Interactive Computer Graphics: Lecture 3

Clipping

Some slides adopted from
F. Durand and B. Cutler, MIT

Clipping

 Eliminate portions of
objects outside the
viewing frustum

* View frustum

— boundaries of the image
plane projected in 3D

— a near & far clipping plane

« User may define
additional clipping planes

Graphics Lecture 3: Slide 3

Why clipping ?

« Avoid degeneracy

— e.g. don’t draw objects
behind the camera

 Improve efficiency

— e.g. do not process objects
which are not visible

Graphics Lecture 3: Slide 4

near

When to clip?

» Before perspective transform
In 3D space
— use the equation of 6 planes
— natural, not too degenerate

* In homogeneous coordinates after
perspective transform (clip space) ‘
— before perspective divide

(4D space, weird w values) >

— canonical, independent of camera
— simplest to implement

 In the transformed 3D screen space
after perspective division A
— problem: objects in the plane of the camera <_J/

(1,1,1)

Graphics Lecture 3: Slide 5 =1, =1, =1)

he concept of a halfspace

Graphics Lecture 3: Slide 6

The concept of a halfspace

Infinite line:
f(x,y) =0
eg.x—-y+1=0

X
>

Graphics Lecture 3: Slide 7

he concept of a halfspace

Infinite line:
Halfspace

f(x,y) =0
eg.x—-y+1=0

X
>

Halfspace

Graphics Lecture 3: Slide 8

he concept of a halfspace

Y A Infinite line:
Halfspace
f(x,y) =0
f(x,y) <0
eg.x—-y+1=0
X
>
Halfspace
f(x,y) >0

Graphics Lecture 3: Slide 9

The concept of a halfspace in 3D

Plane equation f(x,y,2)=0

orAx+By+Cz+D=0

For all points in this halfspace

f(x,y,z)>0

For all points in this halfspace

f(x,y,z2) <0

Graphics Lecture 3: Slide 10

Reminder: Homogeneous Coordinates

 Link plane equation Ax+By+Cz+D =0
with vector H= (A, B, C,D)" in
homogeneous coordinates

« Each point (x,y, z, w) has an infinite
number of equivalent homogenous
coordinates:

(sX, SY, Sz, SW) , S £ 0 H=(AB,C,D)

* Relates to infinite number of equivalent
plane equations: (o A

sB
sC
\sD

sAx+sBy+sCz+sD=0—>H=

Graphics Lecture 3: Slide 11

Point-to-Plane Distance

« Scale H so that (A, B, C) becomes
normalized, i.e. that

Az+ B2+ C2=1
« Then distance is easily calculated
d=Hep=H"p
n.b. dot product is in homogeneous
coordinates
« dis a signed distance:

positive = "inside" aeAQ
Ve = "outside" 7
negative = "outside =6+
¢C~

§Dg

Graphics Lecture 3: Slide 12

Which side of the plane Is a point on?

(Recall the planes in the frustum)
if d=Hep=>0

Pass through

if d=Hep<0

Clip (or cull or reject)

&40
Don't really need to normalize A,B,C C ™
We only test the sign of Hep = gC:
&Dj

Graphics Lecture 3: Slide 13

Clipping with respect to View Frustum

e Test point p against each of the 6 planes
— Normals oriented towards the interior
— Each has its own H

« IfHep<0forany H then clip p (‘cull’/ ‘reject’)

Graphics Lecture 3: Slide 14

What are the View Frustum Planes?

