given to the following function, also mirroring Lutsig’s
Verilog semantics, to build a full circuit:

mk_circuit sstep cstep s fext 0 = cstep (feat 0) s s
mk_circuit sstep cstep s fext (Sucn) = let

s = mk_circuit sstep cstep s fext m;

s = sstep (fext n) s sin

cstep (fext (Suc n)) s s

E.g., the HOL representation of the Verilog module in Fig. 5.1 is
mk_circuit (procs [avg_ff]) (procs [avg_combl).

Handling variable initialization requires one more level of encoding but is
straightforward and therefore not covered in this paper.

It is important to emphasize that the input language for the code generator is
shallowly embedded Verilog, not a separate HOL-based HDL. In other words, the
input circuits should be seen as Verilog circuits, and, when shallowly embedding
Verilog circuits, according to the style the code generator expects, the hardware
developer should think of themselves as doing Verilog development. It is the
straightforward translation between shallowly embedded Verilog and deeply
embedded Verilog carried out by the code generator that enables this way of
thinking. Importantly, since the input language is Verilog (although shallowly
embedded), there is no need to provide a new set of hardware-modeling idioms
(i.e., a new synthesis semantics) for the input language.

5.10 Lutsig

We now discuss Lutsig’s new support for always_comb blocks. In supporting
always_comb blocks, Lutsig must ensure that all always_comb blocks actually rep-
resent combinational logic [48, p. 207]. In other words, code inside always_comb
blocks must never be mapped to registers or other stateful constructs.

Note how, as stated in Sec. 5.5, and as illustrated by example in Sec. 5.10.1,
adding support for always_comb blocks affects both Lutsig’s Verilog semantics
LYY and Lutsig’s synthesis algorithm. E.g., both the semantics and (as we will
see) the algorithm need to sort always_comb blocks by dependencies. However,

sometimes the two diverge: E.g., sequential logic inside always_comb blocks

129

is not caught in the semantics, instead, checking for sequential logic inside
always_comb blocks is left entirely to the synthesis algorithm.

Handling sequential logic inside always_comb blocks is where pseudoreg-
isters come in: all variables written to by an always_comb block are mapped
to pseudoregisters, and all other variables are mapped to real registers. All
pseudoregisters must then be compiled away before the synthesis process is
over, otherwise Lutsig aborts with an error.

To keep the implementation of Lutsig simple, the decision whether to map
a variable to a pseudoregister or a real register is done on the variable level. E.g.,
all elements of an array variable are either all mapped to one pseudoregister or
all to one real register. In full Verilog, the analysis whether an always_comb block
represents combinational logic is instead based on longest static prefixes [48,
p- 282]. Such more fine-grained analysis allows for different parts of an array
to be mapped to different kinds of logic. But even with our simplified approach,
an analysis on the element level is ultimately needed. E.g., consider a module
containing only one variable a with type logic[1:0] and the following block:

always_comb begin

a[0] = inpo;
a[1] = inp1;
end

The block represents combinational logic since all elements of the array are
assigned. But if one of the assignments would have been left out, then the block
would not represent combinational logic. Therefore, an analysis on the element
level must be carried out at some point in the synthesis process.

In Lutsig, pseudoregisters are removed at a late stage in the synthesis
pipeline. The following pipeline passes in Lutsig are important for our discus-
sion here:

SYNT Synthesize the given Verilog design to a netlist
REM1 Remove unused registers (variable-level analysis)
DET Remove all nondeterminism from the netlist

MAP Compile and technology-map away array cells

REM2 Remove unused registers (element-level analysis)

Pseudoregisters are introduced in SYNT and not removed until MAP. Since
MAP is done on the element level (rather than the variable level as the passes
before it), it was natural to place the removal of pseudoregisters there. The
downside of this approach is that we had to update all intermediate passes of
Lutsig, such as REM1/2 and DET, to handle the more complex netlist semantics
with pseudoregisters.

130

5.10.1 Problems in compiling combinational logic

We now highlight some of the problems related to compiling combinational logic
and describe how Lutsig handles them. Our presentation is example-driven, and
many of the problems relate to avoiding simulation-and-synthesis mismatches
(i-e., ensuring behavioral equivalence between (output) synthesized netlists and
(input) Verilog modules). It is important to consider not only designs that are
rejected by Lutsig but also designs that are accepted, since compiler-correctness
theorems like Lutsig’s (of the form VPs Pr, Comp(Ps) = OK(Pr) = Pg ~
Pr) do not protect against compiler bugs that cause compilers to fail on valid
input code (i.e., bugs causing the the compiler to return Error when it should
have returned OK).

Combinational logic in always_ff blocks Code inside always_comb blocks
must always represent combinational logic only, but code inside always_ff
blocks can represent both combinational and sequential logic. E.g., consider a
module consisting of three variables a, b, and ¢ with type logic[1:0] with one
single block:

always_ff @(posedge clk) begin
a = inpo;

b[0] = inpl;

b[1] = inp2;

c <= a + b;

end

Such code should not generate registers for a and b since those registers would
never be read. REM1 and REM2 make sure the (real) registers for a and b
generated by SYNT are optimized away before the synthesis process is over.
REM1 and REM2 are the same pass run twice; we run the pass twice since we
want to catch easy cases (such as a in the example here) early but at the same
time also make sure to catch cases requiring element-level analysis (such as b
in the example here).

Sequential logic in always_comb blocks Lutsig must check that all always_comb
blocks actually model combinational logic. E.g., the following block must be
rejected by Lutsig:

always_comb a = a + 1;

For this paper, we have extended MAP to handle this responsibility.
MAP is a netlist pass centered around a map o from cell inputs to lists of
marked cell inputs. MAP visits all netlist cells in order and the map o is updated

131

as the netlist is visited. For real registers, all inputs are marked legal from the
start of compilation. For pseudoregisters, all inputs are initially marked as illegal
inputs. If an illegal input is referenced during compilation (i.e. the (relevant part
of the) o entry for the cell input is marked illegal), the compilation is aborted.

