
Deep Learning
Bernhard Kainz

Deep Learning – Bernhard Kainz

Motivation

• Deep learning is popular because it works (often).
• Big promise: just collect enough data and label it, then you get a magic black-

box predictor that can predict any correlations at the click of a button. (only
supervised setting really works well)

• Deep learning and Big data = big money = highly competitive and
sometimes poisonous working environment.

• Deep learning can be dangerous, e.g. deep fakes, adversarial attacks,
etc.

Deep Learning – Bernhard Kainz

Fundamental learning system

Deep Learning – Bernhard Kainz

Feature extractor Task
specific

Parameter optimisation

input output

classification, regression, synthesis, … CN
N

*CNN = convolutional neural network

Success stories

Deep Learning – Bernhard Kainz

Self driving cars: https://youtu.be/zRnSmw1i_DQ

Conversational AI: https://youtu.be/Xw-zxQSEzqo
https://youtu.be/jH-6-ZIgmKY https://chat.openai.com/

Deep fakes: https://youtu.be/gLoI9hAX9dw

Neural rendering: https://www.matthewtancik.com/nerf

Image colourization: https://youtu.be/mUXpxxyThr8

Image captioning: https://youtu.be/8BFzu9m52sc

Automated diagnosis: http://ratchet.lucidifai.com/

Protein discovery: https://alphafold.ebi.ac.uk/ HBO and Silicon Valley engadget.com

https://youtu.be/zRnSmw1i_DQ
https://youtu.be/Xw-zxQSEzqo
https://youtu.be/jH-6-ZIgmKY
https://chat.openai.com/
https://youtu.be/gLoI9hAX9dw
https://www.matthewtancik.com/nerf
https://youtu.be/mUXpxxyThr8
https://youtu.be/8BFzu9m52sc
http://ratchet.lucidifai.com/
https://alphafold.ebi.ac.uk/
https://www.engadget.com/2017-02-17-silicon-valley-season-four-trailer.html

Why did
neural

networks fail
in image
analysis?

Deep Learning – Bernhard Kainz

Figure: adapted from Fei Fei et al.

Stack a 32x32x3 RGB image into a 3072x1 vector

Universal Approximator

• Let 𝜑(#) be a non-constant, bounded and monotonically increasing
function

• For any 𝜖 > 0 and any continuous function defined on a compact
subset of ℝ! , there exists and integer N, real constants 𝑣"𝑏" ∈ ℝ and
real vectors 𝑤" ∈ ℝ where 𝑖 = 1,… ,𝑁, such that

𝐹 𝒙 = 5
"#$

%

𝑣"𝜑(𝒘"
&𝒙 + 𝑏") 𝑤𝑖𝑡ℎ 𝐹 𝒙 − 𝑓 𝒙 < 𝜖

Deep Learning – Bernhard Kainz

We can approximate any function with just one hidden layer with a
sensible actitation function!
In practice 𝜖 very large and curse of dimensionally!
Solution: break up problem in many smaller problems (layers)

The curse of dimensionality

Deep Learning – Bernhard Kainz

Curse of dimensionality

Deep Learning – Bernhard Kainz

As the number of features or dimensions grows,
the amount of data we need to generalise accurately grows exponentially!

To approximate a (Lipschitz) continuous function 𝑓: ℝ! → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖"!) samples

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

Intuition

• Let’s analyze a Pizza
• And a water melon
• Shrink by 𝛼

Deep Learning – Bernhard Kainz

Intuition

Deep Learning – Bernhard Kainz

• In 𝑛 dimension the 𝑛-dimensional volume of the interior will be 𝛼! times
the volume of the original shape.
• The volume of the rind relative to the original volume therefore is
 1 − 𝛼!
• As a function of 𝛼 its rate of growth is

𝑑 1 − 𝛼! = −𝑛𝛼!"#𝑑𝛼
• Beginning with no shrinking (𝛼=1) and noting 𝛼 is decreasing (d𝛼 is

negative), we find the initial rate of growth of the rind equals 𝑛.
• This shows that the volume of the rind initially grows much faster -- 𝑛 times

faster -- than the rate at which the object is being shrunk.
• in higher dimensions, relatively tiny changes in distance translate to much

larger changes in volume.

