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This is LeNet-5, developed by Yann LeCun and his team in 1995.
Firstly, it's important to appreciate the historical context. Back in the '90s, the field of deep learning was 
nowhere near as advanced as it is today, and creating a neural network was a significant engineering 
challenge. Building LeNet-5 was a monumental effort that likely took between three to six months to 
implement, including all the tooling.
Let's look at the architecture. LeNet was initially designed for low-resolution, black and white image 
recognition, specifically for digits. The input to the network is a 32x32 pixel grayscale image.
The first step is a convolutional layer that transforms the input into six feature maps, each of size 28x28. 
Following that, an average pooling layer reduces the dimensionality to 14x14, but still retains the six 
channels. Note that pooling is applied individually to each channel and not across them, so the number of 
channels remains unchanged.
A second convolutional layer further reduces the feature maps to a size of 10x10 but increases the 
number of channels to 16. Another round of average pooling halves the dimensions again, leaving us with 
a 5x5 feature map with 16 channels.
The architecture employs fully connected layers. The first has 120 units, followed by another one with 84 
units. The last layer is quite interesting; it used a Gaussian Radial Basis Function (RBF) to map these 
features into 10 classes.
Given the technology and resources available at the time, LeNet-5 was a significant step forward in the 
field and laid the groundwork for future CNN architectures. It's crucial to recognize its contribution to 
show how far we've come, and how these early networks influenced today's far more complex 
architectures.
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Why was LeNet such a big deal in 1995?
The answer lies in the immediate application potential of the technology. At the time, AT&T had an 
ongoing project focused on handwritten digit recognition. 
This was not just an academic exercise; there was real commercial interest and immediate need. 
Specifically, both banks and postal services were seeking ways to automate their operations.
Imagine the postal office. 
Every day, they would receive thousands of letters with handwritten postal codes that needed to be 
sorted and processed manually. Similarly, banks had to deal with handwritten checks, including 
handwritten amounts that needed to be read and processed.
Automating these operations would save time and reduce human error, but it required a level of 

technology that could reliably perform handwriting recognition.
However, the challenge was twofold. 
Not only did they need to recognize the characters, but they also had to locate them within a larger 
document--a form of object recognition. 
You can't predict what a digit is until you know where it's located on the page or check.
That's where LeNet came in. Its pioneering architecture demonstrated that Convolutional Neural 
Networks could reliably perform both tasks--object localization and recognition--on low-resolution black 
and white images. It was the solution to a problem that had immediate practical applications, making it a 
significant milestone not just in the field of machine learning, but also for commercial technologies.
So, in a nutshell, LeNet wasn’t just a breakthrough in machine learning theory; it was a technology that 
met a pressing real-world need, and that's why it was such a big deal.
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MNIST was created specifically for handwritten digit recognition.
It's a curated collection of centered and scaled images, making it easier for models to 
learn the necessary features.
The dataset is divided into 50,000 images for training and an additional 10,000 images 
for testing.
Each image is at a resolution of 28 by 28 pixels, which keeps the computational 
requirements reasonable without sacrificing too much detail.
Now, you might wonder why there are exactly 10 classes in MNIST.
Well, the answer is straightforward: there are 10 digits—0 through 9—that we 
commonly use.
And it's worth noting that these aren't just any digits. They're realistic digits obtained 
from real-world examples like letters.
These digits have been segmented properly to ensure that they are good 
representations for the task of handwritten digit recognition.
So, the MNIST dataset served as both a benchmark and a real-world applicable resource 
when it was first released, and it continues to be a staple in the machine learning 
community.
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This is the LeNet-5 architecture in action from 1995.
If back to the future would play now, Martie McFly would travel back to this time!

In the demo, you'll notice digits being scanned and processed through the network.
The network then outputs its estimate of what digit it thinks is represented by the input.
Interestingly, even if the digit is slightly shifted, the network still accurately recognizes it. For 
example, a five remains a five regardless of its position.