Her = (0 0 1 —near)’

Ho,, =(0 0 -1 far)7

(right” f top”~ Jar , far) Hoowom= (O near —bottom 0)7
\near rear Hep = (0 —near top 0)f
(-near O left 0)°

Hige = (near 0 —right 0)7

Eye at O
looking along z+

)

Graphics Lecture 3: Slide 15 (leﬁ, bottom, near)

Example derivation

[r] k
bl x|b]l=Il b n
n n r b n

i(bn —bn) + j(rn — In) + k(b — rb) = (0,n, —b)"

(P — Pl) -n=20
= ny—bz=0
— Hbottom — (O, n, _ba O)T

Graphics Lecture 3: Slide 16

Line-Plane Intersection

« Sometimes we need to clip lines and line segments!
« Explicit (Parametric) Line Equation
L(x) =P+ 1 (P1—Po)

or
L(u)=pp+(1—1)pg

« How do we intersect?
— Insert explicit equation of line into implicit equation of plane
— use the normal vector

Graphics Lecture 3: Slide 17

Line-Plane Intersection: Example method

To compute intersection line joining p, , p; and plane:

1.For any vector v lying in the plane nev =0

2.Let the intersection point be up, + (1-u) p,

3.Choose v to be any point on the plane.

4.A vector in the plane is given by up, + (1-)p,— Vv

5.50n* (up; + (1-p)py—Vv) =0

6.We can solve this for xz and hence find the point of
Intersection

Graphics Lecture 3: Slide 18

Segment Clipping
elffHep>0andH*qg<0

elffHep<OandH*qg>0
elffHep>0andH*qg>0

elffHep<OandH<*®qg<0

Graphics Lecture 3: Slide 19

Segment Clipping

elffHep>0andHe*qg<0
- clip g to plane

Graphics Lecture 3: Slide 20

Segment Clipping

elffHep<OandHe+qg>0
- clip p to plane

Graphics Lecture 3: Slide 21

Segment Clipping

elffHep>0andHe+qg>0
- pass through

Graphics Lecture 3: Slide 22

Segment Clipping

elffHep<OandH-*qg<0
- clipped out

Graphics Lecture 3: Slide 23

Clipping against the frustum

For each frustum plane H
— IfHep>0and Heq <0, clipq
— IfHep<OandHeq>0, clipp
— If Hep > 0 and Heq > 0, pass through
— If Hep <0 and Heq < 0, clipped out

\ /

Ny,

) >

Result is a single
segment.

7INS

<

Graphics Lecture 3: Slide 24

Clipping and containment

 Clipping can be carried out against any object
— Not just a viewing frustum

 Clipping against an arbitrary object

* Need a test for containment
— l.e. Is a point inside or outside the object

« Can develop containment test for
— Convex objects: Common problem, e.g. convex polyhedra
— Concave objects: Harder than convex case

Graphics Lecture 3: Slide 25

Convex objects: Two Definitions

1. Aline joining any two points on the boundary lies
Inside the object.

2. The object is the intersection of planar halfspaces.

Graphics Lecture 3: Slide 26

esting If an object is convex

lllustration of definition 2

Graphics Lecture 3: Slide 27

esting If an object is convex: Algorithm

convex = true

for each face of the object {
find plane equation of face: F(x,y,z) =0
choose object point (x;,y;,z;) not on the face

for all other points of the object {

if (Sign(F(ijerzj)) '= sign(F(x;,¥;,2;)))
then convex = false

Works due to definition 2, all points of the
object must lie entirely to one side of each face

Graphics Lecture 3: Slide 28

Test containment within a convex object:
Algorithm

let the test point be (x.,y:,Zz:)
contained = true
for each face of the convex object {
find plane equation of face: F(x,y,z) =0

choose an object point (x;,y;,z;) not on the face

if (sign(F(x.,¥.,2)) '= sign(F(x;,¥;,2;)))
then contained = false

Graphics Lecture 3: Slide 29

Vector formulation

* The same test can be expressed in vector form.

« This avoids the need to calculate the Cartesian equation
of the plane, if, in our model we store the normal vector n
for each face of our object.

