Introduction to Spline Curves

Splines are used in graphics to represent smooth curves and surfaces. They use a small set of control points
(knots) and a function that generates a curve through those points. This allows the creation of complex smooth
shapes without the need for manipulating many short line segments or polygons at the cost of a little extra
computation time when the objects of a scene are being designed. We will start with a simple, but not very
useful spline. Taking the equation y = f(x), we can express f as a polynomial function, say:

Y = a2$2 +a1x + ag

Let us choose any three points Py, P; and Py at coordinates (z¢, o), (z1, 1) and (z2,y2). We can substitute
each set of coordinates into the equation to get three simultaneous equations which we can solve for the un-
knowns as, a1 and ag. We now have the equation of a curve that interpolates (passes through) the three chosen
points. It is of course a parabola, or parabolic spline. Notice that we don’t have any control over the curve.
There is only one parabola that will fit the data as shown in Figure 1.
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Figure 1: A non-parametric spline

Parametric Splines

We can improve our choice by using a parametric spline. Let us consider first a quadratic polynomial spline
written in vector notation as.
P =ayu’® +aju+ag (D

This equation gives the vector location of a point P in terms of constant vectors ag, a; and ag and a scalar
parameter . The locations of ag, a; and as determine the shape of the spline. For two dimensional curves we
now therefore have six unknowns (rather than the three in the parabola above). We can use these extra degrees
of freedom to control the shape of the curve.

We will use the convention that 0 < p < 1 over the range of interest. Hence at . = 0 the curve is at the
first point to be interpolated, and at p = 1 it is at the last. Now consider interpolating the same three points
as before: (Pg, Py and P at (x0,v0), (x1,y1) and (x2,y2)). When p = 0, the curve passes through the first
point, say Py, and so, substituting ;. = 0 into Equation 1, we can write Py = ag. Similarly, when p = 1 the
point passes through the last point, say P+, and this gives us the equation:

Py, =az+a; +ag,

substituting for ag we get
Py; —Pp=az +ay. (2)

We have now met all the conditions except for the requirement that the curve must pass through P;. We can
choose 1 anywhere in the range 0 < p < 1, and get a third equation to solve for the curve parameters. In other
words we can now pick one of a whole family of different curves: Each one will interpolate the three points and
have its own particular value of y that we can choose for P; . For example, choosing = 1/2 in Equation 1
and substituting P for ag, we get

P1—P0:a2/4—|—a1/2 (3)
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We can now solve equations 2 and 3 and find the values of a; and as. We can then draw the curve, for this
choice of p at P, as shown on the left in Figure 2. Further possible curves using the same three points and
parametric equation are also shown in Figure 2, each curve has its own set of choices of parameter p for the
given points..

—azﬂ Fau+ ag

Figure 2: Four possible parametric splines that can pass through three points. The points are at the same
locations each time but different choices of parameter values for the points can be made and this changes the
shape of the curve. The parameter choices are shown in the boxes.

Spline Patches

Although we have gained more freedom by using the parametric form, we do not have any intuitive way of
using it. That is to say, we have no simple way to choose w values for each point to get the type of interpolating
spline we want. Moreover, we still face the problem of having to use ever higher degrees of polynomials for
higher numbers of points. To overcome these difficulties we introduce a method based on spline patches that
allows simple intuitive spline construction. With spline patches, we define a different curve between each pair
of adjacent knots, as shown in Figure 3.

Gradient |
P'IZI/Z(PZ'PO) ° °
e
Gradient
° P']:1/2(P3_P1)

P=a,u’+a,u’+au+ a,

Figure 3: Using spline patches, each pair of adjacent knots is joined by a different curve. We then need to join
them together. The above diagram shows one way of doing this.