On the left-hand side of the demo, you'll see the activations of the various layers in the network.
In the first layer, right after the convolutions, the activations act like edge detectors. They 
identify vertical and horizontal edges and enhance contrast.
Moving to the next layer, these basic features are aggregated into higher-level, but still spatially 
related, features.
As we go further into the network, you'll see the activations for the fully connected layers, which 
are much more diverse in what they represent.
Ultimately, all these activations contribute to an output that is a vector of probabilities, each 
representing the likelihood of a particular digit being the input.
The 1998 paper that presented this LeNet-5 demo is a landmark paper in the field of computer 
vision.
I strongly recommend reading it. We've also included it in the notes for this lecture.
The paper also goes into detail about graph transducers, a topic that, even today, isn't as fully 
appreciated as it should be.
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Let’s dig deeper into the role of fully connected layers in the LeNet-5 architecture.
The final stages of LeNet-5 employ fully connected layers to convert features into final 
predictions.
In scenarios with a small number of output classes, such as the ten digits in the MNIST 
dataset, the computational burden is manageable.
However, as we scale to problems like ImageNet, with perhaps a thousand different 
classes, the fully connected layers become a computational bottleneck.
So while they are straightforward and effective for smaller problems, they can 
complicate the architecture when scaling up.
These layers then become a dominant factor in network design, influencing both 
computational resources and performance.
That's why alternative strategies might be needed to handle the computational 
expenses for large-scale problems.
So, while fully connected layers have their merits, they also bring along some challenges 
we need to consider when designing more complex networks.
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Today, implementing LeNet-5 is quite straightforward, thanks to frameworks like 
PyTorch.
Contrast this to 1995, when implementing this network would have been a significant 
engineering feat.
For our implementation, we use the torch.nn.functional library to directly access various 
network functions.
While PyTorch offers multiple ways to define these functions, we opt for a 
straightforward approach here.
Our network class will inherit from nn.Module, a requirement for compatibility with 
PyTorch's optimizer.
Within this class, we define all the necessary layers and functionalities.
PyTorch's nn.Module also requires us to define a forward function, through which the 
data will pass.
The backward propagation is automatically handled by PyTorch, as long as you're using 
differentiable functions.
For the forward pass, we aim for a sequential composition of layers.
Here, we have two sets of convolution and average pooling layers, followed by two fully 
connected layers.
And just like that, you've got a functional LeNet-5 model built with modern tools.
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AlexNet, introduced in 2012, marked a turning point in the field of computer vision.
It competed in the ImageNet classification task and drastically outperformed all existing 
non-deep learning models.
This was the architecture that truly kickstarted the widespread adoption and research 
into convolutional neural networks.
Structurally, AlexNet resembles LeNet, but with a few key differences.
First, it has more layers: Five convolutional layers and three fully connected layers.
The input images are 224 by 224 pixels with 3 color channels, unlike LeNet which 
handled much smaller grayscale images.
AlexNet uses 11 by 11 filters with a stride of 4, though later research has shown that 
smaller filters can also be effective.
The fully connected layers are of size 4096, and the final layer connects to the 1000 
classes in ImageNet through a softmax activation.
Now, if you've ever looked at an AlexNet diagram, you might notice it's split into two 
columns or streams.
This was a workaround for the hardware limitations at the time.
The network was trained on GTX580 GPUs with only 3GB of memory.
To fit the model, the architecture was divided between two GPUs, each handling half of 
the neurons or feature maps.
In layers like conv1, conv2, conv4, and conv5, feature maps from the same GPU were 
used for connections.
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However, in layers like conv3 and FC6, FC7, and FC8, both GPUs communicated to give 
neurons a full view of the preceding layer.
This kind of parallel processing is far easier today, thanks to features in modern 
frameworks like PyTorch's DataParallel.
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Let's delve into the data that made AlexNet's breakthrough possible.
