
Interactive Computer Graphics

Dr Bernhard Kainz

b.kainz@imperial.ac.uk

Huxley 372

mailto:b.kainz@imperial.ac.uk

Intro

• https://www.youtube.com/watch?v=wAu8w7n4LHM

Graphics Lecture 1: Slide 2

https://www.youtube.com/watch?v=wAu8w7n4LHM

Interactive Computer Graphics

• Please note that this course has been timetabled for 2

hours per week:

– Tuesday 9-10, Zoom

– Wednesday 9-10, MS Teams

• However, not all timetabled slots will be used every week

so please check the timetable on the webpage for

more information:

http://wp.doc.ic.ac.uk/bkainz/teaching/60005-co317-computer-

graphics/

Graphics Lecture 1: Slide 3

http://wp.doc.ic.ac.uk/bkainz/teaching/60005-co317-computer-graphics/

Interactive Computer Graphics

• Printouts:

– Lecture notes & tutorials:

• Please print your own if you want a hardcopy

• Lectures:

– All lectures have slides that are available via CATE

– Some lectures (not all) have notes that are available via CATE

– Lectures are pre-recorded, we will have a weekly Q&A session

• Tutorials:

– All tutorials have sample solutions that are available a few days

after the tutorial.

Graphics Lecture 1: Slide 4

Interactive Computer Graphics

• Course overview:

– Syllabus, timetable and news on

http://wp.doc.ic.ac.uk/bkainz/teaching/60005-co317-computer-

graphics/

– See notes on vector algebra revision (link)

• Course materials and notes:

– Look at CATE for lecture notes, tutorials & coursework

Graphics Lecture 1: Slide 5

http://wp.doc.ic.ac.uk/bkainz/teaching/60005-co317-computer-graphics/
http://www.doc.ic.ac.uk/~dr/uploads/Main/RevisionNotesVectorAlgebra.pdf

Information for non DOC students

• Apply at https://dbc.doc.ic.ac.uk/externalreg/

• Your department's endorser will approve/reject your application

– No access after a few days? Check status of approval and

contact relevant person(s)

• Key Dates:

– Exam registration opens end January for 2-3 weeks

– Exams for DoC 3rd/4th year courses take place at the end of the Term

in which the course is taught – courses that are co-scheduled on the

time-table will have their exams co-scheduled

• If in doubt, read the guidelines available at the link above

Graphics Lecture 1: Slide 6

https://dbc.doc.ic.ac.uk/externalreg/

Courseworks

• There will be six practical coursework tasks; three of

them are assessed:

– Task 1: Framework

– Task 2: Transformations

– Task 3: Illumination (assessed 40%)

– Task 4: Color

– Task 5: Texture & Render to Texture (assessed 10%)

– Task 6: GPU ray tracing (50%)

• All practical courseworks require programming

experience (very basic C)

Graphics Lecture 1: Slide 7

Logistics

• 6 tasks, 3 assessed

– 1-5 One per week

– Task 6: 2 weeks

• Description and framework already available for all

exercises, but

• Necessary knowledge in each lecture per week

• Submission electronically via CATE!

Effects previous year’s SOLE and COVID-19

• Redesigned the coursework to better match the content of the lectures in

each week

• Made the framework available to everybody through a browser

implementation (no computing lab requirement anymore)

• Provide an open-source implementation of a custom OpenGL GLSL IDE

• Reduced the workload to three assessed tasks, revising assessment. Tasks

1,2,4 are voluntary. Removed one task that was not supported by all

OpenGL versions

• One exam question will be based on what you learned during the

coursework!

• Re-implemented the framework for the coursework for a second time:

– It is now the most advanced teaching framework for computer graphics

• Everybody can use it now from their own laptops without needing to install

anything: http://shaderlabweb.doc.ic.ac.uk/

• We listened to your SOLE feedback from the last years!

– Please fill in SOLE at the end of this course!

http://shaderlabweb.doc.ic.ac.uk/

CSL and TAs

• Course support leader:

– Benjamin Hou benjamin.hou11@imperial.ac.uk

– Samuel Budd

– Hadrien Reynaud

– Miguel Monteiro

mailto:benjamin.hou11@imperial.ac.uk

Labs in 202 & 206

• Week 3: Wednesday 9-10

• Week 4: Wednesday 9-10

• Week 6: Wednesday 9-10

• Week 8: Wednesday 9-10

framework

• http://shaderlabweb.doc.ic.ac.uk/

starting the framwork

• Open a browser (preferably Chrome)

• Enter http://shaderlabweb.doc.ic.ac.uk/

http://shaderlabweb.doc.ic.ac.uk/

Tasks

• Task 1:

Get familiar with the framework

Student solutions

Student solutions

Student solutions

Graphics Lecture 1: Slide 17

Questions:
https://edstem.org/us/courses/14755/discussion/

Have fun!

https://edstem.org/us/courses/14755/discussion/

Interactive Computer Graphics: Lecture 1

3D graphical scenes:

Projections and Transformations

Two dimensional graphics

• The lowest level of graphics processing operates directly

on the pixels in a window provided by the operating

system.