We now consider two examples. First, note that the reference to a on the
right-hand side in the above always_comb block will cause the compilation to
abort. Now, instead consider the following Verilog code that exemplifies code
that Lutsig accepts (although note that the illustration is done on the Verilog
level rather than on the netlist level that MAP is actually run at):

always_comb begin
// the comments below illustrate how sigma is updated
// when MAP iterates over the always_comb block

// b is a pseudoregister, therefore we start with:
// sigma(b) = [illegal, illegall]

b[0] = inp@; // sigma(b) = [illegal, inp@]
b[1] = inp1; // sigma(b) = [inp1, inp@]

// no problem reading the full b here since
// all elements of b covered (i.e., no illegal
// inputs in sigma(b))

b=>b+1;

end

Since nonsynthesizable code is rejected by Lutsig, it is not important what
semantics Lutsig’s Verilog semantics assigns to nonsynthesizable code. For
some nonsynthesizable code, Lutsig’s semantics diverges from Verilog’s simu-
lation semantics. E.g., recall that all blocks are unconditionally executed each
clock cycle in Lutsig’s semantics. In contrast, in Verilog’s simulation semantics,
always_comb blocks are only executed when something they depend on is up-
dated. But since combinational logic is idempotent — that is, we can execute it
multiple times without affecting the result — executing the same always_comb
multiple times is harmless. However, if the always_comb block does not ac-
tually model combinational logic, this reasoning does not hold, and the two
semantics might diverge.

Intrablock order problems Recall the andor1b module with “mis-ordered”
assignments discussed in Sec. 5.4. The o-based MAP pass also handles such
code correctly. E.g., Lutsig rejects the following code with the same problem:

always_comb begin
b=a+1; // sigma(a) says a illegal here!

132

a = inp;
end

Interblock order problems Recall that Lutsig’s non-event-based Verilog
semantics sorts always_comb blocks before execution (see Sec. 5.8). E.g., to assign
sensible semantics to the following code, the order of the blocks needs to be
reversed before execution:

always_comb b = a + 1;
always_comb a = inp;

The same order problem occurs in compilation: To compile the above code
correctly, Lutsig must first sort the always_comb blocks by their dependencies.
To sort, Lutsig uses the same sorting algorithm as used in Lutsig’s Verilog
semantics.

Not all processes can be ordered by their dependencies. Since combinational
logic must not include combinational loops, the sorting algorithm used in Lutsig
rejects code containing circular dependencies like the following:

always_comb a = b + 1;

always_comb b = a + 1;

If statements Recall, from Sec 5.5, the discussion on accidentally specifying
latched logic. Lutsig handles such situations correctly. E.g. the following code
is rejected:

always_comb
if (¢)
a = inp;
//else
// a = "x;

If instead the else branch is uncommented, then Lutsig synthesizes the code
successfully. The original block without an else branch gets stuck in the syn-
thesis process since SYNT generates a mux with inp and the pseudoregister
generated for a as inputs, and MAP eventually detects that a pseudoregister is
referenced and aborts the synthesis process.

Case statements and nested if statements Compiling case statements is
similar to compiling if statements: if a variable is assigned in one branch, then
it must be assigned in all other branches as well. Let the variable c have type
logic[1:0] and consider the following code:

133

always_comb
case (c)
2'b00:
2'b01:
2'b10:
2'b11:
//default: a = 'x;
endcase

[SR R]

A sufficiently smart synthesis tool would realize that a is assigned for all possible
values of c. However, Lutsig’s synthesis algorithm is not smart and requires
the commented-out default branch above to realize that all cases are covered.
The same holds for the analogous situation with nested if statements. In fact,
Lutsig handles case statements by expanding them to nested if statements, so
Lutsig’s limited case statement handling is a consequence of Lutsig’s limited if
statement handling.

5.11 Functional correctness of Lutsig

We now state Lutsig’s functional-correctness theorem. The theorem statement
is the same as in the previous version of Lutsig; the HOL4 proof of the theo-
rem, however, has been updated to take into account the new functionality
added in this paper. Although the only kind of behavior we take into account
for Lutsig’s correctness is externally visible cycle-per-cycle register and wire
states, the presence of nondeterminism (fbits) necessitates a slightly complex-
looking theorem statement. If we let P lVLL’f b3 G denote that program P’s
externally visible state is S under the semantics L after n clock cycles with
nondeterminism source fbits, then Lutsig’s correctness theorem is as follows:

Lutsig(Pyer) = OK(Py) =
3Snl; Pnl llz;{blts Snl A

. bits’
Eszts’, Pver U’z}_{ns}gs Sver — Snl = Sver

ver

5.12 Nonfunctional correctness of Lutsig

We now state an example nonfunctional-correctness property we have proved
about Lutsig. Recall that the main purpose of Verilog’s synthesis semantics is
to provide a way for hardware designers to express hardware ideas to their
synthesis tools through modeling idioms. In our approach, this places the role of
the synthesis semantics mainly outside the formal development. Nevertheless,
some parts of the synthesis semantics can be treated formally. To illustrate this,

134

we have proved a property that captures (part of) the (synthesis-semantics) idea
that always_comb blocks must be mapped to combinational logic [48, p. 207]: For
any run Lutsig(Py.;) = OK(Py), if a variable is written to in an always_comb
block in Py, then no register with the same name as the variable will be
included in P;.

The above may seem like a trivial property, but note that it relates concepts
in the input design (writes) to concepts in the final netlist (registers). This
means that we must carry information from the very first compilation phase
down to the very last. Moreover, Lutsig did not actually satisfy this property
before we started working on the property. This was because the SYNT pass
(see Sec. 5.10) used the presence of writes in the design that was given to that pass
to decide which variables to map to real registers and which to pseudoregisters
rather than the presence of writes in the design as given by the user — the former
does not reliably track the latter since writes may be optimized away in the
compilation process!

