Interactive Computer Graphics: Lecture 4

Graphics Pipeline and APIs

Some slides adopted from Markus
Steinberger and Dieter Schmalstieg

he Graphics Pipeline: High-level view

* Declarative (What, not How)
— For example virtual camera with scene description, e.g. scene
graphs
— Every object may know about every other object
— Renderman, Inventor, OpenSceneGraph,...
 Imperiative (How, not What)
— Emit a sequence of drawing commands
— For example: draw a point (vertex) at position (Xx,y,z)
— Objects can be drawn independant from each other
— OpenGL, PostScript, etc.

* You can always build a declarative pipeline on top of imperative
model

Graphics Lecture 4: Slide 2

he Graphics Pipeline

drawing]
I commands
Tral\r:ls(.)f?)?rlgggons = Input: G Application
- geometric model
Illumination - illumination model
(Shading) - camera model

- viewport

Viewing Transformation
(Perspective / Orthographic)

Clipping

Imperative pipeline!
Projection
(to Screen Space)

Scan Conversion
(Rasterization)

s : Output: 2D image
Wistlaliny & Pl — for framebuffer display

Graphics Lecture 4: Slide 3

Modelling
Transformations

Hlumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

Graphics Lecture 4: Slide 4

he Graphics Pipeline

3D models are defined In
their own coordinate
system

* Modeling transformations
orient the models within a
common coordinate frame
(world coordinates)

]

Object space World space

he Graphics Pipeline

Modelling
Transformations Vertices are lit (shaded)
llumination according to material
(Shading) properties, surface
Viewing Transformation properties and light sources
(Perspective / Orthographic) « Uses a local lighting model

Clipping

Projection

(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

Graphics Lecture 4: Slide 5

The Graphics Pipeline

Modelling
Transformations
« Maps world space to eye (camera)
lllumination space (matrix evaluation)
(Shading) + Viewing position is transformed to
Viewing Transformation origin and viewing direction Is
(Perspective / Orthographic) oriented along some axis (typically z)
Clipping
Projection
(to Screen Space)
Scan Conversion
(Rasterization)
Visibility / Display

Graphics Lecture 4: Slide 6

he Graphics Pipeline

Modelling
Transformations

Hlumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

Graphics Lecture 4: Slide 7

« Portions of the scene outside the
viewing volume (view frustum)
are removed (clipped)

 Transform to Normalized Device
Coordinates

NDC

m
<
D
wn
©
QO
®
¢

he Graphics Pipeline

Modelling
Transformations : :
» The objects are projected
”'gw"&aﬂon to the 2D imaging plane
adin
(9 (screen space)
Viewing Transformation b o~ v
(Perspective / Orthographic) >, | \I
e ol ﬁ | ‘
Clipping ;)
NDC Screen Space
Projection
(to Screen Space) 0 i
top —_ !' 0
Scan Conversion : P | S
(Rasterization) | 8,)
} , ".:ly
V|S|b|l|ty / DISp|ay bottom / — far AEE . .
S || [] L height
Graphics Lecture 4: Slide 8 lefp SYEIPACE” | hedr screen space

right

The Graphics Pipeline

Modelling
Transformations : : :
» Rasterizes objects into
lllumination pixels
(Shading)

Interpolate values inside

Viewing Transformation :
(Perspective / Orthographic) ObJeCtS (COIOr’ depth, etC.)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

+|+]|+ |+ T+ ||+ F|TF]|T]|T
+* |+ |+ |+ F]|+|F+|F|+|F|F+]|+]|+
+ |+ |+ |+ | F+]|+|+|F|+|F|+]|+]|+
+*|+|* |||+ |T|FT|+|FT|F]|*T|T
+* |+ |+ |+ F]|+|F+|F|+|F|F+]|+]|+
+|+]|+ |+]+]| F|+|F|H]|T]|T
E 0 B I BB B B B A B B B

Visibility / Display

he Graphics Pipeline

Modelling
Transformations :
« Handles occlusions and

”('gf;";@tb)n transparency blending

ading . : :
— _ » Determines which objects
IEHING UHESISTELL are closest and therefore

(Perspective / Orthographic) .
visible
Clipping « Depth buffer

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

Graphics Lecture 4: Slide 10

What do we want to do?