Intuition

• If the salami is uniformly spread out over a high dimensional pizza
• What proportion of the salami is near the boundary?
• i.e. how much should we shrink the pizza to e.g. make it half of its volume, say half length like half-life of

radioactive elements
• The half-length is 𝛼, solve
 𝛼# = $

% ; 𝛼 = 2"$/# = 𝑒"(()* %)/# ≈ 1 − ()* %
≈ 1 − ,..

#

• 2D Pizza: half-length is 1−0.35
• half of the area of a pizza (𝑛=2) lies within (approximately) 35/2 = 18% of its diameter from the boundary.

• 3D Pizza: half-length is 1−0.23
• half the volume lies within 12% of its diameter from its boundary.

• In very large dimensions the half-length is very close to 1
• 𝑛=350 dimensions it is greater than 98%
• Thus, expect half of any 350-dimensional pizza’s salami to lie within 1% of its diameter from its boundary

Deep Learning – Bernhard Kainz

Intuition

•Without strong clustering, in higher dimensions 𝑛 we can
expect most Euclidean distances between observations in a
dataset to be very nearly the same and to be very close to
the diameter of the region in which they are enclosed. "Very
close" means on the order of 1/𝑛.

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

Intuition

The higher dimensional the feature space the more training samples will be in the corners of the hypercube,
thus generalisation suffers.

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

𝑉/01232 𝑑 =
𝜋
!
%

Γ 𝑑
2 + 1 2!

∽ 𝑂(𝑐"!)

Wikimedia hypersphere

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

Deep Learning – Bernhard Kainz

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://stats.stackexchange.com/questions/451027/mathematical-demonstration-of-the-distance-concentration-in-high-dimensions

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://stats.stackexchange.com/questions/451027/mathematical-demonstration-of-the-distance-concentration-in-high-dimensions

Intuition

• Unit cube is asymmetric.
• To remove the asymmetry, roll the interval around into a loop where

the beginning point 0 meets the end point 1: d-torus in n dimensions
• Plot distribution of normalized

distance between different samples
in different dimensional space

• This normalization has centered
the histograms near 0.58

• around any given point on a
high-dimensional torus
nearly all other points on the torus
are nearly the same distance away!

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

Curse of dimensionality
To approximate a (Lipschitz) continuous function 𝑓: ℝ! → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖"!) samples

Input image resolution = 12 Mpixel * 3 channels = 36M elements
With 𝜖 ∼ 0.1, we need 1036000000 samples to approximate this function space
(1078 to 1082 atoms in the known, observable universe)

Invariance and Equivariance

Deep Learning – Bernhard Kainz

Invariance and equivariance

• Shift invariance

Deep Learning – Bernhard Kainz

Predictor:

Invariance and equivariance

• Shift invariance

Deep Learning – Bernhard Kainz

Predictor:

Shift invariance

Deep Learning – Bernhard Kainz

Shift equivariance

Deep Learning – Bernhard Kainz

Invariance vs equivariance

Deep Learning – Bernhard Kainz

Output is the same Output is shifted like the input

Inductive bias/assumptions

• First principle: translation invariance
• a shift in the input should simply lead to a shift in the hidden representation

• second principle: locality
• we believe that we should not have to look very far away from any

location (i,j) in order to glean relevant information to assess what this area
contains

Deep Learning – Bernhard Kainz

translation invariance and locality – sliding
window

• Correlation

𝐶",(= 5
)#*

!+$

5
,#*

-+$

?𝐼",(𝑥, 𝑦 # 𝐾(𝑥, 𝑦)

Deep Learning – Bernhard Kainz

Kernel (template) k

Image I

Subimage <𝐼4,6 = 𝐼[𝑖: 𝑖 + 𝑚, 𝑗: 𝑗 + 𝑛]

George

translation invariance and locality – sliding
window

• Correlation

𝐶",(= 5
)#*

!+$

5
,#*

-+$

?𝐼",(𝑥, 𝑦 # 𝐾(𝑥, 𝑦)

Deep Learning – Bernhard Kainz

Kernel (template) k

Image I

Subimage <𝐼4,6 = 𝐼[𝑖: 𝑖 + 𝑚, 𝑗: 𝑗 + 𝑛]

George

Convolutions

Deep Learning – Bernhard Kainz

Fully connected neural networks

Deep Learning – Bernhard Kainz

• Each input is connected to each node
• Can represent any kind of (linear) relationship between inputs

n2 parameters, e.g., 36M2 parameters!

