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Abstract. Automatic segmentation of lesions in head CT provides key
information for patient management, prognosis and disease monitoring.
Despite its clinical importance, method development has mostly focused
on multi-parametric MRI. Analysis of the brain in CT is challenging
due to limited soft tissue contrast and its mono-modal nature. We study
the under-explored problem of fine-grained CT segmentation of multiple
lesion types (core, blood, oedema) in traumatic brain injury (TBI). We
observe that preprocessing and data augmentation choices greatly impact
the segmentation accuracy of a neural network, yet these factors are
rarely thoroughly assessed in prior work. We design an empirical study
that extensively evaluates the impact of different data preprocessing and
augmentation methods. We show that these choices can have an impact
of up to 18% DSC. We conclude that resampling to isotropic resolution
yields improved performance, skull-stripping can be replaced by using the
right intensity window, and affine-to-atlas registration is not necessary
if we use sufficient spatial augmentation. Since both skull-stripping and
affine-to-atlas registration are susceptible to failure, we recommend their
alternatives to be used in practice. We believe this is the first work to
report results for fine-grained multi-class segmentation of TBI in CT. Our
findings may inform further research in this under-explored yet clinically
important task of automatic head CT lesion segmentation.

1 Introduction

Traumatic brain injury (TBI) is a pathology that alters brain function caused
by trauma to the head [1]. TBI is a leading cause of death and disability world-
wide with heavy socio-economic consequences [2]. Computed tomography (CT)
allows rapid assessment of brain pathology, ensuring patients who require urgent
intervention receive appropriate care [3]. Its low acquisition time allows for rapid
diagnosis, quick intervention, and safe application to trauma and unconscious
patients. Research on automatic segmentation of TBI lesions in magnetic reso-
nance imaging (MRI) [4,5] has shown promising results. However, MRI is usually
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reserved for imaging in the post-acute phase of brain injury or as a research tool.
Since CT is routinely used in clinical care and CT voxel intensities are approx-
imately calibrated in Hounsfield units (HUs) across different scanners, effective
computational analysis of CT has the potential for greater generalisation and
clinical impact than MRI. Prior work on automatic analysis of pathology in
head CT is limited, mostly focusing on image-level detection of abnormalities
[6,7], feature extraction for outcome prediction [8], or image-level classification
[9] instead of voxel-wise semantic segmentation. Previous works on segmentation
employ level-sets for the segmentation of specific haemorrhages and haematomas
[10,11]. Recently, [12] applied deep learning for binary segmentation of contusion
core grouped with haematomas. We present the first multi-class segmentation of
contusion core, blood (haemorrhages and haematomas), and oedema. This task
is important for patient management and a better understanding of TBI.

State-of-the-art automatic segmentation relies on convolutional neural net-
works (CNNs) [13]. These models are effective in many biomedical imaging tasks
[14]. Neural networks are theoretically capable of approximating any function
[15]. This result commonly translates in the expectation that networks are able
to extract any necessary pattern from the input data during training. As a
result, attention is mainly focused on further development of network architec-
tures, while disregarding other parts of the system, such as data preprocessing.
Contrary to popular belief that networks generalise well by learning high-level
abstractions of the data, they tend to learn low-level regularities in the input [16].
In practice, the learned representations are largely dependent on a stochastic,
greedy and non-convex optimisation process. We argue that appropriate data
preprocessing and augmentation can be as important as architectural choices.
Preprocessing can remove useless information from the input and help training
start in a “better” region of the feature space. Data augmentation can help op-
timisation by reducing the risk overfitting to training samples. It can also learn
a model invariant to information not useful for the task (e.g., rotation).

Motivated by these observations, we present an extensive ablation study of
different preprocessing and data augmentation methods commonly found in the
literature but whose usage is rarely empirically justified. Our goal is to establish
the most appropriate methodological steps for segmentation of TBI lesions in
CT. We explore the effects of spatial normalisation, intensity windowing, and
skull-stripping on the final segmentation result. We also explore the effects of
spatial normalisation vs. spatial data augmentation. We demonstrate that using
intensity windowing can replace skull-stripping, and spatial data augmentation
can replace spatial normalisation. We show the difference these methodological
choices can make is up to 18% in the Dice similarity coefficient (DSC). To the
best of our knowledge, this work is the first to report results for multi-class
segmentation of contusion core, blood and oedema in TBI head CT.
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Fig. 1: Left (a): Effect of
affine spatial normalisation
to atlas space, CT atlas
(top), before and after nor-
malisation (left and right).
Top right (b): Skull-
stripping methods, from left
to right: no skull-stripping;
thresholding out the skull;
level-set method.
Bottom right (c): Intensity
distribution of classes inside
the brain mask.

2 Methods

Dataset: We use 98 scans from 27 patients with moderate to severe TBI. We
split the data into training and test (64/34), ensuring images from the same
patient are in the same set. All scans have been manually annotated and reviewed
by a team of experts to provide reference segmentations. We consider four classes:
background; core; blood; and oedema. The core class includes contusion cores
and petechial haemorrhages. The blood class includes subdural and extradural
haematomas as well as subarachnoid and intraventricular haemorrhages.