« Computer-generated imagery (CGl) in real-time

» Very computationally demanding:
— full HD at 60hz:
1920 x 1080 x 60hz = 124 Mpx/s
— and that’s just the output data

—> use specialized hardware for
Immediate mode (real-time) graphics

Graphics Lecture 4: Slide 11

Solution

Most of real-time graphics is based on
* rasterization of graphic primitives

— points
— lines O
— triangles ~ ©
* Implemented in hardware

— graphics processing unit (GPU)
— controlled through an API such as OpenGL

— certain parts of graphics pipeline are programmable, e.g. using
GLSL

=» shaders

Graphics Lecture 4: Slide 13

The Graphics Pipeline different view
« High-level view:

« “Vertex”
— apoint in space

0 Application
defining geometry Commands
 “Fragment”: Geometry =
— Sample produced il
ampe p Rasterization
Fragments

during rasterization

— Multiple fragments
are merged into pixels.

Frame Buffer
scan-out
Display

Graphics Lecture 4: Slide 14

Application Stage

« Generate database
— Usually only once
— Load from disk
— Build acceleration structures (hierarchy, ...)

Simulation

Input event handlers
Modify data structures
Database traversal
Utility functions

Graphics Lecture 4: Slide 15

Application Stage

« Generate render area in OS

« Generate database
— Usually only once
— Load from disk
— Build acceleration structures (hierarchy, ...)

Simulation

Input event handlers
Modify data structures
Database traversal
Utility functions

Graphics Lecture 4: Slide 16

Application Stage

solid TEATEST
facet normal 0.986544E+00 0.100166E+00 0.129220E+00
outer loop
vertex 0.167500E+02 0.505000E+02 0.000000E+00
vertex 0.164599E+02 0.505000E+02 0.221480E+01
vertex 0.166819E+02 0.483135E+02 0.221480E+01
endloop
endfacet
facet normal 0.986495E+00 0.100374E+00 0.129434E+00
outer loop
vertex 0.166819E+02 0.483134E+02 0.221470E+01
vertex 0.169653E+02 0.483840E+02 0.000000E+00
vertex 0.167500E+02 0.505000E+02 0.000000E+00
endloop
Endfacet

Graphics Lecture 4: Slide 17

Application Stage

solid TEATEST
facet normal 0.986544E+00 0.100166E+00 0.129220E+00
outer loop
vertex 0.167500E+02 0.505000E+02 0.000000E+00
vertex 0.164599E+02 0.505000E+02 0.221480E+01
vertex 0.166819E+02 0.483135E+02 0.221480E+01
endloop
endfacet
facet normal 0.986495E+00 0.100374E+00 0.129434E+00
outer loop
vertex 0.166819E+02 0.483134E+02 0.221470E+01
vertex 0.169653E+02 0.483840E+02 0.000000E+00
vertex 0.167500E+02 0.505000E+02 0.000000E+00
endloop
Endfacet

Graphics Lecture 4: Slide 18

The Graphics Pipeline: OpenGL 3.2 and later

transform

. . vertices feedback

Application NemSS—SN Vertex Shader Buffers
transformed
vertices

Prlﬂsithre,; Fl‘atl:h TE?EI:ati;m
primitive/patch =Embly SRS
connectivity patch vertices and
tessellation params

primitives Tessellation
Primitive

Generation
vertices and uv Programmable
coordinates

Geometry Tessellation
Shader Evaluation

' t
primitivesl dhan:k | [4.2)

Rasterization &
Buffers

primitives

Fixed function

Interpolation

fragments I

Fragment

Shader

shaded | SLreen

fragments

pixels
[Raster]:;

Operaticns

Source:
www.lighthouse3d.com

The Graphics Pipeline: OpenGL 3.2 and later

Buffers

vertices

[Primitive/Patch | | Tessellation
h

primitive/pa Assembly Control

connectivi

patch vertices and
tessellation params

primitives Tessellation
Primitive

Generation

vertices and uy
coordinates

geometry

Geometry Tessellation
Stage Shader Evaluation

Rasterization &
Interpolation

fragments ‘

Fragment
Shader

shaded ‘
ragments

rasterization
stage [

Raster
Operaticns

Source:
www.lighthouse3d.com

The Graphics Pipeline: OpenGL 3.2 and later

transform

. . vertices feedhack
Application MRS Vertex Shader el A
vertices
transformed
VErTICES |