• Typical Primitives are:

SetPixel(int x, int y, int colour);

DrawLine(int xs, int ys, int xf, int yf);

• etc.

Graphics Lecture 1: Slide 20

World coordinate systems

• To achieve device independence when drawing objects

we can define a world coordinate system.

• This will define our drawing area in units that are suited

to the application:

– meters

– light years

– microns

– etc

Graphics Lecture 1: Slide 21

Example

Graphics Lecture 1: Slide 22

clipped
parts

x

y

Drawing
Area

30 70

10

50
visible
parts

We can give our window ‘World

Coordinates‘ and draw objects

using them.

SetWindow(30, 10, 70, 50)

DrawLine(40, 3, 90, 30)

DrawLine(50, 60, 60, 40)

Normalisation

To make the conversion

we need a process of normalisation

First we must ask the operating system* for the pixel

addresses of the corners of the area we are using.

Then we can translate our world coordinates to pixel

coordinates.

*making a ‘system call’ through the API

Graphics Lecture 1: Slide 23

drawing commands

using screen pixels

device independent

graphics commands

Normalisation

Graphics Lecture 1: Slide 24

Normalisation

• Having defined our world coordinates, and obtained our

device coordinates we relate the two by simple ratios:

• Rearranging, we get:

• with a similar expression

for Yv

Graphics Lecture 1: Slide 25

Normalisation

• So we have two equations for calculating pixel

coordinates (Xv,Yv).

• We can simplify them to form a simple pair of linear

equations:

• Here A, B, C and D are constants that define the

normalisation. A, B, C, D are found from the known

values of Wxmin, Vxmin, ...

Graphics Lecture 1: Slide 26

Polygon rendering

• Many graphics applications use scenes built out of planar

polyhedra.

• These are three dimensional objects whose faces are all

planar polygons (often called faces or facets).

Graphics Lecture 1: Slide 29

Representing planar polygons

• In order to represent planar polygons in the computer we

need a mixture of different data:

– Numerical Data

• Actual 3D coordinates of vertices, etc.

– Topological Data

• Details of what is connected to what.

Graphics Lecture 1: Slide 30

x

y

z

0 1

2

3 Vertex data

Index Location

0 (0, 0, 0)

1 (1, 0, 0)

2 (0, 1, 0)

3 (0, 0, 1)

Face data

Index Vertices

0 0 1 3

1 0 2 1

2 0 3 2

3 1 2 3

Projections of wire frame models

• Wire frame models simply include points and lines.

• In order to draw a 3D wire frame model we must:

– First convert the points to a 2D representation.

– Then we can use simple drawing primitives to draw them.

• The conversion from 3D into 2D is a projection.

Graphics Lecture 1: Slide 31

Projection

Graphics Lecture 1: Slide 32

V

P

Projection Surface

Viewpoint

Projector

Object

The projector takes a point on the object to

a point on 2D projection surface.

Non-linear projections

• In general it is possible to project onto any surface:

– Sphere

– Cone

– Etc.

• or to use curved projectors, for example to produce lens

effects.

• But we will only consider linear projections onto a flat

(planar) surface.

Graphics Lecture 1: Slide 33

Orthographic projection

• This is the simplest form of projection, and effective in

many cases.

• Make simplifying assumptions:

– The viewpoint is at z = − ∞

– The plane of projection is z = 0

• So all projectors have the same direction:

Graphics Lecture 1: Slide 34

Orthographic projection onto z = 0

Graphics Lecture 1: Slide 35

V1

P1

P2

V2
Each projection line

has equation

where

• Substitute d = (0, 0, -1)T into the projector vector equation:

• Gives Cartesian equations for each component

• Projection plane is

Calculating an orthographic projection

Graphics Lecture 1: Slide 36

Calculating an orthographic projection (cont.)

• So the projected location on the screen is

• i.e. we simply take the 3D x and y components of the

vertex!

Graphics Lecture 1: Slide 37

Orthographic projections of a cube

• Looking at a face, a vertex and a more general view…

Graphics Lecture 1: Slide 38

Perspective projection

• Orthographic projection is fine in cases where we are not

worried about depth

– e.g. when most objects are at the same distance from the viewer

• However, for close work - particularly computer games -

it will not do.

• Instead, we use perspective projection.

Graphics Lecture 1: Slide 39

Canonical form for perspective projection

Graphics Lecture 1: Slide 40

Projection plane: z = f

x

z

y

Viewpoint

V1

P2

P1

V2

f

Calculating perspective projection

The perspective projector equation from vertex V is

because all projectors go through the origin. At the

projected point we have Pz = f.

