
Interactive Computer Graphics: Lecture 4

Graphics Pipeline and APIs

Some slides adopted from Markus

Steinberger and Dieter Schmalstieg

Graphics Lecture 4: Slide 2

The Graphics Pipeline: High-level view

• Declarative (What, not How)

– For example virtual camera with scene description, e.g. scene

graphs

– Every object may know about every other object

– Renderman, Inventor, OpenSceneGraph,...

• Imperiative (How, not What)

– Emit a sequence of drawing commands

– For example: draw a point (vertex) at position (x,y,z)

– Objects can be drawn independant from each other

– OpenGL, PostScript, etc.

• You can always build a declarative pipeline on top of imperative

model

Graphics Lecture 4: Slide 3

The Graphics Pipeline

Modelling

Transformations

Illumination

(Shading)

Viewing Transformation

(Perspective / Orthographic)

Clipping

Projection

(to Screen Space)

Scan Conversion

(Rasterization)

Visibility / Display
Output: 2D image

for framebuffer display

Input:

- geometric model

- illumination model

- camera model

- viewport

imperative pipeline!

Application

drawing
commands

Graphics Lecture 4: Slide 4

Modelling

Transformations

Illumination

(Shading)

Viewing Transformation

(Perspective / Orthographic)

Clipping

Projection

(to Screen Space)

Scan Conversion

(Rasterization)

Visibility / Display

The Graphics Pipeline

• 3D models are defined in

their own coordinate

system

• Modeling transformations

orient the models within a

common coordinate frame

(world coordinates)

Graphics Lecture 4: Slide 5

Modelling

Transformations

Illumination

(Shading)

Viewing Transformation

(Perspective / Orthographic)

Clipping

Projection

(to Screen Space)

Scan Conversion

(Rasterization)

Visibility / Display

The Graphics Pipeline

• Vertices are lit (shaded)

according to material

properties, surface

properties and light sources

• Uses a local lighting model

Graphics Lecture 4: Slide 6

Modelling

Transformations

Illumination

(Shading)

Viewing Transformation

(Perspective / Orthographic)

Clipping

Projection

(to Screen Space)

Scan Conversion

(Rasterization)

Visibility / Display

The Graphics Pipeline

• Maps world space to eye (camera)

space (matrix evaluation)

• Viewing position is transformed to

origin and viewing direction is

oriented along some axis (typically z)

Graphics Lecture 4: Slide 7

Modelling

Transformations

Illumination

(Shading)

Viewing Transformation

(Perspective / Orthographic)

Clipping

Projection

(to Screen Space)

Scan Conversion

(Rasterization)

Visibility / Display

The Graphics Pipeline

• Portions of the scene outside the

viewing volume (view frustum)

are removed (clipped)

• Transform to Normalized Device

Coordinates

Eye space NDC

Graphics Lecture 4: Slide 8

Modelling

Transformations

Illumination

(Shading)

Viewing Transformation

(Perspective / Orthographic)

Clipping

Projection

(to Screen Space)

Scan Conversion

(Rasterization)

Visibility / Display

The Graphics Pipeline

• The objects are projected

to the 2D imaging plane

(screen space)

NDC Screen Space

Modelling

Transformations

Illumination

(Shading)

Viewing Transformation

(Perspective / Orthographic)

Clipping

Projection

(to Screen Space)

Scan Conversion

(Rasterization)

Visibility / Display

• Rasterizes objects into

pixels

• Interpolate values inside

objects (color, depth, etc.)

The Graphics Pipeline

Graphics Lecture 4: Slide 10

Modelling

Transformations

Illumination

(Shading)

Viewing Transformation

(Perspective / Orthographic)

Clipping

Projection

(to Screen Space)

Scan Conversion

(Rasterization)

Visibility / Display

The Graphics Pipeline

• Handles occlusions and

transparency blending

• Determines which objects

are closest and therefore

visible

• Depth buffer

Graphics Lecture 4: Slide 11

What do we want to do?

• Computer-generated imagery (CGI) in real-time

• Very computationally demanding:

– full HD at 60hz:

1920 x 1080 x 60hz = 124 Mpx/s

– and that’s just the output data

→use specialized hardware for

immediate mode (real-time) graphics

Graphics Lecture 4: Slide 13

Solution

Most of real-time graphics is based on

• rasterization of graphic primitives

– points

– lines

– triangles

– ...

• Implemented in hardware

– graphics processing unit (GPU)

– controlled through an API such as OpenGL

– certain parts of graphics pipeline are programmable, e.g. using

GLSL

➔ shaders

Graphics Lecture 4: Slide 14

The Graphics Pipeline different view

• High-level view:

• “Vertex”

– a point in space

defining geometry

• “Fragment”:

– Sample produced

during rasterization

– Multiple fragments

are merged into pixels.