It is common to implement spline patches using a cubic spline for each patch, rather than the quadratic
splines formulated above. The reason for choosing a cubic form is so that we can join the patches smoothly
together. The equation for a parmetric cubic spline patch has four unknowns, ag, a;, as and as:

P = agp® + asu® + ajp + ag 4

We use the extra degrees of freedom provided by the cubic equation to control the gradient at the ends of the
patch, and this makes it join seamlessly to its neighbours. Looking at Figure 3, we see that this can conveniently
be done by making the gradient at a knot depend on the difference of the coordinate vectors on either side. This
however is not the only way of setting this gradient, as we will see later. If we differentiate the curve equation
we get:

P’ = 3agu® + 2ayu + a; 5)

Now consider the two ends of a spline patch between P; and P;41, where y = 0at P;and p = 1 P; 1. We
can find the positions and gradients at each end by substituting 1+ = 0 and x = 1 into Equations 4 and 5 which
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gives:

Pi =
!
Pi == al
P,i1 = azt+ay+a;+ag

‘o1 = 3az+2a+a; (6)

This is a system of vector equations as the left and right hand sides of each equation is a vector. For
convenience, we can write this system of equations in matrix form if we form the matrices

ag P;
a P!
! and ¢
as P
as Piy
where the rows of the first matrix are the unknown coefficient vectors ay, . .., ag and the rows of the second

matrix are the known coordinates and gradients at P; and P, ;. In the 2D case, each of these is a 4 x 2 matrix.
With these matrices, we can re-write the vector Equations 6 in the following matrix form:

10 00 ag P;
0100 a| | P
1111 ay| | Pis1
01 2 3 as P 11
and since the values for ag, . . . , a3 are unknown and the values of P and P’ are known, we need to invert the

matrix to solve for the parameters of the spline patch.

ag 1 0 0 0 P;
ai o 0 1 0 0 P;
an o -3 -2 3 —1 Pi+1 (7)

Remember that we have vector quantities in these equations, so, this formulation represents eight equations for
the 2D case (data matrices are 2 x 4), and twelve for the 3D case (data matrices are 3 x 4). However, the matrix
that we invert and multiply to get the solution is always the same, whether we have 2D or 3D data. For any
given set of knots, this cubic patch method gives a stable, practical solution.

Bezier Curves

One of the simplest ways of approximating a curve was made popular by the French mathematician Pierre
Bezier in the context of car body design. It was based on a mathematical formulation by another French
mathematician Paul de Casteljau. A typical Bezier curve is shown in Figure 4.

Figure 4: A typical Bezier Curve
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The Bezier curve in Figure 4 is cubic and has four knots: Py, P, P9, P3. The gradient of the Bezier curve
at the start is obtained from the gradient of the line joining the first two knots, thus:

P, — k(P; — Py) 8)

where £ is the number of knots - 1, i.e. £k = 3 in this example. A similar equation gives to the gradient at the
end of the curve. This is an important property as it allows us to join Bezier patches together smoothly.

Computation of the Bezier Curve may be done in two ways. The first uses a recursive algorithm based on
a method of de Casteljau. The idea is illustrated by Figure 5. The knot points, Pg, P1, P2, P3 are re-labelled
Po o, Po 1, Po2 and Py 3, this will help represent the recursive nature of the method. First we have to choose
a value of y, the illustration in Figure 5 uses a value of around 0.6.
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Figure 5: de Casteljau’s construction to draw a point on a cubic Bezier curve (for a parameter value of approx-
imately 0.6). a) The knot points. b), ¢) & d) The three steps to construct the point for the given parameter
value.

Then we take the three lines Po o Po 1, Po,1 Po2 and Pg 2 P 3 and construct a point in each one a factor
of 1 along each line. These are labelled as the first set of constructed points, P19, P11 and P> (Fig. 5b).
The new points are joined up and the same process is followed to construct the second set of constructed points
P and P21 (Fig. 5¢). The process is repeated for a final time to find the point P3¢ and this is a point on the
Bezier curve. As p varies from O to 1, the locus of P3 g traces out the Bezier Curve.

Using a functional pseudocode which allows us such liberties as scalar and vector multiplications and typed
functions, this algorithm and another for drawing the curve are illustrated below. Note that here, and for all
subsequent treatment of splines we will use a set of NV + 1 knots, labelled O to N.