5.13 Related work

Different hardware languages are associated with differ approaches to hard-
ware design. In turn, different hardware-design approaches require different
approaches to taking synthesis aspects into consideration in verification work.
In this paper, we consider Verilog-based hardware design. But even within
Verilog-based hardware design, multiple development approaches are avail-
able. Of particular interest for this paper is different approaches to establish
circuit reliability. Verified synthesis tools do not yet belong to the mainstream
hardware development toolbox. Instead, e.g. translation validation (known as
formal equivalence checking in the hardware world) is more common. The
first paper on Lutsig [66] compares Lutsig to different approaches to circuit
reliability, so we do not repeat the discussion here.

For this paper, it is not only Lutsig that we had to extend to support
always_comb blocks. We also had to update Lutsig’s Verilog semantics. Ver-
ilog has a reputation of being difficult to understand and formalize. One of the
problems highlighted by the most detailed Verilog semantics available today,
by Meredith et al. [73], actually relate to combinational logic. Their semantics
does not properly handle when a variable is assigned multiple times in the
same clock cycle (the writes are not propagated through combinational logic
like they would in hardware, see the paper for details). To address this issue,
Meredith et al. suggest a non-standard alternative semantics (for continuous
assignments) based on Gordon’s [30] Verilog semantics. Lutsig’s Verilog se-
mantics do not suffer from this problem, but Lutsig’s semantics also diverges

135

from the Verilog standard - by unconditionally running all always_comb blocks
(in dependency order) each clock cycle, rather than following the event-based
semantics provided by the Verilog standard.

Non-Verilog development approaches include e.g. generating hardware from
software languages like C, so-called high-level synthesis (HLS), and embedding
existing or new hardware languages inside general-purpose software languages.

No approach to hardware completely shields the hardware designer from
synthesis aspects — not even HLS. For example, the manual [106, p. 17] for Vitis,
a HLS tool for C, C++, and OpenCL, states that “arbitrary, off-the-shelf software
cannot be efficiently converted into hardware” and that, moreover, “even if
[a] software program can be automatically converted (or synthesized) into
hardware, achieving acceptable quality of results, will require additional work
such as rewriting the software to help the HLS tool achieve the desired perfor-
mance goals.” The pessimism of the manual [106, p. 28] continues: “Software
written for CPUs and software written for FPGAs is fundamentally different.
You cannot write code that is portable between CPU and FPGA platforms with-
out sacrificing performance.” To prepare its readers for hardware development
using Vitis, the manual informs the reader what they need to know about the
Vitis synthesis process to design efficient hardware; in other words, the HLS
hardware designer, much like the Verilog hardware designer, must be aware
of how to control their synthesis tool and how to communicate to their syn-
thesis tool what kind of hardware they want. In total, the manual is 660 pages,
reflecting the fact that not even HLS manages to encapsulate the complexities
of synthesis.

Approaches in where hardware constructs are embedded inside general-
purpose languages include Lava [13] in Haskell and Chisel [6] in Scala. When
embedding netlists inside general-purpose languages, most of the complexity
of synthesis can be pushed to the general-purpose languages.

As for verified hardware-synthesis tools, Lutsig is not the only verified
tool available today. For C, there is Vericert [40]. For Bluespec (more pre-
cisely, Bluespec-like languages), there are the Fe-Si project [15] and the Koika
project [14]. (For Verilog, there is only Lutsig.) However, none of the publi-
cations for the available verified hardware-synthesis tools discuss constructs
that, like always_comb blocks, require combining a hardware-oriented synthesis
approach (like TVD) with a software-oriented verification approach (like VPD)
as we do in this publication (although the Koéika project wanders into similar
territory).

136

5.14 Conclusion

In this paper, we have added support for always_comb blocks to Lutsig. This takes
Lutsig one step closer to become a usable Verilog synthesis tool. In extending
Lutsig, we had to revisit the relationship between VPD and TVD. The discussion
on VPD and TVD paves the way for further Lutsig extensions, such as BRAM
support (mentioned briefly in Sec. 5.2.2).

Verilog support is not the only kind of Lutsig work needed. An important
difference between the unverified synthesis tools available today and Lutsig is
the amount of optimization performed by the tools. Since we have not added new
optimization passes for this version of Lutsig, previously published data [66]
on synthesis-result quality still holds. Clearly, more work lies ahead.

Acknowledgements We thank Magnus Myreen, Wolfgang Ahrendt, Koen
Claessen, Warren A. Hunt, Jr., Thomas Melham, Adam Chlipala, and David
J. Greaves for comments on draft version of this paper. The comments have
substantially improved the presentation.

137

138

Bibliography

[1] 7 Series FPGAs Data Sheet: Overview (DS180, v2.6). Xilinx. 2018.

[2] Kenneth L. Albin, Bishop C. Brock, Warren A. Hunt, Jr., and Lawrence M.
Smith. Testing the FM9001 Microprocessor. Tech. rep. 90. Computational
Logic, Inc., 1995.

[3] Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W. Schirmer,
and Artem Starostin. “The Verisoft Approach to Systems Verification”.
In: Verified Software: Theories, Tools, Experiments (VSTTE). 2008. po1:
10.1007/978-3-540-87873-5_18.

[4] Roberto M. Amadio, Nicolas Ayache, Francois Bobot, Jaap P. Boender,
Brian Campbell, Ilias Garnier, Antoine Madet, James McKinna, Dominic
P. Mulligan, Mauro Piccolo, Randy Pollack, Yann Régis-Gianas, Claudio
Sacerdoti Coen, Ian Stark, and Paolo Tranquilli. “Certified Complexity
(CerCo)”. In: Foundational and Practical Aspects of Resource Analysis
(FOPARA). 2014. po1: 10.1007/978-3-319-12466-7_1.

[5] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C. Pierce,
Zhong Shao, Stephanie Weirich, and Steve Zdancewic. “Position paper:
The science of deep specification”. In: Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 375.2104 (2017). por: 10.1098/rsta.2016.0331.

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Wa-
terman, Rimas AviZienis, John Wawrzynek, and Krste Asanovi¢. “Chisel:
Constructing Hardware in a Scala Embedded Language”. In: Annual
Design Automation Conference (DAC). 2012. po1: 10.1145/2228360.
2228584.