Deep Learning – Bernhard Kainz

lingo:
‘intractable’ =

hard to control or
deal with

𝑦6 = 𝑤6,$𝑥$ + ⋯+ 𝑤6,#𝑥#

Fully connected neural networks

Each input neuron is connected to a small number k of
hidden neurons.
Sparse connections: k*n parameters, e.g., 3*36M parameters!

Deep Learning – Bernhard Kainz

Early work, e.g.,
Y. LeCun et al.,

did this

𝑦6 = 𝑤6,4"$𝑥4"$ + 𝑤6,4𝑥4 + 𝑤6,47$𝑥47$

Sparsely connected neural networks

Each input neuron is connected to a small number k of hidden neurons
and weights are shared
Shared weights (position independent): k parameters, e.g. 3 parameters!

Deep Learning – Bernhard Kainz

lingo:
‘weight sharing’

= a subset of
weights are

identical

𝑦6 = 𝑤"$𝑥4"$ + 𝑤,𝑥4 + 𝑤7$𝑥47$

Weight sharing neural networks

Convolution

Deep Learning – Bernhard Kainz

𝑓 ∗ 𝑔 𝑡 = '
!"

"
𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏 𝑓𝑜𝑟 𝑓, 𝑔 ∶ 0,∞ → ℝ

𝑓 ⋆ 𝑔 𝑡 = '
!"

"
𝑓 𝜏 𝑔 𝑡 + 𝜏 𝑑𝜏 𝑓𝑜𝑟 𝑓, 𝑔 ∶ 0,∞ → ℝ

Correlation

Convolution discrete version

• Given array 𝑢. and 𝑤., their convolution is a function 𝑠.

• When either 𝑢. and 𝑤. are not defined, they are assumed to be 0

Deep Learning – Bernhard Kainz

𝑠# = 6
$%!"

&"

𝑢$𝑤#!$

wikipedia.org

Why not simply input = output for this feature detector?
Signals in the wild: Features in the wild:

Deep Learning – Bernhard Kainz

Network output (continuous):

𝑓 ∗ 𝑔 𝑡 = K
,

8
𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏 𝑓𝑜𝑟 𝑓, 𝑔 ∶ 0, ∞ → ℝ

Some features of convolution are similar
to cross-correlation:
for real-valued functions, of a continuous or
discrete variable, it differs from cross-correlation
only in that either f(x) or g(x) is reflected about the
y-axis; thus it is a cross-correlation of f(x) and g(−x),
or f(−x) and g(x).

Watch:
https://www.youtube.com/watch?v=N-zd-T17uiE
https://www.youtube.com/watch?v=IaSGqQa5O-M

https://en.wikipedia.org/wiki/Cross-correlation
https://www.youtube.com/watch?v=N-zd-T17uiE
https://www.youtube.com/watch?v=IaSGqQa5O-M

Properties of convolutions

• Commutativity, 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓
• Associativity, 𝑓 ∗ 𝑔 ∗ ℎ = 𝑓 ∗ 𝑔 ∗ ℎ
• Distributivity, 𝑓 ∗ 𝑔 + ℎ = 𝑓 ∗ 𝑔 + (𝑔 ∗ ℎ)
• Associativity with scalar multiplication, 𝑎(𝑓 ∗ 𝑔) = 𝑎𝑓 ∗ 𝑔

Deep Learning – Bernhard Kainz

Why Convolutions for pattern-matching?

• Historical Reasons: The operation in CNNs resembles the discrete 2D convolution operation, even though it's
technically cross-correlation. The term "convolution" in CNNs has stuck due to historical reasons and
convention. Computational advantages for large kernels with FFT. Mathematical advantages for probability
distributions.

• Flipped Kernels: In some contexts, before applying the convolution operation, the kernel is flipped both
horizontally and vertically. Once flipped, applying cross-correlation will be equivalent to applying convolution
with the original kernel. However, in CNNs, the kernels are learned, so it doesn't matter if they are flipped
or not; the network will learn the appropriate values during training.

• Regardless of whether true convolution (with kernel flipping) or cross-correlation is used, the result of
training will be the same. The network will adjust its weights based on the feedback from the loss during
backpropagation. Thus, for the purpose of training neural networks, the distinction between the two
becomes largely irrelevant.