The ImageNet dataset was released in 2010 and was considered a massive dataset at 
that time.
It contained a whopping 1.2 million examples distributed across a thousand different 
classes.
To give you some context, compare this to MNIST, which only had 60,000 samples and 
10 classes.
Not only did the quantity of data change but also the complexity.
ImageNet featured images with dimensions ranging from 469 by 384 pixels, a significant 
jump from MNIST's 28 by 28 pixel images.
Additionally, ImageNet images were in full color, represented by three channels: red, 
green, and blue.
This was a departure from the grayscale images that networks like LeNet were initially 
designed to handle.
The increase in both the volume and complexity of the data made ImageNet a 
challenging task, but also one that showcased the capabilities of models like AlexNet.
This dataset and its challenges pushed the boundary of what was possible in image 
classification at that time.
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Let's talk about the pivotal moment in 2012 when AlexNet won the ImageNet competition.
Before this milestone, the common practice in computer vision was to manually engineer 
features and use a Support Vector Machine (SVM) for classification.
AlexNet revolutionized this approach by learning features automatically and using a softmax
function for classification.
However, AlexNet was more than just a scaled-up version of LeNet.
One significant innovation was the introduction of dropout regularization.
Dropout allowed for much deeper networks by introducing regularization not just at the input 
layer but throughout multiple layers of the network.
This made it possible to control the complexity of the model more effectively.
Another important change was the use of Rectified Linear Units (ReLU) as activation functions.
ReLU helped mitigate the vanishing gradient problem, enabling training of deeper networks 
more efficiently.
Max pooling was another change that replaced average pooling in AlexNet.
This made the learned features more shift-invariant, which is important for object recognition.
To secure their win, the AlexNet team employed heavy data augmentation techniques like 
cropping, shifting, and rotation, along with model ensembling.
The result? A paradigm shift not just in computer vision but it set the stage for advancements in 
other domains like speech recognition and natural language processing.
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One of the key advancements in AlexNet was the use of larger pool sizes.
This was coupled with a transition from average pooling to max pooling.
Max pooling generally retains the most salient features and discards less useful 
information, making the model more robust.
Another important modification was in the kernel size and the stride of the 
convolutional layers.
The increase in kernel size and stride was a design choice to accommodate the higher 
resolution of images in the ImageNet dataset compared to MNIST.
These changes weren't just arbitrary; they were essential for handling the complexity 
and the dimensions of the incoming images.
Lastly, we also see an increase in the number of output channels, as mentioned in the 
previous slide.
More output channels mean the network can learn a greater variety of features, thus 
boosting its performance.
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Here are some of the key technical changes that set AlexNet apart from its 
predecessors.
Firstly, the pool size was increased, and max pooling was adopted.
Max pooling helps to make the network more robust and less sensitive to variations in 
the input.
Secondly, the kernel size and stride were also adjusted, primarily because of the larger 
image sizes in ImageNet compared to datasets like MNIST.
This allows the network to capture more complex and varied features from the images.
Lastly, the number of output channels was increased significantly.
More output channels mean that the network can learn more complex and high-level 
features.
These changes were crucial for handling the increased complexity and size of the 
ImageNet dataset.
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The output layer in AlexNet is designed for 1,000 classes.
This is a significant increase compared to LeNet, which was initially designed for a much 
simpler 10-class problem like MNIST.
The increase in the number of classes necessitates a more complex model capable of 
distinguishing between a greater variety of features.
Additionally, the hidden layer size was drastically increased from 120 units in LeNet to a 
whopping 4,096 in AlexNet.
This allows AlexNet to learn a much richer set of features from the input data.
The increase in hidden size adds more capacity to the model, making it more capable of 
handling the complexity of the ImageNet dataset.
The increased output classes and hidden size make AlexNet more suitable for large-
scale, complex tasks, setting a new standard in the field.
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Let's talk about the complexity of AlexNet compared to LeNet-5.