[7] Aureéle Barriére, Sandrine Blazy, Olivier Fliickiger, David Pichardie,
and Jan Vitek. “Formally Verified Speculation and Deoptimization in a
JIT Compiler”. In: Proceedings of the ACM on Programming Languages
5.POPL (2021). por: 10.1145/3434327.

139

https://doi.org/10.1007/978-3-540-87873-5_18
https://doi.org/10.1007/978-3-319-12466-7_1
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/3434327

(12]

[15]

[16]

(17]

Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent
Laporte, David Pichardie, and Alix Trieu. “Formal Verification of a
Constant-Time Preserving C Compiler”. In: Proceedings of the ACM on
Programming Languages 4 POPL (2019). por: 10.1145/3371075.

William R. Bevier, Warren A. Hunt, J Strother Moore, and William D.
Young. “An approach to systems verification”. In: Journal of Automated
Reasoning 5.4 (1989). por: 10.1007/BF00243131.

Sven Beyer, Christian Jacobi, Daniel Kroening, and Dirk Leinenbach.
Correct Hardware by Synthesis from PVS. Tech. rep. 2002. URL: http:
//www-wjp.cs.uni-sb.de/publikationen/BJKL@2.pdf.

Sven Beyer, Christian Jacobi, Daniel Kréning, Dirk Leinenbach, and
Wolfgang J. Paul. “Putting it all together — Formal verification of the
VAMP?”. In: International Journal on Software Tools for Technology Trans-
fer (STTT) 8.4 (2006). DoL: 10.1007/510009-006-0204-6.

Mohammad-Mahdi Bidmeshki and Yiorgos Makris. “VeriCoq: A Verilog-
to-Coq converter for proof-carrying hardware automation”. In: IEEE
International Symposium on Circuits and Systems (ISCAS). 2015. por:
10.1109/ISCAS.2015.7168562.

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. “Lava:
Hardware Design in Haskell”. In: International Conference on Functional
Programming (ICFP). 1998. po1: 10.1145/289423.289440.

Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind.
“The Essence of Bluespec: A Core Language for Rule-Based Hardware
Design”. In: Conference on Programming Language Design and Imple-
mentation (PLDI). 2020. po1: 10.1145/3385412.3385965.

Thomas Braibant and Adam Chlipala. “Formal Verification of Hardware
Synthesis”. In: Computer Aided Verification (CAV). 2013. por: 10.1007/
978-3-642-39799-8_14.

Bishop C. Brock and Warren A. Hunt. “The DUAL-EVAL Hardware
Description Language and Its Use in the Formal Specification and Veri-
fication of the FM9001 Microprocessor”. In: Formal Methods in System
Design 11.1 (1997). por: 10.1023/A:1008685826293.

Adam Chlipala. “Mostly-automated Verification of Low-level Programs
in Computational Separation Logic”. In: Programming Language Design
and Implementation (PLDI). 2011. por: 10.1145/1993498.1993526.

140

https://doi.org/10.1145/3371075
https://doi.org/10.1007/BF00243131
http://www-wjp.cs.uni-sb.de/publikationen/BJKL02.pdf
http://www-wjp.cs.uni-sb.de/publikationen/BJKL02.pdf
https://doi.org/10.1007/s10009-006-0204-6
https://doi.org/10.1109/ISCAS.2015.7168562
https://doi.org/10.1145/289423.289440
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1007/978-3-642-39799-8_14
https://doi.org/10.1007/978-3-642-39799-8_14
https://doi.org/10.1023/A:1008685826293
https://doi.org/10.1145/1993498.1993526

(18]

(27]

(28]

Adam Chlipala. “The Bedrock structured programming system: Com-
bining generative metaprogramming and Hoare logic in an extensible
program verifier”. In: International Conference on Functional Program-
ming (ICFP). 2013. po1: 10.1145/2500365.2500592.

Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam
Chlipala, and Arvind. “Kami: A Platform for High-level Parametric
Hardware Specification and Its Modular Verification”. In: Proceedings
of the ACM on Programming Languages 1.ICFP (2017). po1: 10.1145/
3110268.

Avra Cohn. “The notion of proof in hardware verification”. In: Journal
of Automated Reasoning 5.2 (1989). po1: 10.1007/bf00243000.

Niklas Eén and Niklas Sérensson. “An Extensible SAT-solver”. In: Theory
and Applications of Satisfiability Testing. 2004. po1: 10.1007/978-3~
540-24605-3_37.

Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam
Chlipala. “Integration Verification across Software and Hardware for a
Simple Embedded System”. In: Conference on Programming Language De-
sign and Implementation (PLDI). 2021. po1: 10.1145/3453483.3454065.

Peter Flake, Phil Moorby, Steve Golson, Arturo Salz, and Simon David-
mann. “Verilog HDL and Its Ancestors and Descendants”. In: Proceedings
of the ACM on Programming Languages 4 HOPL (2020). por: 10.1145/
3386337.

Anthony Fox. “Directions in ISA Specification”. In: Interactive Theorem
Proving (ITP). 2012. po1: 10.1007/978-3-642-32347-8_23.

Anthony Fox, Magnus O. Myreen, Yong Kiam Tan, and Ramana Kumar.
“Verified Compilation of CakeML to Multiple Machine-code Targets”.
In: Certified Programs and Proofs (CPP). 2017. po1: 10.1145/3018610.
3018621.

Peter Gammie. “Synchronous Digital Circuits as Functional Programs”.
In: ACM Computing Surveys 46.2 (2013). po1: 10 . 1145/ 2543581 .
2543588.

Herman Geuvers. “Proof assistants: History, ideas and future”. In: Sad-

hana 34.1 (2009). por: 10.1007/s12046-009-0001-5.

Shilpi Goel, Warren A. Hunt, Matt Kaufmann, and Soumava Ghosh.
“Simulation and Formal Verification of x86 Machine-Code Programs
that make System Calls”. In: Formal Methods in Computer-Aided Design
(FMCAD). 2014. po1: 10.1109/FMCAD. 2014.6987600.