Point castel jau (knots P[ ] ; int k, int r, float u)

begin
if r > 0)
thencasteljau=(1—pu)* casteljauP k,r-1, u) + p* casteljau®P k+1,r-1, p)
else casteljau=(1—p)*P[k]+puxP[k+1]

end

void drawCurve (knots knotArray[], int L)
for j=0Oto L
begin
let p=j/L
point = castel jau(knotArray, 0, 3, 1)
plot(point.x, point.y)
end
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Blending

Another way to compute a Bezier curve is by thinking of it as a blend of its knots. In the simplest case, if we
apply the de Casteljau algorithm to the degenerate case, when the ‘curve’ is actually a straight line defined by
two knots, we get the parametric line equation:

P =4Po1+ (1—p)Poyo

This can be seen as linearly blending the two points to produce a third. We can think of the parameter p as a
measure of distance along the line. Like the curve constructed using the de Casteljau algorithm, most spline
formulations consist of a blend of the positions of the knots. For more than two points the blend is expressed
by the iterative formulation of the Bezier Curve:

N

P(u)=> W(N,i,u)P; )
1=0

where W (N, i, 1) is called the Bernstein blending function:

W(N,i,p) = @7)#"(1 — )N and <J:f> N!

(N — )l
As before we are using a parameter p to determine the distance along the curve.

The general Bernstein blending function contains both the terms z‘ and (1 — p)V ¢ butifi = 0ori = N
we have

WN,0.4) = (]g)u‘)(l—m“ — (-

N _
W(N,N,p) = <N>MN(1 — )N =
From these properties, it can be easily verified that when ¢ = 0 or u = 1 the spline interpolates the end points,
P(0) = Ppand P(1) = Py, and that when 0 < ¢ < 1 then P (1) is a blend of all the knots P;.

The first few expansions of the blending function for different values of N are

N Expansion
1 (1-pPy +pPy
2 (1—p)’Po+2u(l—p)P1 +p*Py
3 (1—p)’Po+3u(l —pw)?Py 4+ 34%(1 — p)Py + 1°Ps

The iterative equation for the Bezier curve can be computed slightly more efficiently in terms of space
than the recursive form, though for most applications this is not likely to be significant, since it is rare to use
Bezier curves for more than a few points. The iterative solution, though less elegant, generalises to surface
construction more easily, and so tends to be used in preference.

Characteristics of Bezier Curves

As previously mentioned, the gradient of a Bezier curve at each end is determined by the slope of the end line
segments. At other points of the curve (not at the ends) it is a blend of the positions of all the points. Since
Bezier Curves are a blend of all their control points there is little local control over a part of the curve. Figure 6
shows how a large number of control points tends to be ineffectual with Bezier curves. Moving the intermediate
points has little effect, and it is not possible to create a curve which wiggles with any degree of complexity.
This problem can be offset to some degree by pieceing together a number of sections, as we did for the cubic
patches.
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Figure 6: The lack of local detail in
Bezier curves

The Gradients at the spline ends

To find the gradient at any point of a parametric spline curve we differentiate it with respect to the parameter.
Thus if we have the blending function for a four knot Bezier curve:

P(p) = (1= p)* Py + 3p(1 — p)? Py + 34 (1 — p) Po + ° Py
we can differentiate it to get:
P'() = =3(1 = p)? Po + 3(1 — p)* P1 — 6(1 — o) Py + 6(1 — o) Py — 31> Py + 31° P
and by grouping the terms
P'(1) = (1= p)? (3P1 = 3P0) + pu(1 — ) (6P2 — 6P1) + 1 (3P3 — 3Py)

ie.
P'() = 3(P1 — Po)(1 — p)* + 6(P2 — P1)u(l — p) + 3(P3 — Pa)p?
from which we get
P,(O) e 3(P1 - P(]) and P,(l) = 3(P3 - Pg)
So at the start, where u = 0, the gradient is in the same direction as P; — Py and at the end, where p = 1, the
gradient is parallel to P3 — P5. This confirms that the curve is tangential to P; — Py at the start and P3 — Py

at the end as illustrated in Figure 4. Each gradient is a multiple of 3 (one fewer than the number of knots) times
the corresponding vector between the adjacent points as described in Equation 8.

Parametric and Geometric Continuity

The point of modeling with smooth curves and surfaces is to create realistic smooth shapes. But what exactly
do we mean by “smooth”? How precisely do we determine if a given curve or surface is smooth? The simplest
way to answer this question is to look at continuity. Recall that a parametric curve in 2D is defined as:

P = (56 )

Generally a function is smooth if its derivatives are well-defined up to some order. There are actually two
definitions for curves and surfaces, depending on whether the curve or surface is viewed as a function or purely
a shape.