AlexNet is substantially more complex, being about 250 times more computationally 
expensive.
However, in terms of the number of parameters, it's only about ten times larger than 
LeNet-5.
This brings us to an interesting point about the trade-off between computation and 
memory.
AlexNet is notorious for its high memory usage, particularly when it was first introduced.
It’s interesting to note how this trade-off has evolved over the years.
Today, with advancements in hardware, the ratio would probably skew even more 
towards computation rather than memory.
Modern GPUs can handle complex calculations much more efficiently, allowing for even 
more computationally intensive models.
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Let's take a light-hearted turn and talk about how AlexNet made its way into popular 
culture.
Specifically, I'd like to mention an episode from Season 4 of Silicon Valley, titled "Not 
Hotdog."
Here is a link to the specific scene on YouTube: 
https://www.youtube.com/watch?v=pqTntG1RXSY.
You might be wondering why I'm showing you a sitcom clip instead of an AlexNet demo.
Well, the reason is that an AlexNet demo wouldn't actually be that visually impressive.
What you would see is a slightly worse labeling of the data compared to the ground 
truth from the test set.
Instead, this sitcom clip gives you an idea of what people thought was suddenly possible 
with the advent of deep learning and AlexNet.
And yes, the clip is meant to be a joke, but it captures the imagination and excitement 
around what these neural networks could do.
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In this slide, we look at how to implement AlexNet using PyTorch.
PyTorch has made it incredibly easy to implement even complex architectures like this.
What you'll see in this slide is a consolidated network diagram.
This is a nod to how far we've come, as there's no longer a need to split the network 
across two GPUs like in the original AlexNet design.
Let's dive into the code.
You'll see that we are using PyTorch's standard libraries and the code structure should 
look familiar if you've used PyTorch before.
The architecture follows the original AlexNet blueprint but it's all in one go, thanks to 
modern hardware capabilities.
Notice how we use ReLU activations and max pooling, staying true to the key features 
that made AlexNet revolutionary at its time.
We also include the fully connected layers, which are an integral part of the AlexNet
design.
That's it for the code walkthrough. It's that straightforward to implement AlexNet in 
PyTorch nowadays.
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Now, let's transition to another architecture that you'll likely encounter or use, especially 
as a backbone for feature extraction.
The next milestone in CNN evolution is VGG, or Visual Geometry Group.
The Visual Geometry Group is actually a research group based at the University of 
Oxford.
This group took inspiration from AlexNet's "bigger is better" approach and decided to 
take it a step further.
In doing so, they created an architecture that has been widely used and adopted in 
various computer vision tasks.
We will dig deeper into what makes VGG unique and why it's often used as a 
foundational architecture in many projects.
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Now let's take a closer look at the VGG architecture and how it compares with AlexNet
and LeNet.
One way to make a network larger is to add more dense layers.
However, this approach can quickly become computationally expensive.
Another option is to add more convolutional layers.
You can certainly do that, but as the network grows, specifying each convolution layer 
individually becomes tedious.
Imagine having to define each layer by hand for a 20, 30, or 40-layer network. It's quite 
impractical.
This is where VGG's key innovation comes into play—grouping layers into blocks.
These blocks can be easily parameterized, creating a more organized, modular 
architecture.
This not only simplifies the design process but also makes it easier to fine-tune the 
model for specific learning tasks.
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Here is more about the concept of VGG blocks, a foundational element of the VGG architecture.
One key question that had to be answered was whether to use fewer wide convolutions or more 
narrow ones.
Recent comprehensive analysis from papers has shown that using more layers of narrow 
convolutions outperforms using fewer wide ones.
This has been a general trend in network design: having more layers of simpler functions is 
generally more powerful than fewer layers of more complex functions.
So, what does a VGG block consist of?
It typically has several 3x3 convolutions.
If you pad these by one, it maintains the spatial dimensions from the input to the output layer.
At the end of each block, there's a max-pooling layer of 2x2 with a stride of 2, effectively halving 
the resolution.