141

https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3110268
https://doi.org/10.1007/bf00243000
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/3386337
https://doi.org/10.1145/3386337
https://doi.org/10.1007/978-3-642-32347-8_23
https://doi.org/10.1145/3018610.3018621
https://doi.org/10.1145/3018610.3018621
https://doi.org/10.1145/2543581.2543588
https://doi.org/10.1145/2543581.2543588
https://doi.org/10.1007/s12046-009-0001-5
https://doi.org/10.1109/FMCAD.2014.6987600

[29]

(30]

(31]

(34]

(35]

(36]

Alejandro Gémez-Londofio, Johannes Aman Pohjola, Hira Taqdees
Syeda, Magnus O. Myreen, and Yong Kiam Tan. “Do You Have Space for
Dessert? A Verified Space Cost Semantics for CakeML Programs”. In:
Proceedings of the ACM on Programming Languages 4.O0PSLA (2020).
DOI: 10.1145/3428272.

Michael Gordon. “The Semantic Challenge of Verilog HDL”. In: Sym-
posium on Logic in Computer Science. 1995. po1: 10.1109/LICS.1995.
523251.

Michael J. C. Gordon. “Why higher-order logic is a good formalism for
specifying and verifying hardware”. In: Formal Aspects of VLSI Design:
Proceedings of the 1985 Edinburgh Workshop on VLSI. 1986.

Mike Gordon. “From LCF to HOL: A Short History”. In: Proof; Language,
and Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

Mike J. C. Gordon. “Tactics for mechanized reasoning: a commentary
on Milner (1984) *The use of machines to assist in rigorous proof’. In:
Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 373.2039 (2015). po1: 10.1098/rsta. 2014.
0234.

David J. Greaves. “The CSYN Verilog Compiler and Other Tools”. In:
International Workshop on Field-Programmable Logic and Applications
(FPL). 1995. por1: 10.1007/3-540-60294-1_113.

Armaél Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael
Norrish. “Verified Characteristic Formulae for CakeML”. In: European
Symposium on Programming (ESOP). 2017. po1: 10.1007/978-3-662-
54434-1_22.

Xiaolong Guo, Raj Gautam Dutta, Prabhat Mishra, and Yier Jin. “Auto-
matic Code Converter Enhanced PCH Framework for SoC Trust Ver-
ification”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 25.12 (2017). por: 10.1109/TVLSI.2017.2751615.

John Harrison, Josef Urban, and Freek Wiedijk. “History of Interactive
Theorem Proving”. In: Handbook of the History of Logic, Volume 9: Com-
putational Logic. 2014. po1: 10.1016/b978-0-444-51624-4.50004-6.

Jifeng He, C. A. R. Hoare, Martin Frianzle, Markus Miller-Olm, Ernst-
Riidiger Olderog, Michael Schenke, Michael R. Hansen, Anders P. Ravn,
and Hans Rischel. “Provably Correct Systems”. In: Formal Techniques
in Real-Time and Fault-Tolerant Systems. 1994. Do1: 10.1007/3-540-
58468-4_171.

Heartbleed. UrL: http://heartbleed.com.

142

https://doi.org/10.1145/3428272
https://doi.org/10.1109/LICS.1995.523251
https://doi.org/10.1109/LICS.1995.523251
https://doi.org/10.1098/rsta.2014.0234
https://doi.org/10.1098/rsta.2014.0234
https://doi.org/10.1007/3-540-60294-1_113
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1109/TVLSI.2017.2751615
https://doi.org/10.1016/b978-0-444-51624-4.50004-6
https://doi.org/10.1007/3-540-58468-4_171
https://doi.org/10.1007/3-540-58468-4_171
http://heartbleed.com

(42]

(43]

[49]

(50]

(51]

Yann Herklotz, James Pollard, Nadesh Ramanathan, and John Wickerson.
Formal Verification of High-Level Synthesis. Under review. 2020. URL:
https://yannherklotz.com/docs/drafts/formal_hls.pdf.

Yann Herklotz and John Wickerson. “Finding and Understanding Bugs

in FPGA Synthesis Tools”. In: International Symposium on Field-Programmable

Gate Arrays (FPGA). 2020. por: 10.1145/3373087.3375310.

Mike Hinchey, Jonathan P. Bowen, and Ernst-Rudiger Olderog, eds.
Provably Correct Systems. Springer International Publishing, 2017. por:
10.1007/978-3-319-48628-4.

Son Ho, Oskar Abrahamsson, Ramana Kumar, Magnus O. Myreen,
Yong Kiam Tan, and Michael Norrish. “Proof-Producing Synthesis of
CakeML with I/O and Local State from Monadic HOL Functions”. In:
International Joint Conference on Automated Reasoning (IJCAR). 2018.
DOI: 10.1007/978-3-319-94205-6_42.

C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”.
In: Communications of the ACM 12.10 (1969). por: 10.1145/363235.
363259.

Warren A. Hunt, Matt Kaufmann, J Strother Moore, and Anna Slo-
bodova. “Industrial hardware and software verification with ACL2”. In:
Philosophical Transactions of the Royal Society of London A: Mathemati-
cal, Physical and Engineering Sciences 375.2104 (2017). po1: 10.1098/
rsta.2015.0399.

Joe Hurd. “The OpenTheory Standard Theory Library”. In: NASA Formal
Methods (NFM). 2011. po1: 10.1007/978-3-642-20398-5_14.

Mike Hutton, Vaughn Betz, and Jason Anderson. “FPGA Synthesis and
Physical Design”. In: Electronic Design Automation for IC Implementation,
Circuit Design, and Process Technology. Ed. by Luciano Lavagno, Igor L.
Markov, Grant Martin, and Louis K. Scheffer. CRC Press, 2016. Chap. 16.

IEEE Standard for SystemVerilog—Unified Hardware Design, Specification,
and Verification Language. IEEE Std 1800-2017. 2018. po1: 10. 1109/
IEEESTD.2018.8299595.

IEEE Standard for Verilog Hardware Description Language. IEEE Std
1364-2001. 2001. por: 10.1109/IEEESTD. 2001.93352.

IEEE Standard for Verilog Hardware Description Language. IEEE Std
1364-2005. 2006. pOI: 10.1109/IEEESTD. 2006 .99495.

