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Abstract. Accurate automatic algorithms for the segmentation of brain
tumours have the potential of improving disease diagnosis, treatment
planning, as well as enabling large-scale studies of the pathology. In this
work we employ DeepMedic [1], a 3D CNN architecture previously pre-
sented for lesion segmentation, which we further improve by adding resid-
ual connections. We also present a series of experiments on the BRATS
2015 training database for evaluating the robustness of the network when
less training data are available or less filters are used, aiming to shed some
light on requirements for employing such a system. Our method was fur-
ther benchmarked on the BRATS 2016 Challenge, where it achieved very
good performance despite the simplicity of the pipeline.

1 Introduction

Accurate estimation of the relative volume of the subcomponents of a brain
tumour is critical for monitoring progression, radiotherapy planning, outcome
assessment and follow-up studies. For this, accurate delineation of the tumour is
required. Manual segmentation poses significant challenges for human experts,
both because of the variability of tumour appearance but also because of the
need to consult multiple images from different MRI sequences in order to classify
tissue type correctly. This laborious effort is not only time consuming but prone
to human error and results in significant intra- and inter-rater variability [2].

Automatic segmentation systems aim to provide a cheap and scalable solu-
tion. Over the years, automatic methods for brain tumour segmentation have
attracted significant attention. Representative early work is the atlas-based out-
lier detection method [3]. Segmentation was later solved jointly with the regis-
tration of a healthy atlas to a pathological brain [4], making use of a tumour
growth model and the Expectation Maximization algorithm. In [5] the problem
was tackled as the joint optimization of two Markov Random Fields (MRFs).
The state of the art was raised further by supervised learning methods, initially
represented mainly by Random Forests, coupled with models such as Gaussian
Mixtures for the extraction of tissue type priors [6], MRFs for spatial regulari-
sation and a variety of engineered features [7].

? Part of this work was carried on when KK was an intern at Microsoft Research.
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Recent years saw the success of deep learning, with the methods in [8] and [9]
being the top performing automatic approaches in BRATS 2014 and 2015 [10],
using 3D and 2D Convolutional Neural Networks (CNNs) respectively. The latter
approached the accuracy of the winning semi-automatic method [11]. The fact
that the employed models are rather simple in design reveals the high potential of
CNNs. The method presented in [12] also exhibited good performance, based on
a 3-layers deep 2D network that separately processes each axial slice. The authors
empirically showed that the class bias introduced to a network when training
with patches extracted equiprobably from the task’s classes can be partially
alleviated with a second training stage using patches uniformly extracted from
the image. In [13] an ensemble of 2D networks is used to process three orthogonal
slices of a brain MR image. Finally, in [1] we showed that multi-scale 3D CNNs
of larger size can accomplish high performance while remaining computationally
efficient. In that work we also analysed how the size of the input segments relates
to the captured class distribution by the training samples. It was shown that this
meta-parameter can be exploited for capturing a partially adaptive distribution
of training samples that in practice leads to good performance in a variety of
segmentation tasks. Our segmentation system exhibited excellent performance
on stroke lesion segmentation, winning the first position in the SISS-ISLES 2015
challenge [14,15], brain tumours and traumatic brain injuries [1]. It’s generic
architecture and processing of 3D content also allow its use on diverse problems,
such as the segmentation of the placenta from motion corrupted MR images [16],
where it achieved very promising results.

In this work we further extend our network, the DeepMedic [1], with residual
connections [20] and evaluate their effect. We then investigate the behaviour of
our system when trained with less data or when its capacity is reduced to explore
requirements for employing such a segmentation method. Finally, we discuss the
performance of our method on the recent BRATS 2016 challenge where it was
further benchmarked.

2 Method

Fig. 1: The DeepMedic [1] extended with residual connections. The operations
within each layer block are applied in the order: Batch-Normalization [17], non-
linearity and convolution. [18] empirically showed this format leads to better
performance. Up and C represent an upsampling and classification layer re-
spectively. Number of filters and their size depicted as (Number × Size). Other
hyper-parameters as in [1].



DeepMedic on Brain Tumor Segmentation 3

DeepMedic is the 11-layers deep, multi-scale 3D CNN we presented in [1] for
brain lesion segmentation. The architecture consists of two parallel convolutional
pathways that process the input at multiple scales to achieve a large receptive
field for the final classification while keeping the computational cost low. Inspired
by VGG [19], the use of small convolutional kernels is adopted. This design choice
was shown [19] to be very effective in building deeper CNNs without severely
increasing the number of trainable parameters, and we showed it allows building
high performing yet efficient 3D CNNs thanks to the much smaller computation
required for the convolution with small 33 kernels [1]. The CNN is employed
in a fully convolutional fashion on image segments in both training and testing
stage4.