• Implementation: In deep learning frameworks like TensorFlow or PyTorch, the operation performed in the
convolutional layers is actually cross-correlation. However, they still use the term "convolution" due to
convention.

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

Examples of 2D image filters

Remember: in CNNs all learned
through backpropagation,
dependant on the task!

CNN building blocks

• Convolutional Layer
• Pooling Layer
• Fully Connected Layer
• Flatten Layer
• Dropout
• Batch Normalization
• Activation Function
• Loss Function
• Optimizer

Deep Learning – Bernhard Kainz

Input Tensor conventional NNs

Deep Learning – Bernhard Kainz

Instead of stacking a [X,Y,Z] RGB image into a X*Y*Z x 1 vector for a conventional NN categorising in C classes

• we have priors about the data!
First principle: translation invariance

a shift in the input should simply lead to a shift in the hidden representation
second principle: locality

we believe that we should not have to look very far away from any location (i,j) in order to glean relevant
information to assess what this area contains

input

1

X*Y*Z

𝑊9

C x X*Y*Z weights

activation

C

1

𝒘4
:𝒙 one scalar

Kernel

Deep Learning – Bernhard Kainz

We keep locality as a [X,Y,Z] ∗ [I,J,K] convolution

X height

Y width

Z depth

Kernel/filter

I height

J width
K depth

∗

Convolution

Deep Learning – Bernhard Kainz

In practice: dot product between the kernel and each image patch

X height

Y width

Z depth

scalar

Convolution

Deep Learning – Bernhard Kainz

In practice: dot product between the kernel and each image patch

X height

Y width

Z depth

scalar

Slide over all locations

X-(I-1)

Y-(J-1)

1

dot product

Input Tensor

Deep Learning – Bernhard Kainz

If you need to keep X and Y dimensions, use zero padding

X + I/2 height

Y + J/2 width

Z depth

scalar

Slide over all locations

X

Y

1

zeros

Activation map

Feature extraction

Deep Learning – Bernhard Kainz

Convolutional layers can learn as many kernels as you like (of the same dimension)

X height

Y width

Z depth

Slide over all locations

X-(I-1)

Y-(J-1)

1

Each learned through backprop

Activation maps

CNN

Deep Learning – Bernhard Kainz

CNN = sequence of convolutional layers interleaved with activation functions

X height

Y width

Z depth

Conv. +
 activation

Conv. +
 activation

Conv. +
 activation

A height

B width
C depth

D height

E width

F depth

Parameters

Deep Learning – Bernhard Kainz

CNN = sequence of convolutional layers interleaved with activation functions

X height

Y width

Z depth

Conv. +
 activation

Conv. +
 activation

Conv. +
 activation

A height

B width
C depth

D height

E width

F depth

Each filter: I*J*K + 1 (bias) parameters to learn

1x1 Convolution – reduce depth/NN across depth

Deep Learning – Bernhard Kainz

Learn to aggregate many channels into one

X height

Y width

Z depth

scalar

Slide over all locations

X

Y

1

1
1

Z depth

dot product

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

e.g. m=n=32, d=3
32x28x3x5x3+1 +
28x28x3x5x3+1 =

75602 ops

vs. 5x5
28x28x3x5x5x3+1=

176401 ops

Deep Learning – Bernhard Kainz

6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

Deep Learning – Bernhard Kainz

6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

6

Deep Learning – Bernhard Kainz

6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

6 8

Deep Learning – Bernhard Kainz

6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

6 8

5

Deep Learning – Bernhard Kainz

6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

6 8

5 4

Deep Learning – Bernhard Kainz

Equivariance in CNNs

Deep Learning – Bernhard Kainz

Equivariance in CNNs

Deep Learning – Bernhard Kainz

Approximate invariance in CNNs with pooling

Deep Learning – Bernhard Kainz

Approximate invariance in CNNs with pooling

Deep Learning – Bernhard Kainz

Not the full story…

• But striding ignores the Nyquist sampling
theorem and aliases

Deep Learning – Bernhard Kainz

Nyquist sampling
theorem = sample

at least twice as fast
to keep all

information

R. Zhang.
Making Convolutional Networks Shift-Invariant Again.
In ICML, 2019.

frequencies in images

• https://www.youtube.com/watch?v=js4bLBYtJwY

• https://medium.com/@shashimalsenarath.17/frequency-in-images-
computer-vision-d179b8c0f723