Intel Quartus Prime Pro Edition User Guide: Design Recommendations
(UG-20131, v21.1). Intel. 2021.

143

https://yannherklotz.com/docs/drafts/formal_hls.pdf
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1007/978-3-319-48628-4
https://doi.org/10.1007/978-3-319-94205-6_42
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1098/rsta.2015.0399
https://doi.org/10.1098/rsta.2015.0399
https://doi.org/10.1007/978-3-642-20398-5_14
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/IEEESTD.2001.93352
https://doi.org/10.1109/IEEESTD.2006.99495

(52]

(53]

[62]

Juliano Iyoda. “Translating HOL functions to hardware”. PhD thesis.
University of Cambridge, 2007.

Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang,
Albert Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Law-
son, and Jonathan Bachrach. “Reusability is FIRRTL ground: Hardware
construction languages, compiler frameworks, and transformations”.
In: International Conference on Computer-Aided Design (ICCAD). 2017.
DOI: 10.1109/ICCAD.2017.8203780.

Jeffrey J. Joyce. “Totally verified systems: Linking verified software to
verified hardware”. In: Hardware Specification, Verification and Synthesis:
Mathematical Aspects. 1990. por: 10.1007/0-387-97226-9_29.

Wilayat Khan, Alwen Tiu, and David Sanan. “VeriFormal: An Executable
Formal Model of a Hardware Description Language”. In: Singapore
Cyber-Security RandD Conference (SG-CRC). 2017. por: 10.3233/978-
1-61499-744-3-109.

Gerwin Klein. “Operating system verification—An overview”. In: Sad-
hana 34.1 (2009). por: 10.1007/s12046-009-0002-4.

Carlos Delgado Kloos and Peter T. Breuer, eds. Formal Semantics for
VHDL. Springer US, 1995. po1: 10.1007/978-1-4615-2237-9.

Dirk Koch, Frank Hannig, and Daniel Ziener, eds. FPGAs for Software
Programmers. Springer International Publishing, 2016. po1: 10.1007/
978-3-319-26408-0.

Ramana Kumar, Eric Mullen, Zachary Tatlock, and Magnus O. Myreen.
“Software Verification with ITPs Should Use Binary Code Extraction to
Reduce the TCB (Short Paper)”. In: Interactive Theorem Proving (ITP).
2018. por: 10.1007/978-3-319-94821-8_21.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.
“CakeML: A Verified Implementation of ML”. In: Principles of Program-
ming Languages (POPL). 2014. po1: 10.1145/2535838.2535841.

Miriam Leeser, Richard Chapman, Mark Aagaard, Mark Linderman, and
Stephan Meier. “High Level Synthesis and Generating FPGAs with the
BEDROC System”. In: Journal of VLSI Signal Processing Systems for Sig-
nal, Image and Video Technology 6.2 (1993). po1: 10.1007/bf01607881.

Dirk Leinenbach and Elena Petrova. “Pervasive Compiler Verification
— From Verified Programs to Verified Systems”. In: Electronic Notes in
Theoretical Computer Science 217 (2008). po1: 10.1016/j.entcs.2008.
06.040.

144

https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1007/0-387-97226-9_29
https://doi.org/10.3233/978-1-61499-744-3-19
https://doi.org/10.3233/978-1-61499-744-3-19
https://doi.org/10.1007/s12046-009-0002-4
https://doi.org/10.1007/978-1-4615-2237-9
https://doi.org/10.1007/978-3-319-26408-0
https://doi.org/10.1007/978-3-319-26408-0
https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/bf01607881
https://doi.org/10.1016/j.entcs.2008.06.040
https://doi.org/10.1016/j.entcs.2008.06.040

(63]

[64]

(68]

Xavier Leroy. “A Formally Verified Compiler Back-end”. In: Journal of
Automated Reasoning 43.4 (2009). por: 10.1007/s10817-009-9155-4.

Xavier Leroy. “Formal Verification of a Realistic Compiler”. In: Com-
munications of the ACM (CACM) 52.7 (2009). po1: 10.1145/1538788.
1538814.

Arm Limited. AMBA AXI and ACE Protocol Specification. Tech. rep. ARM
IHI 0022F.b. 2017.

Andreas Loow. “Lutsig: A Verified Verilog Compiler for Verified Circuit
Development”. In: Conference on Certified Programs and Proofs (CPP).
2021. por: 10.1145/3437992.3439916.

Andreas L66w, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen,
Michael Norrish, Oskar Abrahamsson, and Anthony Fox. “Verified Com-
pilation on a Verified Processor”. In: Conference on Programming Lan-
guage Design and Implementation (PLDI). 2019. por: 10.1145/3314221.
3314622.

Andreas Lo6w and Magnus O. Myreen. “A Proof-Producing Translator
for Verilog Development in HOL”. In: International Workshop on For-
mal Methods in Software Engineering (FormaliSE). 2019. por: 10.1109/
FormaliSE.2019.00020.

Donald MacKenzie. Mechanizing Proof: Computing, Risk, and Trust. MIT
Press, 2001.

Donald MacKenzie. “The fangs of the VIPER”. In: Nature 352.6335 (1991).
DoI: 10.1038/352467a0.
Thomas F. Melham. Higher Order Logic and Hardware Verification. Cam-

bridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1993.

Meltdown and Spectre. URL: https://meltdownattack.com.
Patrick Meredith, Michael Katelman, José Meseguer, and Grigore Rosu.
“A formal executable semantics of Verilog”. In: Formal Methods and

Models for Codesign (MEMOCODE). 2010. por: 10.1109/MEMCOD. 2010.
5558634.

Don Mills. “Being Assertive with Your X”. In: Synopsys Users Group
Conference (SNUG). 2004.

Don Mills and Clifford E. Cummings. “RTL Coding Styles That Yield
Simulation and Synthesis Mismatches”. In: Synopsys Users Group Con-
ference (SNUG). 1999.

145

https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1038/352467a0
https://meltdownattack.com
https://doi.org/10.1109/MEMCOD.2010.5558634
https://doi.org/10.1109/MEMCOD.2010.5558634

[79]

(80]

(85]

(86]

Magnus O. Myreen. “A Minimalistic Verified Bootstrapped Compiler
(Proof Pearl)”. In: Conference on Certified Programs and Proofs (CPP).
2021. por: 10.1145/3437992.3439915.