Application

Geometry

Rasterization

Frame Buffer

Display

Commands

Primitives

Fragments

scan-out

Graphics Lecture 4: Slide 15

Application Stage

• Generate database
– Usually only once

– Load from disk

– Build acceleration structures (hierarchy, …)

• Simulation

• Input event handlers

• Modify data structures

• Database traversal

• Utility functions

Graphics Lecture 4: Slide 16

Application Stage

• Generate render area in OS

• Generate database
– Usually only once

– Load from disk

– Build acceleration structures (hierarchy, …)

• Simulation

• Input event handlers

• Modify data structures

• Database traversal

• Utility functions

Graphics Lecture 4: Slide 17

Application Stage

solid TEATEST

facet normal 0.986544E+00 0.100166E+00 0.129220E+00

outer loop

vertex 0.167500E+02 0.505000E+02 0.000000E+00

vertex 0.164599E+02 0.505000E+02 0.221480E+01

vertex 0.166819E+02 0.483135E+02 0.221480E+01

endloop

endfacet

facet normal 0.986495E+00 0.100374E+00 0.129434E+00

outer loop

vertex 0.166819E+02 0.483134E+02 0.221470E+01

vertex 0.169653E+02 0.483840E+02 0.000000E+00

vertex 0.167500E+02 0.505000E+02 0.000000E+00

endloop

Endfacet

….

Graphics Lecture 4: Slide 18

Application Stage

solid TEATEST

facet normal 0.986544E+00 0.100166E+00 0.129220E+00

outer loop

vertex 0.167500E+02 0.505000E+02 0.000000E+00

vertex 0.164599E+02 0.505000E+02 0.221480E+01

vertex 0.166819E+02 0.483135E+02 0.221480E+01

endloop

endfacet

facet normal 0.986495E+00 0.100374E+00 0.129434E+00

outer loop

vertex 0.166819E+02 0.483134E+02 0.221470E+01

vertex 0.169653E+02 0.483840E+02 0.000000E+00

vertex 0.167500E+02 0.505000E+02 0.000000E+00

endloop

Endfacet

….

Graphics Lecture 4: Slide 19

The Graphics Pipeline: OpenGL 3.2 and later

Source:
www.lighthouse3d.com

Application

Fixed function

Programmable

Graphics Lecture 4: Slide 20

The Graphics Pipeline: OpenGL 3.2 and later

Source:
www.lighthouse3d.com

geometry

stage

rasterization

stage

Graphics Lecture 4: Slide 21

The Graphics Pipeline: OpenGL 3.2 and later

Application
vertices

vertices + connectivity =
primitives

Primitives (e.g. triangles)

fragments =
pixel candidates

pixels

Graphics Lecture 4: Slide 22

Geometry Stage

Vertex
Processing

Clipping Projection
Viewport

Transform

programmable fixed function

Graphics Lecture 4: Slide 23

Geometry Stage: Vertex Processing

• The input vertex stream

– composed of arbitrary vertex attributes (position, color, …).

• is transformed into stream of vertices mapped onto the

screen

– composed of their clip space coordinates and additional user-

defined attributes (color, texture coordinates, …).

– clip space: homogeneous coordinates

• by the vertex shader

– GPU program that implements

this mapping.

• Historically, “Shaders” were small programs performing

lighting calculations, hence the name.

Object space vertices Screen space vertices

Graphics Lecture 4: Slide 24

Geometry Stage: Vertex Post-Processing

• Uses a common transformation model in rasterization-

based 3D graphics:

Object

space

World

space

View

space

Clip

space

Model

Matrix

View

Matrix

Projection

matrix

Input Vertex

Coordinates

Output Vertex

Coordinates

ModelView

Matrix

ModelViewProjection

Matrix

Graphics Lecture 4: Slide 25

Geometry Stage: Vertex Post-Processing

• Clipping

– Primitives not entirely in view are clipped to

avoid projection errors

• Projection

– Projects clip space coordinates to the image

plane

→ Primitives in normalized device coordinates

• Viewport Transform:

– Maps resolution-independent normalized

device coordinates to a rectangular window

in the frame buffer, the viewport.

→ Primitives in window (pixel) coordinates

Graphics Lecture 4: Slide 26

Geometry Shader

• Optional stage between vertex and fragment shader

• In contrast to the vertex shader, the geometry shader

has full knowledge of the primitive it is working on

– For each input primitive, the geometry shader has access to all

the vertices that make up the primitive, including adjacency

information.

• Can generate primitives dynamically

– Procedural geometry, e.g. growing plants

Graphics Lecture 4: Slide 27

Rasterization Stage

Primitive
Assembly

Primitive
Traversal

Fragment
Shading

Fragment
Merging

fixed function programmable fixed function

Graphics Lecture 4: Slide 28

Screen-space triangles Fragments

• Primitive assembly

– Backface culling

– Setup primitive for traversal

• Primitive traversal (“scan conversion”)

– Sampling (triangle → fragments)

– Interpolation of vertex

attributes (depth, color, …)

• Fragment shading

– Compute fragment colors

• Fragment merging

– Compute pixel colors from fragments

– Depth test, blending, …

Screen space primitives fragments

Rasterization Stage

Rasterization

Graphics Lecture 4: Slide 29

Rasterization – Coordinates

0.0 1.0 2.0 3.0

0.0

1.0

2.0

3.0

x window coordinate

y window
coordinate

Pixel
(2,1)

Lower left corner
of the window

Graphics Lecture 4: Slide 30

Rasterization – Rules

• Different rules for each primitive type

– “fill convention”

• Non-ambiguous!

