Interactive Computer Graphics: Lecture 2

Transformations for animation

The most useful operations:
Previously defined transformation matrices

/1 0 0 t, /x (a:—l—tx\
» Translation 010 % y\ _ |yt
0 0 1 ¢, z z 41,
woo 1/\1) \ 1)

/S;,; 0 0 O (a:\ Sy T
« Scaling 0 sy 0 8\ gyl _ (Sy y\
0O O s, Z

NI VA Y

Graphics Lecture 2: Slide 2

Rotations about x, y and z axes.

1 0 0 O\
R 0 cosf® —sinf O
T 10 sin® cos® O
\0 0 0 1)
cos@ 0 sinf O
o (0 1 0 o\
Y| —sinf® 0 cosfh 0
\ 0 0 0 1/
(COS@ —sinf 0 O\
oo sinf cosf 0O O
s 0 0 1 0
\ 0 0 0 1)

Graphics Lecture 2: Slide 3

Rotations about x, y and z axes.

1 0 0 0\
o 0O cosf —sinf O
* 0 sinf cosf O
\0 0 0 1 |
(cos 0 sind 0\ We now consider more
0 1 0 0 complex transformations
Ry=1_ sinfd 0 cosf O which are _comblnat_lons
\ 0 o o 1/ oftranslations, scalings
(COS 0 _<ind 0 O\ and rotations
o sinf cosf 0O O
i 0 0 1 0
\o 0 0 1)

Graphics Lecture 2: Slide 4

Flying sequences

 In generating animated flying sequences, we require the
viewpoint to move around the scene.

» This implies a change of origin
* Let

— the required viewpoint be C = (C,,C,,C,)

A
— the required view direction be d = (dy)
d

Graphics Lecture 2: Slide 5

Recall the canonical form for perspective projection

Vi

A
y Vv,

YA
P, 7

Projection plane:z = f

5 >
Viewpoint X

We look along the z-axis and the the y-axis is ‘up’

Graphics Lecture 2: Slide 6

ransformation of viewpoint

Coordinate system for definition Coordinate system for viewing

Graphics Lecture 2: Slide 7

Flying Sequences

* The required transformation is in three parts:

1. Translation of the origin
2. Rotate about y-axis
3. Rotate about x-axis

* The two rotations are to line up the z-axis with the view
direction

Graphics Lecture 2: Slide 8

ranslation of the Origin

Y
d
A Jc A
Y
. N
100 —C,
A_(010—Cy\
“lo 01 —c
\0o 00 1/

Graphics Lecture 2: Slide 9

2. Rotate about y until d is in the y-z plane

\/d2 + d?

cos 6 d/v
sin 0 dg /v
"X
—dz/v 0
0 O\
d,/v 0

Graphics Lecture 2: Slide 10

3. Rotate about x until d points along the z-axis

Y
|| ‘ cos¢ = wv/|d|
a’y sing = dy/|d]
v z
1 0 0 0 1 0 0 0
- 0 cos¢ —sing 0| [0 wvf|d —d,/|d] O
|0 sing cos¢p Of |0 d,/|d wv/|d O
0 0 0 1 0 0 0 1

Graphics Lecture 2: Slide 11

Combining the matrices

A single matrix that transforms the scene can be
obtained from the matrices ‘A, B and C by multiplication

7 =CBA
« And for every point P of the scene, we calculate
P,=TP

* The view is now in ‘canonical’ form and we can apply the
standard perspective or orthographic projection.

Graphics Lecture 2: Slide 12

Verticals

* So far we have not looked at verticals

« Usually, the y direction is treated as vertical, and by
doing the R, transformation first, things work out correctly

« However it is possible to invert the vertical

Graphics Lecture 2: Slide 13

ransformations and verticals

R, 2@
y“/z _)

P

0
view direction (0)
-1

Graphics Lecture 2: Slide 14

Rotation about a general line

« Special effects, such as rotating a scene about a general
line can be achieved by multiple transformations

* The transformation is formed by:
— Making the line of rotation one of the Cartesian axes
— Doing the rotation (about the chosen axis)
— Restoring the line to its original place

Graphics Lecture 2: Slide 15

Rotation about a general line

The first part is achieved using the same matrices that we derived
for the flying sequences

CBA

This rotates the general line so it is aligned with the z-axis.

We then carry out the rotation about the z-axis then follow this by the
Inversion of the initial matrices.