We extend the DeepMedic with residual connections in order to examine
their effect on segmentation. Residual connections were recently shown to fa-
cilitate preservation of the flowing signal and as such have enabled training of
very deep neural networks [20,18]. In [20] the authors did not observe a perfor-
mance improvement when a 18-layers deep network was employed, but only in
experiments with architectures deeper than 34-layers. The networks employed
on biomedical applications tend to consist of less layers than modern architec-
tures in computer vision. However, the problem of preserving the forward and
backwards propagated signal as well as the difficulty of optimization can be sub-
stantial in 3D CNNs due to the large number of trainable parameters in 3D
kernels, as previously discussed in [1]. For this reason we set off to investigate
such an architecture.

We extended the network by adding residual connections between the outputs
of every two layers, except for the first two of each pathway to enforce abstracting
away from raw intensity values. The architecture is depicted in Fig. 1. In our
work, a residual connection after layer l performs the element-wise addition ⊕
between corresponding channels of the output outl of layer l and the input inl−1

to the previous layer. This choice follows the investigation in [18] that found
identity mappings on the residual path to perform best. More formally:

inm
l+1 =

{
outml ⊕ în

m

l−1, if m ≤ M l−1

outml , otherwise
(1)

where l any layer after which a residual connection is added, the superscript
m denotes the m-th channel and M l is the number of feature maps in the l-th
layer. înl is the input of the previous layer after padding in the (x,y,z) dimensions
with reflection in order to match the dimensions of outl.

4 Code publicly available at: https://github.com/Kamnitsask/deepmedic

https://github.com/Kamnitsask/deepmedic
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3 Evaluation

3.1 Data

The training database of BRATS 20155 (common with BRATS 2016) includes
220 multi-modal scans of patients with high (HGG) and 54 with low grade glioma
(LGG). Scans include pre- and post-operative scans. T1-weighted, contrast en-
hanced T1c, T2-weighted and FLAIR sequences are available. The images were
registered to a common space, resampled to isotropic 1 mm × 1 mm × 1 mm
resolution with image dimensions 240 × 240 × 155 and were skull stripped by the
organisers. Annotations are provided that include four labels: 1) necrotic core
(NC), 2) oedema (OE), 3) non-enhancing (NE) and 4) enhancing core (EC). The
annotations for the training database were obtained semi-automatically, fusing
the predictions of multiple automatic algorithms, followed by expert review. The
official evaluation is performed by merging the predicted labels into three sets:
whole tumor (all 4 labels), core (1,3,4) and enhancing tumor (4).

The testing database of BRATS 2016 consists of 191 datasets. They are scans
of 94 subjects, with 1-3 time points, including both pre- and post-operative scans.
The scans were acquired in multiple clinical centers, some of which are distinct
from those centers that provided the data for the training database. MRI modal-
ities are the same as the training database. Ground truth annotations have been
made manually by experts but were kept private for the evaluation. The MRI im-
ages have been preprocessed similarly to the training data and then provided to
the participating teams. Interesting to note is that skull stripping had significant
flaws in many cases, leaving behind portions of skull and extra-cerebral tissue at
a significantly greater extent that what is observed in the training database. Such
heterogeneity between testing and training data poses a significant challenge for
automated machine learning methods that try to model the distribution of the
training data. Yet they reflect a realistic scenario and an interesting benchmark
for fully automated systems, which ideally should perform adequately even after
inaccuracies introduced by individual blocks in the processing pipeline.

3.2 Evaluation on the BRATS 2015 Training Database

Preprocessing and Augmentation: Each scan was further individually nor-
malized by subtracting the mean and dividing by the standard deviation of the
intensities within the brain. Training data were augmented via reflection with
respect to the mid-sagittal plane.

Effect of Residual Connections: To evaluate the effect of the residual con-
nections we performed 5-fold cross validation on the mixed HGG and LGG data,
while ensuring that all pre- and post-operative scans from a subject would only
appear in training or validation of a fold. First we reproduced results similar to
what was reported in [1] for the original version of DeepMedic. The extension

5 links: http://braintumorsegmentation.org/
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with residual connections gave a modest but consistent improvement over all
classes of the task, as shown in Table 1. Important is that performance increases
even on small challenging substructures like the necrosis and non-enhancing tu-
mor, which may not be individually evaluated for the challenge but is interesting
from an optimization perspective. The improvement seems mainly due to an in-
crease in sensitivity, however at the cost of a lower precision. This is a positive
side-effect as in practice it can prove easier to clear false positives in a post-
processing step, for instance with a Conditional Random Field as performed in
[1,14], rather than capturing areas previously missed by the CNN.