Graphics Lecture 3: Slide 30

Vector test for containment
P is on the ‘inside’ of
the face If:

face of convex Inner normal 0 is acute
cos >0

ne(P-A) >0

Because
ne(P-A) = |n| |P-A| cos 6

lest point

Graphics Lecture 3: Slide 31

Normal vector to a face

* The vector formulation does not require us to find the
plane equation of a face, but it does require us to find a
normal vector to the plane;

« Same thing really since for plane
Ax+By+Cz+ D=0
* A normal vector is

@ 40

Graphics Lecture 3: Slide 32

Finding a normal vector

« The normal vector can be found from the cross product
of two vectors on the plane, say two edge vectors

Graphics Lecture 3: Slide 33

But which normal vector points inwards?

Graphics Lecture 3: Slide 34

Checking normal direction (convex object)

Is n an inner normal?

2 faces of a
convex object

if n*(B-A) > 0 then n is
B the inner surface normal

Origin

Graphics Lecture 3: Slide 35

Problem Break

* A face of a convex object lies in the plane
3X+2y+7z+1=0
and a vertex vis (-1, -1, 1). A normal vector is therefore
n=(357)"

* Problems:

1. If another vertex of the objectisw=(1, 1, 1)
determine whether n is an inner or outer surface
normal.

2. Determine whether the point p = (1, 0, —-1) is on the
Inside or the outside of the face.

Graphics Lecture 3: Slide 36

Solution to Q2

Method 2:
The inner surface normal isn=(3,5, 7)
for the test point p=(1,0,-1)
and face vertex v=(-1,-11)
pP-v=(21-2)
ne(p-v)=-3

Thus the angle to the normal is > 90
So the point p is on the outside

Graphics Lecture 3: Slide 39

Concave Objects

« Containment and clipping can also be carried out with
concave objects.

* Most algorithms are based on the ray containment test.

Graphics Lecture 3: Slide 40

he Ray test in two dimensions

Test Point ¥ Ray

Polygon

Find all intersections between the ray and the polygon edges.
If the number of intersections is odd the point is contained

Graphics Lecture 3: Slide 41

Calculating intersections with rays

* Rays have equivalent equations to lines, but go in only
one direction. For test point T a ray is defined as

R=T+ud , u>0

« We choose a simple to compute direction e.g.

or %1Q

d_% 1 0 d= OT
_9 - = ~U.
e 0 g éOE

Graphics Lecture 3: Slide 42

Valid Intersections

Line segment
" P=V2+v(V1-V2)

Ray
P=T+ud ,d=(10)T

.. Intersection
S T+ud=V2+ v(V1-V2)
Solve for vand u
Valid intersection if
u>0,0<v<1

Graphics Lecture 3: Slide 43

Extending the ray test to 3D

/
o~
I;I-Ointt 7\

A ray is projected in any direction.

If the number of intersections with the
object Is odd, then the test point is inside

Graphics Lecture 3: Slide 44

3D Ray test

 There are two stages:
1. Compute the intersection of the ray with the plane of each
face.

2. If the intersection is in the positive part of the ray (1>0) check
whether the intersection point is contained in the face (i.e. not
just in the planar extension of the face).

Graphics Lecture 3: Slide 45

he plane of a face

« Unfortunately the plane of a face does not in general line
up with the Cartesian axes, so the second part is not a
two dimensional problem.

« However, containment is invariant under orthographic
projection, so it can be simply reduced to two
dimensions.

Graphics Lecture 3: Slide 46

Clipping to concave volumes

* Find every intersection of the line
to be clipped with the volume

* This divides the line into one or
more segments.

« Test a point on the first segment
for containment

» Adjacent segments will be
alternately inside and out.

Graphics Lecture 3: Slide 47

Splitting a volume into convex parts

« Split concave volume

Into convex parts
« Can apply tests for

convex objects to each

of the parts
e Consider each face

Graphics Lecture 3: Slide 48

If all the object vertices lie on one
side of the plane of of a face, we
proceed to the next face

If the plane of a face cuts the object:

New Face

[/
/

[

N/

Split Face

Graphics Lecture 3: Slide 49

Split the Object

New Face

/

[

[
\\/ %

Split Face Repeat on all concave sub parts

Graphics Lecture 3: Slide 50