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=js4bLBYtJwY
https://medium.com/@shashimalsenarath.17/frequency-in-images-computer-vision-d179b8c0f723
https://medium.com/@shashimalsenarath.17/frequency-in-images-computer-vision-d179b8c0f723

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance
• Partial solution: use what you learned about anti-aliasing in Computer

Vision: blur and then down sample

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

R. Zhang.
Making Convolutional Networks Shift-Invariant Again.
In ICML, 2019.

https://www.youtube.com/watch?v=eZa56DqXTHg

Beyond shifts: group equivariance

Deep Learning – Bernhard Kainz

Rotation invariant CNNs

Deep Learning – Bernhard Kainz
https://www.youtube.com/watch?v=qoWAFBYOtoU

Daniel Worrall et al.: Harmonic Networks: Deep Translation and Rotation Equivariance

https://www.youtube.com/watch?v=qoWAFBYOtoU

Rotation invariant CNNs

Deep Learning – Bernhard Kainz
https://www.youtube.com/watch?v=qoWAFBYOtoU

Daniel Worrall et al.: Harmonic Networks: Deep Translation and Rotation Equivariance

https://www.youtube.com/watch?v=qoWAFBYOtoU

Approximate deformation invariance

Deep Learning – Bernhard Kainz

Approximate deformation invariance

Deep Learning – Bernhard Kainz

Flattening

• Example

Deep Learning – Bernhard Kainz

X height

Y width

Z depth

Conv. +
 activation

Conv. +
 activation

Conv. +
 activation

A height

B width
C depth

D height

E width

F depth

…

1x1 conv.
[Nx1]

[Cx1]

What CNNs learn?

Deep Learning – Bernhard Kainz

What CNNs learn?

Deep Learning – Bernhard Kainz

What CNNs learn?

Deep Learning – Bernhard Kainz

What CNNs learn?

Deep Learning – Bernhard Kainz

Most of this initially proposed in 1980 and the 1990s

Deep Learning – Bernhard Kainz

Lacks backprop Adds backprop

No GPUs, no success for larger problems…

Success in 2012!

what do we learn from that?

• a) feature selection is important to build good representations. As we will
see, the key of deep learning is to learn this feature selection instead of
doing it manually.
• b) finding the right amount of features is key. Too few or too many will have

a severe impact on the generalization abilities of your predictor model. Too
few is easy too understand but too many requires an intuition about
sample sparsity in high-dimensional spaces.
• c) the more features we choose as input the sparser our training samples

will be distributed in the feature space. This means that decision
boundaries become really tight around the used training samples because
they all live close to each other at the boundaries of the space and our
model will overfit the training data.

Deep Learning – Bernhard Kainz

what do we learn from that?

• a) weight sharing reduces the number of parameters from n^2 in a
multi-layer perception to a small number, for example 3 as in our
experiment or 3 by 3 image filter kernels or similar

• b) these filter kernels can be learned through back propagation
exactly in the same way as you would train a multi-layer perception.
Each layer may have many filter-kernels, so it will produce many
filtered versions of the input with different filter functions.

• c) for real-valued functions, of a continuous or discrete variable,
convolution differs from cross-correlation only in that
either f(x) or g(x) is reflected about the y-axis; so it is a cross-
correlation of f(x) and g(−x), or f(−x) and g(x).

Deep Learning – Bernhard Kainz

what do we learn from that?

• a) convolutions can massively reduce the computational complexity of
neural networks but the real power of CNNs is revealed when priors are
implemented and for example spatial structure is preserved. This is also
one of the reasons why CNNs have been so successful in Computer Vision
• b) CNNs are pipeline of learnable filters interleaved with nonlinear

activation functions producing d-dimensional feature maps at every stage.
Training works like a common neural network: initialise randomly, present
exampled from the training database, update the filter weights through
backpropagation by propagating the error back through the network.
• c) convolution and pooling can be used to reduce the dimensionality of the

input data until it forms a small enough representation space for either
traditional machine learning methods for classification or regression or to
steer other networks to for example generate a semantic interpretation like
a mask of a particular object in the input.

Deep Learning – Bernhard Kainz