Table 1: Performance of the original DeepMedic (DM) and its extension with
residual connections DMRes, evaluated with a 5-fold validation over the whole
BRATS 2015 training database. For consistency with the online evaluation plat-
form, cases that do not present enhancing tumor in the provided annotations
are considered zeros for the calculation of the average, thus lowering the upper
bound of accuracy for the class.

DICE Precision Sensitivity DICE
Whole Core Enh. Whole Core Enh. Whole Core Enh. NC OE NE EC

DeepMedic 89.6 75.4 71.8 89.7 84.5 74.3 90.3 73.0 73.0 38.7 78.0 36.7 71.8
DMRes 89.6 76.3 72.4 87.6 82.4 72.5 92.2 75.4 76.3 39.6 78.1 38.1 72.4

Behaviour of the network with less training data and filters: CNNs
have shown promising accuracy when trained either on the extensive database
of BRATS 2015 or on the rather limited of BRATS 2013. However, qualita-
tive differences of the two databases do not allow estimating the influence of the
database’s size. Additionally, although various architectures were previously sug-
gested, no work has investigated the required capacity of a network for the task.
This factor is significant in practice, as it defines the computational resources
and inference time required.

We evaluate the behaviour of our network on the tumour segmentation task
with respect to the two above factors. To avoid bias towards subjects scanned at
more than one time-point, only the earliest dataset was used from each subject.
Out of the 198 remaining datasets, we randomly chose 40 (29 HGG, 11 LGG)
as a validation fold. We then trained the original version of DeepMedic on the
remaining 158 datasets, as well as on a reduced number of training data. Finally,
versions of the network where all layers had their filters reduced to 50% and 33%
percent were trained on the whole training fold.

It can be observed on Table 2 that although accuracy is negatively affected,
the network still retains most of its performance for the three merged classes of
the challenge even when trained with little data or its capacity is significantly
reduced. A more thorough look in the accuracy achieved for the 4 non-merged
classes of the task shows that the greatest decline is observed for the challenging
necrotic and non-enhancing classes, which however does not influence the seg-
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mentation of the overall core as severely. These experiments indicate that both
training data and a large number of network filters to learn fine and detailed
patterns are important for the segmentation of small and challenging structures6.

Table 2: Exploring the performance of DeepMedic with reduced training data or
number of filters at each layer. Note that the difference of the entry DeepMedic
in comparison to Table 1 is due to the use of a subset of data (see text). Red
color indicates reduction greater than 1% DICE.

DICE Precision Sensitivity DICE
Whole Core Enh. Whole Core Enh. Whole Core Enh. NC OE NE EC

DeepMedic 91.4 83.1 79.4 89.2 87.7 82.8 94.1 80.8 79.5 50.0 79.6 35.1 79.4

DM(75% data) 91.2 82.5 79.6 89.0 84.4 82.4 93.9 80.4 79.7 45.9 79.0 35.1 79.6
DM(50% data) 91.4 82.6 78.8 91.0 85.3 81.7 92.3 82.3 78.5 44.7 79.2 36.8 78.8
DM(33% data) 90.5 79.7 77.7 90.6 86.5 82.8 91.0 77.1 77.1 45.8 77.9 31.8 77.7
DM(20% data) 89.8 80.5 77.6 91.1 83.9 81.8 89.7 80.5 76.5 41.3 76.9 34.1 77.6

DM(50% filters) 91.4 80.8 79.8 92.2 89.0 82.5 91.3 76.3 80.2 49.0 79.2 29.4 79.9
DM(33% filters) 90.8 81.7 79.5 90.0 91.9 78.2 92.1 76.6 83.0 44.4 79.3 27.9 79.4

3.3 Evaluation on the BRATS 2016 Testing Database

Our team participated in the BRATS 2016 Challenge in order to further bench-
mark our system. In the testing stage of the challenge, each team is given 48
hours after they are provided the data, to apply their systems and submit pre-
dicted segmentations.