Parametric Continuity

For parametric continuity, we view the curve or surface as a function rather than a shape. Parametric continuity
cannot be defined given only the shape of the curve. You need a parametrisation of it. A junction between
two curves is said to be C°-continuous if the (z,y) values of the two curves agree. Alternatively, this is called
zeroth-order parametric continuity. A junction between two curves is said to be C'! continuous if the (z,y) val-
ues of the two curves agree, and all their first derivates (dx/du, dy/du) agree at their junction. Alternatively,
this is called first-order parametric continuity. Finally, a junction between two curves is said to be C? contin-
uous if the (z,y) values of the two curves agree, and their first and second parametric derivatives all agree at
their junction. Alternatively, this is called second-order parametric continuity. Similarly, we define n-th order
parametric continuity (C" continuity) by requiring that all derivatives up to n-th order agree at the junction.
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Geometric Continuity

Geometric continuity can be defined using only the shape of the curve. It is usually defined in terms of
parametrisations, but the choice of parametrisation does not affect the outcome. A junction between two curves
is said to be G'-continuous if the (x, i) values of the two curves agree. Alternatively, this is called zeroth-order
geometric continuity. It is exactly the same as C continuity. A junction between two curves is said to be
G'-continuous if the (,y) values of the two curves agree, and all their first derivatives (dx/du, dy/du) are
proportional (the tangent vectors are parallel) at their junction. Alternatively, this is called first-order geometric
continuity. Higher order geometric continuity is a bit tricky to define and is not covered here.

Bezier Curves are Cubic Spline Patches
The iterative form

We will now show that Bezier curves are cubic spline patches by modifying the iterative form of the Bezier
curve. You may have already noticed that the order of a Bezier curve is one less than the number of its knots.
In the earlier example there were four knots and this gives a cubic (order 3) spline. This can be verified by
expanding the iterative form of the Bezier curve. Assume we have four knots P;, fori = 0,1,2,3

3

=0

P(p) = (1 — 1)*Po + 3u(1 — p)?P1 + 3p°(1 — )P + 1Py

If we multiply out the brackets and collect the terms we get:

P(u) = asp® + axp’ + ajp + ag (10)
where

ag = Py

a; — 3P1 - 3P0

ay = 3P2 — 6P1 + 3P0

a3 = P3—3Py+3P; — Py (11)

If we substitute = 0 and p = 1 into Equation 10 we get the end points, so
Py =P(0) = ag and P;=P(1) =ag+a; +as+ a3
As shown above, we have expressions for the gradient at the endpoints of
P’(0) = 3P; — 3Py and P'(1) = 3P3 — 3Py

With these choices of points and gradients at each end it is possible to show that the matrix form for the
cubic spline patch in Equation 7 is equivalent to the set of equations (11) for the parameters by writing the
following and simplifying

a( 1 0 0 0 P()
al . 0 1 0 0 3P1 — 3P0
ag - -3 -2 3 -1 P3
as 2 1 -2 1 3P3 — 3P2

So, we see that the four point Bezier curve is just a cubic spline patch between Py and P3. The remaining
points, P; and P, are two shape control points which can be manipulated by the designer.
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The de Casteljau form

We now show that the de Casteljau construction can also be shown to be equivalent to a cubic spline patch. To
do this we expand the the recursion backwards:

Pso = (1—p)Pao+uPa;
(1 =) {1 = w)Pro+puPra1} +p{(l — )P+ pPi2}
= (1—p)*Pro+2u(l — )Py + p°Pry
(1= ) {(1 = W)Poo + pPo1}
+2u(1 = ) {(1 = W)Po1 + uPo2}
+1* {(1 = p)Poz + pPo s}

To make things a little easier, we drop the first subscript, which indicated the construction recursion level of the
de Casteljau algorithm, e.g. Po2 — P2. This means we get:

P(p) = (1—p)?{(l—pwPo+pP1}
+2u(1 — ) {(1 — )Py + P2}
+u? {(1 = p)P2 + uP3}
= (1= p)*Po+3u(l — p)’P1 4 3p°(1 — p)P3 + 1’ P3

This is the same as the blending function for four knot points which was shown above to be equivalent to
the cubic spline patch.

In summary . ..

So we can think of a four point Bezier curve as a cubic spline patch with shape control. The curve goes through

points Py and P3 and by picking up points P; and Py with a mouse and moving them we can control the shape
as desired.
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