Spatial normalisation: Since CNNs are not scale invariant, it is standard
practice to resample all images to have the same physical (isotropic) resolution
(e.g., 1×1×1 mm). Given that brain CT is often highly anisotropic with high
in-plane and low out-of-plane resolution, we may opt to resample to anisotropic
resolution (e.g., 1×1×4 mm) without loss of information while saving memory
in the CNN’s activations. Another preprocessing option is to perform spatial
normalisation via registration to a reference frame, e.g., an atlas. Using affine
transformations, we can remove inter-subject variability in terms of rotation
and scaling which may be beneficial for the CNN. We investigate the effect of
resampling and registration using three different settings: 1) isotropic resolution
of 1 mm; 2) anisotropic resolution of 1×1×4 mm; 3) affine-to-atlas registration
with 1 mm isotropic resolution. The atlas has been constructed from 20 normal
CT scans that show no disease using an iterative unbiased atlas construction
scheme [17], and subsequent alignment to an MNI MRI atlas (Fig. 1a).

Skull-stripping and intensity windowing: Skull-striping is commonly
used in brain image analysis to eliminate unnecessary information by removing
the skull and homogenising the background. Unlike MRI, CT intensities are
roughly calibrated in HUs and have a direct physical interpretation related to the
absorption of X-rays. A specific intensity value reflects the same tissue density
regardless of the scanner. Air is defined as -1000 HUs, distilled water as 0, soft
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tissue ranges between -100 and 300, while bone has larger values than soft tissue.
Consider a lower and an upper bound that define the range of soft tissue. We test
three different skull-stripping methods: 1) no skull-stripping: we set intensities
below the lower bound and above the upper bound to the lower and upper bound
respectively; 2) thresholding out the skull: we set values below the lower bound
and above the upper bound to the lower bound; 3) a level-set method (geodesic
active contours [18]) to remove the skull followed by thresholding. Fig. 1b shows
the effect of the three skull-stripping methods. We performed a visual check on
all images to make sure the level-set method is not removing parts of the brain.
We test two different intensity windows for the bounds and normalisation: 1) a
larger window range [−100, 300]; 2) a smaller window [−15, 100]. Fig. 1c shows
that intensity values of soft tissue fall well inside these windows. After skull-
stripping and windowing, we normalise the intensity range to [−1, 1]. As seen in
Fig. 1b, the brain-mask it not perfect in cases with a craniectomy, yet, this is a
realistic scenario when we calculate automatic brain-masks for large datasets.

Data augmentation: We test the following settings: no augmentation; flip-
ping the x axis; flipping the x and y axes; flipping the x and y axes combined with
fixed rotations (multiples of 90◦) of the same axes; flipping and fixed rotations
of all axes; random affine transformations (scaling ±10%; rotating xy randomly
between ±45◦; rotating xz and yz randomly between ±30◦) combined with flip-
ping the x axis; random affine transformations combined with flipping the x and
y axes. We test these settings for both isotropic and affine spatial normalisation
to study the effects of spatial augmentation vs. spatial normalisation.

Model architecture: Our main goal is to study the effects of preprocess-
ing and hence we use the same architecture for all experiments1. We employ
DeepMedic [5], a 3D CNN, with 3 parallel pathways that process an image at full
resolution, three and five times downsampled. We use the residual version [19],
but using 20 less feature maps per convolution layer. To see which results are
model specific we re-run a subset of experiments with a 3D U-Net [20].

3 Results and Discussion

To assess which type of preprocessing is most effective we test all combinations
of the aforementioned alternatives for spatial normalisation, intensity windowing
and skull-stripping. For evaluation, we use the DSC calculated after transform-
ing the prediction back into the original native image space (where the expert
segmentation is defined). Thus, we guarantee an accurate comparison with the
expert’s segmentation. Fig. 3 shows the DSC of the foreground class for all pre-
processing pipelines (flipping the x axis for augmentation). The foreground class
consists of all lesion classes merged into one (after training) for an overall eval-
uation and comparison. Fig. 2 presents a visual comparison between manual
segmentation and the prediction made by the best performing model. We can

1 For the experiments with 1×1×4 resolution, we turn some of the isotropic kernels into
anisotropic 3×3×1 kernels in order to obtain approximately the same receptive field
as in the experiments with isotropic resolution. This did not affect the performance.
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Fig. 2: Visual comparison for three cases. Top to bottom: image, manual and pre-
dicted segmentation. Red is contusion core, green is blood, and blue is oedema.

see that the TBI lesions have large inter-subject variability and intra-subject
complexity, making for a difficult segmentation problem. Fig. 4 shows the result
of paired Wilcoxon signed-rank tests to determine which performance differ-
ences are statistically significant (p < 0.05). Fig. 5a presents the per class DSC.
Fig. 5b presents a subset of experiments replicated with a different model to
determine if the results are model specific. Fig. 6 shows the results of spatial
data augmentation for comparison with spatial normalisation.