Magnus O. Myreen. “Formal verification of machine-code programs”.
PhD thesis. University of Cambridge, 2009.

Magnus O. Myreen. “Verified Just-in-Time Compiler on X86”. In: Sym-
posium on Principles of Programming Languages (POPL). 2010. por: 10.
1145/1706299.1706313.

Magnus O. Myreen and Scott Owens. “Proof-producing translation of
higher-order logic into pure and stateful ML”. In: Journal of Functional
Programming 24.2-3 (2014). po1: 10.1017/50956796813000282.

Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair
Fort, Andrew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fab-
rizio Ferrandi, Jason Anderson, and Koen Bertels. “A Survey and Eval-
uation of FPGA High-Level Synthesis Tools”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 35.10 (2016).
DoI: 10.1109/TCAD.2015.2513673.

Zhaozhong Ni and Zhong Shao. “Certified Assembly Programming with
Embedded Code Pointers”. In: Principles of Programming Languages
(POPL). 2006. po1: 10.1145/1111037.1111066.

Rishiyur Nikhil. “Bluespec SystemVerilog: Efficient, Correct RTL from
High-Level Specifications”. In: International Conference on Formal Meth-
ods and Models for Co-Design (MEMOCODE). 2004. po1: 10 . 1109/
MEMCOD . 2004 .1459818.

Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan.
“Functional Big-step Semantics”. In: European Symposium on Program-
ming (ESOP). 2016. Do1: 10.1007/978-3-662-49498-1_23.

Zoe Paraskevopoulou and Andrew W. Appel. “Closure Conversion is
Safe for Space”. In: Proceedings of the ACM on Programming Languages
3.ICFP (2019). por: 10.1145/3341687.

Daniel Patterson and Amal Ahmed. “The Next 700 Compiler Correctness
Theorems (Functional Pearl)”. In: Proceedings of the ACM on Program-
ming Languages 3.ICFP (2019). por: 10.1145/3341689.

Lawrence C. Paulson, Tobias Nipkow, and Makarius Wenzel. “From
LCF to Isabelle/HOL”. In: Formal Aspects of Computing 31.6 (2019). po1:
10.1007/s00165-019-00492-1.

146

https://doi.org/10.1145/3437992.3439915
https://doi.org/10.1145/1706299.1706313
https://doi.org/10.1145/1706299.1706313
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1145/1111037.1111066
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1145/3341687
https://doi.org/10.1145/3341689
https://doi.org/10.1007/s00165-019-00492-1

(89]

[90]

(93]

Jodo Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. “Pi-Ware:
Hardware Description and Verification in Agda”. In: Types for Proofs and
Programs (TYPES 2015). 2018. po1: 10.4230/LIPIcs.TYPES.2015.9.

Amir Pnueli, Michael Siegel, and Eli Singerman. “Translation validation”.
In: International Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS). 1998. por1: 10.1007/BFb0054170.

Robert Pollack. “How to Believe a Machine-Checked Proof”. In: Twenty
Five Years of Constructive Type Theory. 1998.

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary
Tatlock. “QED at Large: A Survey of Engineering of Formally Verified
Software”. In: Foundations and Trends in Programming Languages 5.2-3
(2019). por: 10.1561/2500000045.

Adrian Sampson. FPGAs Have the Wrong Abstraction. 2019. URL: https:
//www.cs.cornell.edu/~asampson/blog/fpgaabstraction.html.

Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. “LLHD:
A Multi-level Intermediate Representation for Hardware Description
Languages”. In: Conference on Programming Language Design and Im-
plementation (PLDI). 2020. po1: 10.1145/3385412.3386024.

Jaroslav Sev¢ik, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh
Jagannathan, and Peter Sewell. “CompCertTSO: A Verified Compiler
for Relaxed-Memory Concurrency”. In: Journal of the ACM 60.3 (2013).
DOI: 10.1145/2487241.2487248.

Peter Sewell. Rigorous Engineering of Mainstream Systems web page. URL:
https://www.cl.cam.ac.uk/~pes20/rems/.

Konrad Slind and Michael Norrish. “A Brief Overview of HOL4”. In:
Theorem Proving in Higher Order Logics (TPHOLs). 2008. po1: 10.1007/
978-3-540-71067-7_6.

J Strother Moore. “A Grand Challenge Proposal for Formal Methods: A
Verified Stack”. In: Formal Methods at the Crossroads. From Panacea to
Foundational Support, 10th Anniversary Colloquium of UNU/IIST. 2003.
DOI: 10.1007/978-3-540-40007-3_11.

Stuart Sutherland. “I'm Still In Love With My X!” In: Design and Verifi-
cation Conference (DVCon). 2013.

Stuart Sutherland and Don Mills. Verilog and SystemVerilog Gotchas:
101 Common Coding Errors and How to Avoid Them. Springer, 2007. DOI:
10.1007/978-0-387-71715-9.

147

https://doi.org/10.4230/LIPIcs.TYPES.2015.9
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1561/2500000045
https://www.cs.cornell.edu/~asampson/blog/fpgaabstraction.html
https://www.cs.cornell.edu/~asampson/blog/fpgaabstraction.html
https://doi.org/10.1145/3385412.3386024
https://doi.org/10.1145/2487241.2487248
https://www.cl.cam.ac.uk/~pes20/rems/
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-40007-3_11
https://doi.org/10.1007/978-0-387-71715-9

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]

[113]

Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony C. J. Fox,
Scott Owens, and Michael Norrish. “A new verified compiler backend
for CakeML”. In: International Conference on Functional Programming
(ICFP). 2016. po1: 10.1145/2951913.2951924.

Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox,
Scott Owens, and Michael Norrish. “The verified CakeML compiler
backend”. In: Journal of Functional Programming (JFP) 29 (2019). por:
10.1017/50956796818000229.

Chuck Thacker. “A Tiny Computer”. Unpublished memo, available
online. 2007.

