Tutorial 4: Ray Tracing

A solid modelling system uses the following primitives:

Cylinder: C_1 , C_2 , rSphere: C, rBox: A, e_1 , e_2 , e_3

The system is to draw the scene in <u>orthographic</u> projection. The viewing direction is parallel to the z axis: (0,0,1).

1. Assuming a ray starts from a pixel with location (x_{pix}, y_{pix}) , devise a test for each primitive to identify simple cases when the ray cannot intersect it.

2. Use your tests to decide if the following rays:

	(x_{pix}, y_{pix})			
Ray 1	(32, 52)			
Ray 2	(32, 58)			

can be ruled out from intersecting the following objects:

	C ₁	C_2	r	
Cylinder 1	(20, 50, 50)	(50, 50, 50)	10	
Cylinder 2	(35, 55, 40)	(35, 55, 60)	5	
				-
	С	r	_	
Sphere 1	(20, 50, 50)	10		
			-	
	Α	e ₁	e ₂	e ₃
Box 1	(35, 45, 40)	(15,0,0)	(0, 15, 0)	(0,0,20)
Box 2	(30, 55, 40)	(5, 0, 0)	(0, -5, 0)	(0,0,20)

3. For rays that intersect in Q2, what is the surface normal at the point of intersection?

4. Devise a suitable general test for use in perspective projection.