Now, imagine stacking several of these blocks together and combining them with dense layers, 
much like in AlexNet.
Doing this, you can create an entire family of architectures, like VGG-16 or VGG-19, just by 
varying the number of these blocks.
If we take a step back and look at the overall progress in network architectures, it boils down to 
making them bigger and deeper.
In the debate between deeper vs. wider networks, it turns out that deep and narrow structures 
are generally better.
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Starting off with LeNet, this was a simpler time with just 2 convolution and pooling 
layers.
It also featured 2 hidden dense layers.
Fast forward to AlexNet, and you'll notice that it essentially took LeNet and made it 
bigger and deeper.
But it wasn't just a scaled-up LeNet; it also introduced innovations like ReLU activations, 
dropout for regularization, and preprocessing techniques.
Then comes VGG, which took the concept of 'bigger and deeper' from AlexNet and ran 
with it.
VGG introduced the notion of repeated blocks, an architecture style that was both 
elegant and highly effective.
It's important to note that the leap from LeNet to AlexNet and then to VGG would not 
have been possible without significant progress in computational power, particularly the 
use of GPUs.
So the takeaway here is that as computational power has grown, so has the complexity 
and effectiveness of our network architectures.
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Let's take a moment to delve into this chart that plots throughput against accuracy for 
various CNN architectures.
As you can see, VGG tends to be a lot slower when it comes to throughput compared to 
AlexNet.
However, what it lacks in speed, it more than makes up for in terms of accuracy.
This tells us that while VGG might require more computational resources, it generally 
provides superior performance.
If you're interested in further comparison, you can check out the link at the bottom 
which provides a model zoo detailing the performance of various architectures.
Interestingly, after the era of VGG, the trend shifted towards optimizing for both smaller 
network sizes and higher accuracy.
This indicates that the field is continually evolving to find the best balance between 
efficiency and effectiveness.
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This code provides an implementation of the VGG architecture using PyTorch.
Starting off, the code imports the necessary modules like PyTorch, as well as some utility 
functions and classes.
The VGG class inherits from nn.Module, which is the base class for all neural network modules in 
PyTorch.
In the __init__ method, the class defines its layers: features for convolutional layers, avgpool for 
pooling, and classifier for fully connected layers.
The code also includes an option to initialize weights using Kaiming initialization, which is 
beneficial for ReLU activation functions.
The forward method outlines how data flows through this network.
The make_layers function generates a sequence of layers based on a given configuration, adding 
either max-pooling or convolutional layers.
The cfgs dictionary provides pre-defined configurations for various VGG models, specifying the 
number and types of layers.
The _vgg function constructs a VGG model by taking a configuration string and other optional 
parameters like batch normalization.
Meta information about the model's weights is also included, specifying where they can be 
downloaded and their corresponding accuracies on ImageNet.
The script includes several variants of VGG like VGG16, VGG19, both with and without batch 
normalization, as indicated by the suffix _BN.
At the end of the code, it seems like there's some snippet for registering weights for a VGG 
model with Batch Normalization.
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Another stepping stone was the Inception architecture, another landmark in the history 
of CNNs.
This revolutionary architecture was designed by researchers at Google.
What makes Inception unique is that it's both deep and introduces the concept of 
parallel paths within the network for the first time.
Unlike previous architectures that had a single path for data to flow through layers, 
Inception offers multiple pathways.
The advantage of these parallel paths is to capture different types of features more 
effectively.
The architecture combines the best of different types of convolutions and pooling layers 
to enhance its performance.
It's this unique parallel structure that has made Inception a go-to architecture for many 
complex tasks.
As we delve deeper into how these parallel paths work and why they make Inception so 
effective.
In summary, Inception marks a paradigm shift by introducing parallelism inside a deep 
network, further improving performance and feature representation.
Thank you for listening, and let's explore the Inception architecture in more detail in the 
next slides.