Resampling images to isotropic resolution significantly improves
performance. From Figs. 3 and 4 (purple) we observe that using anisotropic
resolution of 1×1×4 is consistently worse than using the other two spatial nor-
malisation methods which use isotropic resolution. This contradicts the intuition
that oversampling the out-of-plane axis is not necessary, even though it does not
add information. CNNs have an architectural bias towards isotropic data which
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Fig. 4: Results of paired difference tests
comparing prepossessing methods. For a
p-value of 5% the y-label is statistically
significantly better (red) or worse (blue)
than the x-label. Yellow boxes: level-set
skull stripping only helps performance
when the large intensity window is used.
Green box: controlling for other prepro-
cessing steps, affine-to-atlas can provide
small benefits. Purple box: anisotropic
resolution consistently under-performs
when compared to isotropic resolution.

is likely the cause for this result. The kernels are stacked such that it is expected
the same amount of information to be present in each physical direction.

Skull-stripping can be replaced by windowing. From Fig. 4 (yellow) we
can see that skull-stripping significantly helps performance when combined with
a large intensity window. However, when combined with a small intensity win-
dow, skull-stripping does not offer a benefit over no skull-stripping. We observe
the same for the second model (Fig. 5b) where the difference is also not statis-
tically significant (p = 0.2). This indicates that what is important for the CNN
is to remove intensity ranges that are not of interest (e.g., hyper-intense skull,
either via windowing or skull stripping), allowing it to focus on the subtle in-
tensity differences between lesions and healthy tissue. Therefore, skull-stripping
may be replaced by an intensity window that limits extreme intensity values.
Level-set based skull-stripping is susceptible to failure. Although we performed
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visual checks to ensure quality, these are unfeasible on large scale settings such as
the deployment of an automated segmentation pipeline. Conversely, windowing
is more robust, hence it should be used instead.

Affine-to-atlas registration can be replaced by data-augmentation.
Although Figs. 3, 4 (green) could lead us to believe that affine registration pro-
vides a small benefit over simply using isotropic resolution, when we look at
Fig. 6 we see this is not the case. When we add more spatial augmentation to
the two spatial normalisation methods (besides only flipping the x axis) their
performance becomes comparable. Moreover, we see that this small benefit may
not translate to different models (Fig. 5b). We conclude that we can make the
network more robust to spatial heterogeneity with data augmentation instead of
homogenising the input data. Like skull-stripping, affine-to-atlas registration can
fail unpredictably during deployment of automatic pipelines. In contrast, spatial
augmentation applied only during model training, and thus it does not constitute
a possible point of failure after deployment. As a result, we recommend spatial
data augmentation to be used instead of affine-to-atlas registration. Regardless,
affine-to-atlas registration can still be useful for downstream analysis tasks such
as studying the location of lesions across a patient cohort.
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Additional findings. From Fig. 6 we observe that even though random
affine augmentation serves its purpose, it did not perform better than fixed
rotations. These transformations incur on a computational cost due to interpo-
lation, and hence fixed rotations may be a better choice. We also observe that too
much augmentation can start to hinder performance since flipping and rotating
all axes performs worse than doing the same on just x and y.

We achieve a maximum DSC of 53.9±23.0 % (foreground). We can see from
Figs. 5a and 6b that there is a large discrepancy between the performance of
each class. The blood class has the worst performance likely due to the presence
of hard to segment lesions such as subarachnoid haemorrhages. Surprisingly, the
model performs best for oedema, one of the hardest lesion types to detect visu-
ally. Our results are not directly comparable with ones reported in the literature
[10,11,12]. We use a different dataset, perform multi-class segmentation, and
our labels include hard to segment lesions such as petechial and subarachnoid
haemorrhages. Although the DSC obtained is not as high as in other similar
applications (e.g. brain tumour segmentation on MRI), this goes to show the
challenging nature of the problem and need to focus more effort on difficult
tasks. Importantly, this is the first work reporting fine-grained multi-class seg-
mentation of contusion core, blood and oedema in CT for patients with TBI.

4 Conclusion

We present an in-depth ablation study of common data preprocessing and aug-
mentation methods for CT and show these methodological choices are key for
achieving better segmentation performance with CNNs, with a difference of 18%
DSC between the worst and best settings. Based on our results we make the fol-
lowing recommendations: 1) using isotropic resolution is key 2) choosing the cor-
rect intensity window for context and normalisation is superior to skull-stripping
since it is simpler and more robust; 3) affine-to-atlas registration can give small
improvements, however, spatial data augmentation can achieve the same benefits
while being more robust.

We hope our study will serve as a useful guide and help the community
to make further progress on the clinically important task of head CT lesion
segmentation. While our results on fine-grained TBI lesion segmentation are
promising, we believe this study also shows that this task remains an open
challenge and new approaches may be required to tackle this difficult problem.
In the future, we aim to apply our findings to a larger dataset and to further
fine-grain the segmented classes by separating SDH, EDH and SAH into separate
classes.
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