Lenny Truong and Pat Hanrahan. “A Golden Age of Hardware De-
scription Languages: Applying Programming Language Techniques to
Improve Design Productivity”. In: Summit on Advances in Programming
Languages (SNAPL). 2019. po1: 10.4230/LIPIcs.SNAPL.2019.7.

Mike Turpin. “The Dangers of Living with an X”. In: Synopsys Users
Group Conference (SNUG). 2003.

Sergey Tverdyshev. “Formal Verification of Gate-Level Computer Sys-
tems”. PhD thesis. Saarland University, 2009.

Verilog Register Transfer Level Synthesis. IEEE Std 62142-2005. 2005. DOI:
10.1109/IEEESTD. 2005.339572.

Vitis High-Level Synthesis User Guide (UG1399, v2021.1). Xilinx. 2021.

Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries Guide
(UG953, v2019.2). Xilinx. 2019.

Vivado Design Suite User Guide: Synthesis (UG901, v2019.2). Xilinx. 2020.

Tjark Weber and Hasan Amjad. “Efficiently checking propositional
refutations in HOL theorem provers”. In: Journal of Applied Logic 7.1
(2009). por: 10.1016/j.jal.2007.07.003.

Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. 4th ed. Pearson, 2011.

Freek Wiedijk. “Pollack-inconsistency”. In: Electronic Notes in Theo-
retical Computer Science 285 (2012). Proceedings of the International
Workshop On User Interfaces for Theorem Provers. po1: 10.1016/3.
entcs.2012.06.008.

Wikipedia contributors. Pentium FDIV bug — Wikipedia. URL: https:
//en.wikipedia.org/wiki/Pentium_FDIV_bug.

Clifford Wolf. Yosys Open SYnthesis Suite. URL: http://www.clifford.
at/yosys.

148

https://doi.org/10.1145/2951913.2951924
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.4230/LIPIcs.SNAPL.2019.7
https://doi.org/10.1109/IEEESTD.2005.339572
https://doi.org/10.1016/j.jal.2007.07.003
https://doi.org/10.1016/j.entcs.2012.06.008
https://doi.org/10.1016/j.entcs.2012.06.008
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
http://www.clifford.at/yosys
http://www.clifford.at/yosys

[114] Zhiru Zhang, Hongbo Rong, and Yu Wang. “Introduction of Special Issue
on FPGA-Based Computing”. In: IEEE Circuits and Systems Magazine
21.2 (2021). por: 10.1109/mcas. 2021.3071606.

[115] Huibiao Zhu, Jifeng He, and Jonathan P. Bowen. “From algebraic seman-
tics to denotational semantics for Verilog”. In: Innovations in Systems and
Software Engineering 4.4 (2008). por: 10.1007/s11334-008-0069-9.

149

https://doi.org/10.1109/mcas.2021.3071606
https://doi.org/10.1007/s11334-008-0069-9

	Introduction
	The grand vision
	Contents
	The interactive theorem prover HOL4
	Research questions
	First research question
	Second research question

	The papers
	Paper 1: Verified Compilation on a Verified Processor
	Paper 2: A Proof-Producing Translator for Verilog Development in HOL
	Paper 3: Lutsig: A Verified Verilog Compiler for Verified Circuit Development
	Paper 4: Lutsig 2.0: Verilog, Synthesis-Tool Verification, and Circuit-Verification Methodology
	Statement of contribution

	Changes since the papers were published
	The Silver processor and the CakeML compiler
	The proof-producing Verilog code generator
	Verilog synthesis

	An amazing story; or: to my surprise, formal methods actually work
	Conclusion
	The first research question
	The second research question
	Future work and questions
	Concluding remarks

	Verified Compilation on a Verified Processor
	Introduction
	Approach
	Specification
	High-level implementation
	Compilation to machine code
	Verified system calls
	Execution on a verified processor

	Producing verified hardware
	The Silver CPU
	The Silver ISA
	The Silver implementation
	Algorithmic correctness of Silver
	Correctness of the Verilog implementation

	CakeML's assumptions
	Setting up Silver for CakeML
	Changes to the assumptions

	Results
	Discussion
	Related work
	Conclusion

	A Proof-Producing Translator for Verilog Development in HOL
	Introduction
	Example
	Larger examples

	Hardware-development methodology summary
	Overview
	Verilog
	Abstraction level (Verilog as an output language)
	Subset of Verilog included
	Formal semantics
	Validation

	The translator
	Input language
	Implementation overview
	Pass one: process translation
	Pass two: full program translation

	Case studies
	Processor case study
	Regexp-matcher case study

	Related work
	Discussion
	Conclusion

	Lutsig: A Verified Verilog Compiler for Verified Circuit Development
	Introduction
	Why existing approaches to hardware development are insufficient
	Compiler overview
	Source language and target language
	Source language: Verilog
	Target language: netlists

	Verilog-to-netlist compilation
	Type checking and type annotating
	Preprocessing
	Verilog-to-netlist compilation
	Netlist determinization

	Technology mapping
	Verified technology mapping
	Lutsig's top-level correctness theorem
	Translation-validation-based technology mapping

	Case study and evaluation
	Related work
	Conclusion

	Lutsig 2.0: Verilog, Synthesis-Tool Verification, and Circuit-Verification Methodology
	Introduction
	Background: VPD and TVD
	Verified-program development (VPD)
	Traditional Verilog development (TVD)

	Problems in combining VPD and TVD
	A closer look at Verilog's two semantics
	Simulation semantics
	Synthesis semantics
	Relationship between the two semantics

	Lutsig's VPD methodology for Verilog
	Part 1: Lutsig's multipurpose Verilog semantics
	Part 2: Lutsig's synthesis algorithm
	Synthesis modeling idioms and Lutsig

	The rest of the paper
	Using Lutsig in practice
	Formal semantics
	Expressiveness
	Lutsig's Verilog semantics
	Lutsig's netlist semantics

	The proof-producing Verilog code generator
	Lutsig
	Problems in compiling combinational logic

	Functional correctness of Lutsig
	Nonfunctional correctness of Lutsig
	Related work
	Conclusion