– artifacts…

• Polygons:

– Pixel center contained in polygon

– Pixels on edge: only one is rasterized

Graphics Lecture 4: Slide 31

Fragment Shading

• “Fragment”:

– Sample produced during rasterization

– Multiple fragments are merged into pixels.

• Given the interpolated vertex attributes,

– output by the Vertex Shader

• the Fragment Shader computes color values for each

fragment.

– Apply textures

– Lighting calculations

– …

Fragments

Texture sampling

+ blending

Shaded fragments

Graphics Lecture 4: Slide 32

Fragment Merging

• Multiple primitives can cover the same pixel.

• Their Fragments need to be composed to form the final

pixel values.

– Blending

– Resolve Visibility

• Depth buffering

Shaded fragments Frame Buffer

merging

Textured Fragments Framebuffer Pixels

Graphics Lecture 4: Slide 33

Fragment Merging

Blending Frame Buffer

Stencil Buffer Depth Buffer

Pixel

Ownership

Test

Scissor

Test

Stencil

Test

Depth

Test

Shaded

Fragment

Graphics Lecture 4: Slide 34

Display Stage

• Gamma correction

• Historically: Digital to Analog conversion

• Today: Digital scan-out, HDMI encryption, etc.

Framebuffer Pixels Light

Graphics Lecture 4: Slide 35

Display Format

• Frame buffer pixel format:

RGBA vs. index (obsolete)

• Bits: 16, 32, 64, 128 bit floating point, …

• Double buffer vs. single buffer

• Quad-buffered stereo

• Overlays (extra bitplanes)

• Auxilliary buffers: alpha, stencil

Graphics Lecture 4: Slide 36

Functionality vs. Frequency

• Geometry processing = per-vertex

– Transformation and Lighting (T&L)

– Historically floating point, complex operations

– Millions of vertices per second

– Today: Vertex Shader

• Fragment processing = per-fragment

– Blending, texture combination

– Historically fixed point and limited operations

– Billions of fragments (“Gigapixel” per second)

– Today: Fragment Shader

Graphics Lecture 4: Slide 37

Architectural Overview

• Graphics Hardware is a shared resource

• User Mode Driver (UMD)

– Prepares Command Buffers for the hardware

• Graphics Kernel Subsystem

– Schedules access to the hardware

• Kernel Mode Driver (KMD)

– Submits Command Buffers to the hardware

Graphics Hardware

Kernel Mode Driver

Graphics Kernel Subsystem

...

User Mode

Kernel Mode

Application 1

Process 1

User Mode Driver

...

Application 2

Process 2

User Mode Driver

...

OpenGL OpenGL

Graphics Lecture 4: Slide 39

Unified Shader Model

• Since shader Model 4.0

• Unified Arithmetic and Logic Unit (ALU)

• Same instruction set and capabilities for
all Shader types

• Dynamic load balancing
geometry/fragment

• Floating point or integer everywhere

• IEEE-754 compliant

• Geometry Shader can write to memory
– „Stream Output“

– Enables multi-pass for geometry

Graphics Lecture 4: Slide 41

Graphics APIs

Low-level 3D API

• OpenGL

– Open Graphics Library (OpenGL) is a cross-language, cross-

platform application programming interface (API) for rendering

2D and 3D vector graphics.

• OpenGL ES

– OpenGL for Embedded Systems is a subset of OpenGL

• DirectX, Direct3D

– a graphics API for Microsoft Windows

Graphics Lecture 4: Slide 42

Graphics APIs cont.

• Vulcan

– OpenGL successor

– targets high-performance realtime 3D graphics applications

across all platforms

– offers higher performance and lower CPU usage than older

APIs.

• Mantle

– low level graphics API by AMD. AMD will move to Vulcan

• Metal

– low-level, low-overhead hardware-accelerated graphics and

compute API by Apple (since IOS 8)

Graphics Lecture 4: Slide 43

Graphics APIs cont.

• RenderMan

– Interface Specification by Pixar Animation Studios

– open API

– describe three-dimensional scenes and turn them into digital

photorealistic images.

– It includes the RenderMan Shading Language.

• WebGL

– JavaScript API for rendering interactive 3D computer graphics

and 2D graphics within any compatible web browser without the

use of plug-ins.

Graphics Lecture 4: Slide 44

Graphics APIs cont.

High-level 3D API – declarative models

a lot! Java, SceneGraphs, performer, Irrlicht, mobile SDKs

e.g. SceneGraph APIs (openSG, openInventor, etc.)

http://archive.gamedev.net/archive/reference/programming/features/scenegraph/index.html