Preprocessing: Similarly to the preprocessing of the training data, we nor-
malized each image individually by subtracting the mean and dividing by the
standard deviation of the intensities of the brain. Additionally, for the subjects
that had multiple scans acquired at different time-points, since the brains have
been co-registered, we tried to mitigate the problem of the failed brain extrac-
tion by fusing with majority voting the brain masks from different time-points,
hoping that the errors are not consistent at all time-points. Unfortunately this
step did not resolve the issue. We decided not to apply ourselves an additional
brain extraction step, since this is not guaranteed to work on the already (well
or partially) stripped data and would require case-by-case visual inspection and
intervention, which is against our interest in a fully automatic pipeline.

Network Configuration and Training: Prior to the testing stage of the chal-
lenge we had trained three models with identical architecture as shown in Figure
1. They were trained on the whole BRATS 2015 Training database, without din-
stinction of HGG from LGG cases, or pre- from post-operative scans. Training

6 Although these experiments were performed with the original version of the network,
we expect the trends to continue after the extension with residual connections.
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of a single model required approximately a day when using an NVIDIA GTX
Titan X GPU. Our network can then segment a multi-modal dataset in less than
35 seconds when using CuDNN v5.0. The probability maps of the three models
were then fused by averaging before the post-processing.

Post-processing with a 3D Fully Connected CRF: In previous work [1,14]
we had implemented and evaluated a 3D fully connected Conditional Random
Field (CRF) [21] for the segmentation of multi-sequence volumetric scans. Our
evaluation had shown that the model consistently offers beneficial regularisation
in a variety of lesion segmentation tasks. The CRF was found to be particularly
beneficial in cases where the main segmenter underperforms. We employ the
CRF in the same fashion. We provide as the CRF’s unary term the whole-tumor
probabity map, constructed by merging the multi-class predictions of the CNN.
This way the CRF regularizes the overall size of the tumor and clears small
spurious false positives. The whole-tumor segmentation mask produced by the
CRF is used to mask the segmentation produced by the CNNs, leaving the
internal structure of the tumor mostly intact 7. Finally, any left out connected-
components smaller than 1000 voxels were removed.

Results: In the testing stage of the challenge 19 teams participated. To evalu-
ate the quality of their segmentations, the teams were ranked according to the
statistically significant differences in the achieved DICE scores and Haussdorf
distances with respect to each other. Additionally, they were assessed and ranked
for their capability in following shrinkage or growth of the tumor between differ-
ent time-points. The exact results on the testing database have not been made
public by the organizers yet.

Our system achieved a place among the top ranking methods, performing well
on the DICE metric. The high performing methods were rather close in terms
of the DICE metric for the segmentation of the Whole Tumor. Greater were the
differences for the Tumor Core and Enhancing Tumor. Our system achieved the
top rank for the segmentation of the tumor core. The position was shared with
another CNN-based approach [22], the overall most accurate model in the chal-
lenge. Note that in order to generalize, this model was trained on external data
from a private brain tumor database with manual annotations, in addition to
the BRATS 2015 data, and thus direct comparison may not be completely fair.
Notice that out of the three main tumor classes, the core was found to be the one
most influenced by the amount of training data in our experiments (Table 2),
which explains the high DICE for this class achieved by the competing method.
Moreover, since the testing data appear to have a significantly different distribu-
tion from the training data, the influence of additional external data should be
significantly stronger than what was found in our experiments, where we only
explored the effect of the amount of data when training and testing distributions
are the same. Our system also achieved the top rank for the segmentation of en-
hancing tumor in terms of the DICE measure. This position was shared with

7 Code of the 3D CRF available at: https://github.com/Kamnitsask/dense3dCrf/

https://github.com/Kamnitsask/dense3dCrf/
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the systems presented in [23] and [24]. The former employed a well engineered
cascade of Random Forests tailored for segmentation of brain tumors, trained on
a selected high quality subset of the training data to avoid learning from errors
within the semi-automatically generated annotations (Fig. 2). The latter applied
a CNN and a CRF similar to ours, but with the two jointly trained. Interestingly,
we achieved higher performance in terms of DICE for the core and enhancing
tumor and comparable accuracy for the whole tumor in comparison to [25], who
employed an extended version of GLISTRboost [11], the semi-automatic method
that won the first place in the BRATS 2015 challenge.