o patches .
 vrmred [V Gl RNNRRY Tessel ation vertices + connectivity =
primitive/patch ! (4) ' primitives
connectiviby .
l tessellation params

primitives Tessellation
Primitive

Generation

vertices and uy
coordinates

primitives Tessellation
Shader Evaluation

Geometry

Primitives (e.g. triangles)

transform

primitives] N Y 2

meien it h o I
Tt

Rasterization &
Interpolation

Bufiers fragments =
pixel candidates

£ e
ITTEMNMTCTTILS l

Fragment
Shader

shaded | SLreen

fragments

Raster pixels ﬁ .
Operaticns == plXG'S

Geometry Stage

Vertex N S Viewport
{Processing} » { Clnping } » { el } » [Transform }

\ J \ J
| I

programmable fixed function

Graphics Lecture 4: Slide 22

Geometry Stage: Vertex Processing

« The input vertex stream
— composed of arbitrary vertex attributes (position, color, ...).

* |s transformed into stream of vertices mapped onto the
screen

— composed of their clip space coordinates and additional user-
defined attributes (color, texture coordinates, ...).

— clip space: homogeneous coordinates

by the vertex shader
— GPU program that implements (-))
this mapping.

Object space vertices Screen space vertices

« Historically, “Shaders” were small programs performing
lighting calculations, hence the name.
Graphics Lecture 4: Slide 23

Geometry Stage: Vertex Post-Processing

 Uses a common transformation model in rasterization-
based 3D graphics:

Object World View Clip
space space space space
Input Vertex __| Model View |___| Projection |___ Output Vertex
Coordinates Matrix Matrix matrix Coordinates
ModelView |
Matrix
o ModelViewProjection
Matrix

Graphics Lecture 4: Slide 24

Geometry Stage: Vertex Post-Processing

 Clipping
— Primitives not entirely in view are clipped to
avoid projection errors

* Projection l

— Projects clip space coordinates to the image
plane P

- Primitives in normalized device coordinates

 Viewport Transform:

— Maps resolution-independent normalized
device coordinates to a rectangular window
In the frame buffer, the viewport.

- Primitives in window (pixel) coordinates

Graphics Lecture 4: Slide 25

Geometry Shader

« Optional stage between vertex and fragment shader

* In contrast to the vertex shader, the geometry shader
has full knowledge of the primitive it is working on

— For each input primitive, the geometry shader has access to all
the vertices that make up the primitive, including adjacency
Information.

« Can generate primitives dynamically
— Procedural geometry, e.g. growing plants

Graphics Lecture 4: Slide 26

Rasterization Stage

Primitive Primitive Fragment Fragment
{ Assembly } »{ Traversal J . { Shading } »[Merging }

\ J \ J \ J
| | |

fixed function programmable fixed function

Graphics Lecture 4: Slide 27

Rasterization Stage

Primitive assembly
— Backface culling
— Setup primitive for traversal

Primitive traversal (“scan conversion”)
— Sampling (triangle = fragments)

Rasterization

— Interpolation of vertex
attributes (depth, color, ...)

Fragment shading
— Compute fragment colors

Fragment merging Screen space primitives
— Compute pixel colors from fragments
— Depth test, blending, ...

Graphics Lecture 4: Slide 28

fragments

Rasterization — Coordinates

y window
coordinate

Sample location (“pixel
3.0 — center”) at (2.5, 1.5)!

2.0 — _
Pixel

10 duverinnn 22

0.0

/;,0 1.0 2.0 3.0 X window coordinate
Lower left corner
of the window

Graphics Lecture 4: Slide 29

Rasterization — Rules

 Different rules for each primitive type
— “fill convention”

* Non-ambiguous!
— artifacts...

» Polygons:
— Pixel center contained in polygon
— Pixels on edge: only one is rasterized

Graphics Lecture 4: Slide 30

Fragment Shading

* “Fragment”:
— Sample produced during rasterization
— Multiple fragments are merged into pixels.

« Given the interpolated vertex attributes,
— output by the Vertex Shader

 the Fragment Shader computes color values for each

fragment. Texture sampling
— Apply textures + blending
— Lighting calculations . .