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Before we dive into the Inception architecture, let's take a moment to recap what we've 
covered so far.
On the left, we've explored LeNet, which utilizes 5x5 convolutions.
Then we moved onto AlexNet, which employs a mixture of 11x11, 3x3, and 5x5 
convolutions.
Following that, we discussed VGG, which primarily focuses on using 1x1 convolutions.
You might be thinking, "This is quite a mess, isn't it?"
Exactly, it becomes confusing to decide which type of convolution should be used for 
optimal performance.
Should we use 1x1, 3x3, 5x5 convolutions? Or maybe even max pooling? It's hard to 
make a definitive choice.
This was the dilemma faced by researchers in what we might call the "deep learning 
stone age" as they tried to construct effective convolutional blocks.
For instance, if you opt for 5x5 convolutions, you will end up with many parameters, 
leading to a lot of computational cost and possibly overfitting, even though it might be 
more expressive.
On the other hand, if you go with 1x1 convolutions, you'll have a more controlled, 
memory-efficient architecture, but it may not perform as well.
So, what's the solution to this convolution conundrum?
Well, that's where the Inception architecture comes in, aiming to bring the best of all 
worlds.
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So, what was the groundbreaking solution to the convolution dilemma we discussed 
earlier?
Simply put, the idea was not to decide on one type of convolution over another.
This novel approach gave birth to what we now call the Inception network, named after 
the famous movie with the concept of "we need to go deeper."
That phrase literally inspired the naming and the architecture of this network.
Let's examine the Inception block, which is essentially a "let's try everything" approach 
to the problem.
It includes 1x1 convolutions—because why not?
It also has a sequence of 1x1 convolutions followed by 3x3 convolutions.
And for good measure, it adds 1x1 followed by 5x5 convolutions.
Even max pooling followed by 1x1 convolutions find their way into the Inception block.
The idea here is to throw everything into the mix, and hopefully, something will provide 
the optimal solution.
On the left side of the slide, you'll see a simpler version of the Inception block, and on 
the right is a more complex version that also incorporates 1x1 convolutions.
The Inception architecture is a clever way to integrate various types of convolutions to 
cover all bases.
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Now, you might be wondering, how do all these different types of convolutions fit 
together in the Inception block?
The key to making this work is using appropriate padding.
For example, the 3x3 convolutions use half-padding by one, and the 5x5 convolutions 
use half-padding by two.
This ensures that the dimensions of the inputs and outputs align and remain the same.
Once that's taken care of, you simply stack all these layers together.
So now, you essentially have different channels within the architecture focused on 
different tasks.
One channel might excel at recognizing cats, while another might be better suited for 
identifying birds.
This diverse approach is what makes the Inception block so interesting and effective.
You might still be asking, "Why is this specific combination of layers the right one?"
The answer is, the researchers probably experimented with many variations, and this 
configuration yielded the best results.
For our purposes today, let's just say it's the result of a lot of trial and error.
And that's the essence of the Inception block—combining different types of 
convolutions in a single, cohesive unit.
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Let's dive into some of the specifics of the Inception block, such as channel numbers.
The first Inception block uses 64 channels for the 1x1 convolutions.
For the 3x3 convolutions, it uses 128 channels.
And for the 5x5 convolutions, 32 channels are used, primarily because 5x5 convolutions 
already come with a large number of parameters—25 times 32 in this case.
When it comes to max pooling, a few other dimensions are included.
The goal is to have all these different parts sum up to 256 channels.
So, while it may seem complex, the underlying principle isn't terribly deep or 
mysterious.
The input number of channels doesn't particularly matter in the grand scheme of the 
architecture.
What's essential is that different features are fed through different channels, and you get 
an appropriate number of output channels.
This flexibility is one of the strengths of the Inception architecture, allowing it to adapt 
to various types of data and tasks.
And that's a quick look at the nuts and bolts of an Inception block.
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Let's talk about one of the most critical advantages of the Inception architecture: 
efficiency.