So the full matrix T of the combined transformation is

T=A"B'C'R,CBA

Graphics Lecture 2: Slide 16

Other effects

« Similar effects can be created using this approach

 e.g. to make an object shrink (and stay in place)

1. Move the object to the origin
2. Apply a scaling matrix
3. Move the object back to where it was

Graphics Lecture 2: Slide 17

Projection by matrix multiplication

« Usually projection and drawing of a scene comes after
the transformation(s)

* It is therefore convenient to combine the projection with
the other parts of the transformation

« So it is useful to have matrices for the projection
operation

Graphics Lecture 2: Slide 18

Orthographic projection matrix

» For (canonical) orthographic projection, we simply drop
the z-coordinate:

1 00 0
M_/0100\
°= 1o 0 0 0
\0 0 0 1)
(z\ (%)
REAEY
Z 0

Graphics Lecture 2: Slide 19

Perspective projection matrix

» Perspective projection of homogenous coordinates can
also be done by matrix multiplication:

1 0 0 0
P
\o 0 1/f 0
(2\ [=)
\1/ \z/f)

Graphics Lecture 2: Slide 20

Perspective projection matrix: Normalisation

« Remember we can normalise homogeneous coordinates,
SO

AN ES (F/2)
M, |71 =1 7 | whichis the same as yf/z

* as required.

Graphics Lecture 2: Slide 21

Projection matrices are singular

* Notice that both projection matrices are singular (i.e.
‘non-invertible’, zero-determinant, ...)

(1 0 O 0\ (1 0 0 O\
M. — O 1 0 O M. — 0O 1 0 0
P O 0 1 O ¢ 0O 0 0 O
\0 0 1/f 0 \0 0 0 1/
« This is because a projection transformation cannot be
iInverted.

« Given a 2D image, we cannot in general reconstruct the
original 3D scene.

Graphics Lecture 2: Slide 22

Homogenous coordinates as vectors

» We now take a second look at homogeneous
coordinates, and their relation to vectors.

* In the previous lecture we described the fourth ordinate
as a scale factor.

Homogeneous Cartesian

(x\ x/s
) -
\3) z/s

Graphics Lecture 2: Slide 23

Homogenous coordinates and vectors

« Homogenous coordinates fall into two types:

1.Position vectors
— Those with non-zero final ordinate (s > 0).
— Can be normalised into Cartesian form.

2.Direction vectors
— Those with zero in the final ordinate.
— Have direction and magnitude.

Graphics Lecture 2: Slide 24

()

Y

o/
(;\

\0/

Adding direction vectors

* If we add two direction vectors we obtain a direction
vector
(azz\ (CC]\ /ZCZ —|—£Cj\
Yi Y;

o) o) o)

Z; + Zj
* This is the normal vector addition rule.

Graphics Lecture 2: Slide 25

Adding position and direction vectors

* If we add a direction vector to a position vector, we
obtain a position vector:

(X

Y

Nice result.

Ties in with definition of straight
line in Cartesian space which

uses a point and a dire

Graphics Lecture 2: Slide 26

\1/

ction

/X—FZC\

Y +y
J +z

\ 1)

Adding two position vectors

« If we add two position vectors, we obtain their mid-point

X, X X, +X (Xo 4+ Xp) /2
EA A IR AR N pvae e
Za Yy Zo + Zy (Za+ Zp) /2

o)\ U) U

* This is reasonable since adding two position vectors has
no real meaning in vector geometry

Graphics Lecture 2: Slide 27

he structure of a transformation matrix

e The bottom row is always 000 1

* The columns of a transformation matrix comprise three
direction vectors and one position vector

Matrix | Direction Position
: vectors : vectors
| |
(%} Iy Sg Cx\ : (Qx\ (Tx\ (Sx\ : (Cx\
Qy Ty Sy Cy : dy Ty Sy : Cy
= Tz Sz Cz | qz Tz Sz | Cz
\o 0 0o 1)1 \o/ \o) \o) \1)
| |

Graphics Lecture 2: Slide 28

Characteristics of transformation matrices

 Direction vector: Zero, in the last ordinate = not affected by the

translation.

(%ﬁ e Sx Cac\ (*\ (*\

Q@ Ty Sy Oy * *

q,z frz SZ CZ * *

\o 0 0o 1)\ \o

* Position vector: 1 in the last ordinate = all vectors will have the
same displacement.

Qe Tz Sz Cy * x + C,
(qy Ty Sy Cy\ (*\ (* + C’y\
q, T, S, * x + O,

C.
\o 0 o 1/ \1t) \ 1

 |f we do not shear the object the three vectors g, r and s will remain
orthogonal, ie:

q-r=r-s=q-s=20

What do the individual columns mean?

 To see this, consider the effect of the transformation In
simple cases.

* For example take the unit direction vectors along the
Cartesian axes
— e.g. along the x-axis, i=(1,0,0, 0)T

VAN

dy Ty Sy 0 dy

T q-

\%: o o C1Y) \8} \ 0

Graphics Lecture 2: Slide 30

What do the individual columns mean?