Less satisfying was the Haussdorf distance achieved by our method, with
respect to which it achieved average ranking. We speculate a reason for this
is false segmentation of skull and extra-cerebral tissue, portions of which were
observed in many of the testing cases where the provided brain extraction was
inaccurate (Fig. 2). Such tissues were not present in the training database to this
extent, so our system never learnt to classify them. The resulting false positives
decrease the DICE metric, but influence even more the Haussdorf distance since
they lie well outside the brain. With further careful brain extraction we could
alleviate the problem but this would require case-by-case inspection as it is prone
to fail on the already (successfully or not) stripped testing cases, thus render the
pipeline not fully automatic. At the time of writing it has not been reported yet
how other teams dealt with this issue. Finally, semi-automatic systems that rely
on manual initialization, such as the competing method in [25], should be less
prone to this issue.

Finally, our system performed very well in predicting the temporal change
of the volumes of whole and enhancing tumor, with its average performance for
these classes achieving the third position. Interestingly, the two overall winners
of this category [24,26] employed a CRF similar to ours, which indicates the
effectiveness of this model for this task.

4 Conclusion

This paper has investigated the effect of residual connections on a recently pre-
sented 3D CNN model on the task of brain tumour segmentation, where their
incorporation led to a small but consistent improvement. Our work reveals that
an 11-layers 3D CNN gains from such an extension, mostly thanks to increased
sensitivity, unlike the observation in [20] where benefits were found only for
significantly deeper 2D networks.

In an attempt to explore the generalization and efficiency of CNNs for a
task such as brain tumor segmentation, we also investigated the behaviour of
DeepMedic when trained with smaller number of data or when less filters are
used. Our experiments show that segmentation accuracy for the whole, core
and enhancing tumour, even though affected, it is not severely hindered by the
two factors to an extent that would render the system impractical. However,
they are very important for segmenting challenging, fine substructures such as
necrosis and non-enhancing tumour. On the other hand, in applications where
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segmentation of such substructures is not required, small networks can be a
suitable option, thanks to lower computational requirements and shorter infer-
ence times (35s versus 8s per multi-modal scan for the original and smallest
model in Table 2 respectively). Note that in our experiments we only explored
the effect of the amount of data when training and testing distributions are the
same. Networks, similarly to most machine learning algorithms, face generaliza-
tion problems when the two differ significantly, such as in cases shown in Figure
2. In this case, additional training data from new distributions should amplify
generalization to an heterogeneous testing database more effectively. This is sup-
ported by the high performance of the rather small model of [22], overall winner
of BRATS 2016 challenge, which was trained on an external private database
along with the BRATS 2015 training set, as well as reports by the respective
team that their incorporation amplified performance. It would be interesting
to explore how much data is needed from a new source in order for a network
to also generalize satisfyingly to the new distribution. Additionally, it would be
worth investigating a relation between ideal network capacity versus the amount
of available training data, as well as explore these factors on other segmentation
tasks.

Finally, the version of DeepMedic with residual connections was further
benchmarked on the BRATS 2016 challenge among 19 teams. It exhibited very
good performance, achieving top ranking for the Core and Enhancing tumour
classes in terms of DICE. Our system also performed very well in assessing the
longitudinal change of the whole and enhancing tumor volume, ranking third for
its average performance on these classes. Less satisfying was the achieved Hauss-
dorf distance, which we mostly attribute to false segmentation of parts of the
skull and extra-cerebral tissue that were left behind from incomplete skull strip-
ping of the testing data. This performance is particularly satisfying considering
the minimal preprocessing and the generic architecture of our system. Its per-
formance is likely to benefit from a more extensive pre-processing pipeline, such
as from careful skull stripping, bias field correction, as well as from careful selec-
tion of high quality training data. Finally, an interesting trend is that histogram
matching to a common template has been a part of top performing pipelines in
BRATS 2015 and 2016 challenges [9,11,22], even though the technique is often
criticized as not well suited for the problem of tumour segmentation.
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Fig. 2: Cases with the highest (two top rows) and lowest (third and forth rows)
DICE for the whole tumor segmentation from the 5-fold validation on the train-
ing database. Note that the semi-automatically generated training labels also
contain mistakes. (Two bottom rows) Two examples of the most common type of
failed segmentation observed in the predictions on the testing data. Subset of the
data provided in the testing stage of the challenge show significantly more rem-
nants of skull and extra-cerebral tissue left behind from the brain extraction than
what observed in the training database. The network fails to handle tissues that
it has rarely seen during training. Colors represent: cyan: necrotic core, green:
oedema, orange: non enhancing core, red: enhancing core. Cases from top to
bottom row: tcia 242 01, tcia 479 01, tcia 164 01, tcia 222 304, cbica ABH 341,
cbica AAM 285
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