Fragments Shaded fragments

Graphics Lecture 4: Slide 31

Fragment Merging

« Multiple primitives can cover the same pixel.

* Their Fragments need to be composed to form the final
pixel values.
— Blending

— Resolve Visibility

« Depth buffering _
merging

A

Shaded fragments Frame Buffer

Graphics Lecture 4: Slide 32

Fragment Merging

Pixel . :
Shaded __| Ownership Scissor Stencil Depth
Fragment Test Test Test
Test
—» Blending
t

Graphics Lecture 4: Slide 33

Display Stage

« Gamma correction
« Historically: Digital to Analog conversion
« Today: Digital scan-out, HDMI encryption, etc.

Framebuffer Pixels Light

Graphics Lecture 4: Slide 34

Display Format

Frame buffer pixel format:
RGBA vs. index (obsolete)

Double buffer vs. single buffer
Quad-buffered stereo

« Overlays (extra bitplanes)
 Auxilliary buffers: alpha, stencil

Graphics Lecture 4: Slide 35

Bits: 16, 32, 64, 128 bit floating point, ...

Functionality vs. Frequency

« Geometry processing = per-vertex
— Transformation and Lighting (T&L)
— Historically floating point, complex operations
— Millions of vertices per second
— Today: Vertex Shader

* Fragment processing = per-fragment
— Blending, texture combination
— Historically fixed point and limited operations
— Billions of fragments (“Gigapixel” per second)
— Today: Fragment Shader

Graphics Lecture 4: Slide 36

Architectural Overview

» Graphics Hardware Is a shared resource

« User Mode Driver (UMD)
— Prepares Command Buffers for the hardware

» Graphics Kernel Subsystem
— Schedules access to the hardware

« Kernel Mode Driver (KMD)
— Submits Command Buffers to the hardware

Graphics Lecture 4: Slide 37

Process 1 Process 2

Application 1 Application 2
OpenGL OpenGL
User Mode Driver User Mode Driver
User Mode
Kernel Mode

Graphics Kernel Subsystem

5

Kernel Mode Driver

i

Graphics Hardware

Unifiled Shader Model

* Since shader Model 4.0

« Unified Arithmetic and Logic Unit (ALU) input registers

« Same instruction set and capabilities for | = — v I
all Shader types [pirer

« Dynamic load balancing Maen. T2
geometry/fragment o

» Floating point or integer everywhere - l - e

* |[EEE-754 compliant 40561230 L] ' @_

« Geometry Shader can write to memory output registers 123 toxture

— ,Stream Output®
— Enables multi-pass for geometry

Graphics Lecture 4: Slide 39

Graphics APIs

Low-level 3D API
* OpenGL

— Open Graphics Library (OpenGL) is a cross-language, cross-
platform application programming interface (API) for rendering
2D and 3D vector graphics.

* OpenGL ES
— OpenGL for Embedded Systems is a subset of OpenGL

* DirectX, Direct3D
— a graphics API for Microsoft Windows

Graphics Lecture 4: Slide 41

Graphics APIs cont.

 Vulcan
— OpenGL successor

— targets high-performance realtime 3D graphics applications
across all platforms

— offers higher performance and lower CPU usage than older
APIs.

* Mantle
— low level graphics APl by AMD. AMD will move to Vulcan

 Metal

— low-level, low-overhead hardware-accelerated graphics and
compute API by Apple (since IOS 8)

Graphics Lecture 4: Slide 42

Graphics APIs cont.

 RenderMan
— Interface Specification by Pixar Animation Studios
— open API

— describe three-dimensional scenes and turn them into digital
photorealistic images.

— It includes the RenderMan Shading Language.

e WebGL

— JavaScript API for rendering interactive 3D computer graphics
and 2D graphics within any compatible web browser without the
use of plug-ins.

Graphics Lecture 4: Slide 43

Graphics APIs cont.

High-level 3D API — declarative models
a lot! Java, SceneGraphs, performer, Irrlicht, mobile SDKs

e.g. SceneGraph APIs (openSG, openinventor, etc.)

Star

e e { (W% T \ o
“

Planet 1 Planet 2

.

Moon A Moon B Moon C Moon D

Graphics Lecture 4: Slide 44
http://archive.gamedev.net/archive/reference/programming/features/scenegraph/index.html