 The other axis transformations:

Similarly, we find the following transformations of unit
vectors j and K

Graphics Lecture 2: Slide 31

What do the individual columns mean?

» Transforming the origin:

— If we transform the origin, (0, 0, 0, 1)T, we end up with the last
column of the transformation matrix

@z Te Sz Oy 0 Cy
(Qy Ty Sy Cy\ (O\ (Cy\
q= T2 0

\0 0 o C;) \1/ \C;)

Graphics Lecture 2: Slide 32

he meaning of a transformation matrix

Putting everything together ...

The columns are the original axis system after
transforming to the new coordinate system

Gy Ty sy Cy q transformed x-axis
¢z T2 5z C; r transformed y-axis
\O 0 0 1) s transformed z-axis
L Ll C transformed origin
qr s C

Graphics Lecture 2: Slide 33

Effect of a transformation matrix

Before v After]

Origin

Tells us the old axes and origin in the new coordinate system.,

Gy Ty Sy Cy _ C
qz Tz [q bo]

s, C,
\0 0 0 1/

Graphics Lecture 2: Slide 34

What we want is the other way round

* Normally,

— We are not given the transformation matrix that moves the scene
to that coordinate system, we need to find it

— We are given a view direction d and location C

u y
\% X
System for definition GOV System for viewing }OV

w z

(§) X

To see how to get the matrix, we introduce the idea of the dot product as a
projection

Graphics Lecture 2: Slide 35

he dot product as a projection

» The dot product is defined as
P - u=|P||lu| cos @
 Ifuis
— a unit vector then P - u = |P| cos 6

— along a co-ordinate axis then P - u is the ordinate of P in the
direction of u

P.v

Graphics Lecture 2: Slide 36

Changing axes by projection

« Extending the idea to three dimensions we can see that
a change of axes can be expressed as projections using

the dot product

For example, call the first
coordinate of P in the new

system P.}!
Pl=(P-C)-u
=P-u-C-u

Graphics Lecture 2: Slide 37

ransforming point P

« Given point P in the (X, y, z) axis system, we can calculate
the corresponding point in the (u, v, w) system as:

PP = P-C)-u=P-u—-C-u
t _

P, = (P-C)v=P-v -C-v
PP = P-C)w=P w—-C-w

e Or, In matrix notation:

Pt Uy Uy, u, —C-u P,
Pa’::\ (vx vz v, —C-v \ (\
Wy wy wz —C-w P,

1/ \o NVANY

Graphics Lecture 2: Slide 38

Verticals revisited ...

Unlike the previous analysis we now can control the
vertical

l.e. we can assume the v-direction iIs the vertical and
constrain it in the software to be upwards

Graphics Lecture 2: Slide 39

Back to flying sequences

* We now return to the original problem

— Given a viewpoint point C and a view direction d, we need to find
the transformation matrix that gives us the canonical view.

— We do this by first finding the vectors u, v and w.

We know that d is the direction of the new
axis, so we can write immediately

d

W= —
d

Graphics Lecture 2: Slide 40

Now the horizontal direction

« We can write u in terms of some vector p in the

horizontal direction

P
u —= —

p|

* To ensure that p is horizontal we set

py:()

* S0 that p has no vertical component

Graphics Lecture 2: Slide 41

And the vertical direction

* Let g be some vector in the vertical direction, we can
then write v as

= v=

q

* g must have a positive y component, so we can say that

Qyzl

Graphics Lecture 2: Slide 42

So we have four unknowns

P = |[p:,0,p.] new horizontal

qQ = |gz,1,q.] new vertical

To solve for these we use the cross product and dot
product.

We can write the view direction d, which is along the new z
axis, as

d=pxq

(We can do this because the magnitude of p is not yet set)

Graphics Lecture 2: Slide 43

Evaluating the cross-product

dy 1 gk
d = |d,|=pxqg=|px 0 p,
d., ¢ 1 q.
—Dz
= —p.2+ (pZQx _pxqz>j +pek = | P2Gx — P2l
Pz
da: — Pz
dy = Pzqx — P29z
d, = pg

Graphics Lecture 2: Slide 44

Using the dot product

 Lastly we can use the fact that the vectors p and g are
orthogonal

P-q4 =
= Pzlqx +pzq,z —

« And from the cross product (previous slide)

dy — Pz24x — Pxqz

« S0 we have two simple linear equations to solve for g
and write it in terms of the components of d

Graphics Lecture 2: Slide 45

he final matrix

* Once we have expressions for p and g in terms of the
given vector d, we have

p q d

u= — —
p| q d]|

« We already know C as that is also given. So we can write
down the matrix

Uy Uy U, —C-u
(U Uy)

vy vy v, —C-w
wy wy w, —-C-w
\0 0 0 1

Graphics Lecture 2: Slide 46