Let the value of μ at this point be μp

and

Therefore

Graphics Lecture 1: Slide 41

Perspective projections of a cube

(a) Viewing a face

(b) Viewing a vertex

(c) A general view

Graphics Lecture 1: Slide 42

a

b

c

Problem break

Given that the viewing plane is at z = 5, what point on the

view plane corresponds to the 3D vertex

when we use the different projections:

1. Perspective

2. Orthographic

Graphics Lecture 1: Slide 43

Problem break

Given that the viewing plane is at z = 5, what point on the

view plane corresponds to the 3D vertex

when we use the different projections:

1. Perspective

2. Orthographic

Graphics Lecture 1: Slide 44

The need for transformations

• Graphics scenes are defined in a particular coordinate

system.

• We want to draw a graphics scene from any angle

• But to draw a graphics scene, it is a lot easier to have:

– The viewpoint at the origin

– The z-zaxis as the direction of view

• Hence, we need to be able to transform the coordinates

of a graphics scene.

Graphics Lecture 1: Slide 45

Transformation of viewpoint

Graphics Lecture 1: Slide 46

x

y

Cx

z

O

Cz

Cy

Cd
x

y

z
O

Before transformation After transformation

Other transformations

• We also need transformations for other purposes:

– Animating Objects

e.g. flying titles, rotating, shrinking etc.

– Multiple Instances

the same object may appear at different places or different

sizes

– Reflections and other special effects

Graphics Lecture 1: Slide 47

Matrix transformations of points

To transform points we use matrix multiplications, e.g. to

make an object at the origin twice as big we could use:

which, when multiplied out, gives:

Graphics Lecture 1: Slide 48

Translation by matrix multiplication

• Many of our transformations will require translation of the

points. For example if we want to move all the points two

units along the x-axis we would require

• But how can we do this with a matrix? I.e.

Graphics Lecture 1: Slide 49

… can’t be done

Homogenous coordinates

• The answer is to use 4D homogenous coordinates.

• They have a 4th ordinate allowing us to use the last

column for translation

• which, when multiplied out, gives:

Graphics Lecture 1: Slide 50

General homogenous coordinates

• In most cases the last ordinate will be 1

• But in general, it is a scale factor.

Homogeneous Cartesian

Graphics Lecture 1: Slide 51

Affine transformations

• Affine transformations are those that preserve parallel

lines.

• Most transformations we require are affine, the most

important being:

– Scaling

– Rotation

– Translation

• Other more complex transforms can be built from these.

• An example of a non-affine transformation:

– Perspective projection (parallels not preserved).

Graphics Lecture 1: Slide 52

Translation with a matrix

• We can apply a general translation by (tx, ty, tz) to the

points of a scene by using the following matrix

multiplication

Graphics Lecture 1: Slide 53

Inverting a translation

• Since we know what a translation matrix physically does,

we can write down its inversion directly, e.g.

Translation matrix inverse

• Can you show that the product of these matrices is the

identity?

Graphics Lecture 1: Slide 54

Scaling with a matrix

• Scaling simply multiplies each ordinate by a scaling

factor.

• It can be done with the following homogenous matrix:

Graphics Lecture 1: Slide 55

Inverting a scaling

• To invert a scaling we simply divide the individual

ordinates by the scale factor.

Scaling matrix inverse

Graphics Lecture 1: Slide 56

Combining transformations

• Suppose we want to make an object centred at the origin

twice as big and then move it so that the centre is at (5, 5,

20).

• The transformation is a scaling followed by a translation:

Graphics Lecture 1: Slide 57

Combined transformations

• We can multiply out the transformation matrices

• This gives us a single matrix which we can use to apply

both transformations to any point

Graphics Lecture 1: Slide 58

Careful: Transformations are not

commutative

• The order of applying transformations matters:

• In general

T  S is not the same as S  T

• Check this for the transformation matrices on the last two

slides

Graphics Lecture 1: Slide 59

The order of transformations is significant

Graphics Lecture 1: Slide 60

x

y

x→ 2x

x→ x + 1

x→ 2x

x→ x + 1

The results at the end of each route are different.

Rotation

• To define a rotation, we need an axis and an angle.

• The simplest rotations are about the Cartesian axes.

• For example:

– Rx Rotate about the x-axis

– Ry Rotate about the y-axis

– Rz Rotate about the z-axis

Graphics Lecture 1: Slide 61

Rotation matrices

By θ about each of the axes

Graphics Lecture 1: Slide 62

Example: Derivation of Rz

Graphics Lecture 1: Slide 63

y

O

θ

φ x

r (r cosφ, r sinφ)

(r cos(φ+θ), r sin(φ+θ))

z-axis goes into page

Rotations have a direction

• Note the following about the matrix formulations given in

these notes:

– We will stick to a left-handed coordinate system

– Rotation is anti-clockwise when looking along the axis of rotation

(in the previous slide, the z-axis goes into the page).

– Rotation is clockwise when looking back towards the origin from

the positive side of the axis

Graphics Lecture 1: Slide 64

Inverting rotation

•i.e. we can use the following relations to help us find the

inverse of a rotation:

Graphics Lecture 1: Slide 65

Inverting a rotation

by angle θ

Rotating through

angle -θ

cos(-θ) = cos(θ) and sin(-θ) = -sin(θ)

Inverting rotation

• So for example:

Graphics Lecture 1: Slide 66

Rotation Inverse