The Inception block is designed to use a relatively low number of parameters and 
floating-point operations (FLOPs), without sacrificing performance.
This is a key benefit.
For example, if you need 256 output channels, using an Inception block would require 
only 160,000 parameters and 128 Mega FLOPs.
Contrast this with using only 3x3 convolutions, which would cost about three times as 
many parameters and FLOPs.
And if you were to use only 5x5 convolutions, it would cost around eight times more, 
making the Inception block far more efficient.
The underlying idea is that if you can accomplish the same task with fewer parameters 
and operations, the network should perform better.
This efficiency is what primarily motivated the design of the Inception block.
So, why is the Inception block simpler in terms of computational requirements?
To answer that, we'd have to delve into the algebra behind it, which elegantly balances 
complexity and efficiency.
So, the Inception architecture isn't just about throwing everything at the wall to see 
what sticks; it's also about doing so in a computationally efficient manner.
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Now let's delve into the mathematics behind the Inception architecture, which 
explains its efficiency and effectiveness.
We start by looking at a specific layer with a convolutional kernel of size K×K, for 
example, 3x3 or 5x5.
You can express this layer's computational cost as K2×Cin×Cout, where Cin and Cout
are the number of input and output channels, respectively.
We also have to consider the dimensions of the input image, represented as M for 
height and W for width.
Notice that M and W are fixed, but we have the flexibility to adjust Cin and outCout.
The total computational cost then becomes Cin×M×W multiplied by a sum over the 
different paths j, each with its own Kj2×Cout,j.
By carefully allocating resources -- varying the number of channels and kernel sizes 
-- we can optimize the network's performance.
In other words, the Inception block allows for a judicious allocation of 
computational resources across different paths, offering a more efficient solution 
than using a single type of convolution throughout the architecture.
This is where the Inception architecture shines: it combines the benefits of various 
convolutions and pooling operations while optimizing computational cost.
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Let's now look at the full structure of the Inception network, often represented in stages 
for easier understanding.
The diagram you see is from the Deep Learning for Text and Sequences (d2l) book, which 
provides a more intuitive visualization compared to the original paper.
The network is divided into five main stages.
Starting with stage one, it's fairly standard and similar to other convolutional neural 
networks we've seen.
It begins with broad convolutions and pooling operations to ensure basic translation 
invariance and quickly reduce dimensionality.
The use of max pooling in this stage effectively halves the resolution of the input.
Stage two also focuses on capturing spatial correlations and ends with a pooling 
operation—again, pretty standard stuff.
Now, things get interesting in stage three, where we introduce the Inception blocks.
Here, you'll find two Inception blocks followed by max pooling, which again halves the 
resolution.
What's critical to note here is that as we reduce the resolution, we increase the number 
of channels, capturing higher-order features from the input.
Following this, we have a sequence of five more Inception blocks, where most of the 
interesting nonlinear computations take place.
So why this specific arrangement of Inception blocks?
The answer is empirical; the authors probably experimented with various configurations 
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and found this one to perform the best.
In subsequent versions and follow-ups like AmoebaNet, more advanced methods like 
genetic algorithms have been used to automatically search for the most effective 
architecture, provided that computational resources are not a constraint.
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Now let's focus on stages one and two of the Inception architecture and compare them 
to AlexNet.
In AlexNet, the first convolution is quite wide, at 11x11.
In contrast, Inception starts with a 7x7 convolution, followed by 4 instances of 1x1 
convolutions and then a 3x3 convolution, along with pooling.
So, as you can see, it's not vastly different from what AlexNet does in its initial stages.
The key difference here lies in the number of channels.
While AlexNet results in a 12x12 feature map, Inception retains a 28x28 feature map, 
allowing it to keep more of the original information.
In essence, the first two stages of Inception offer a more compact yet information-rich 
representation compared to AlexNet.
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Moving on to stage 3 of the Inception architecture.
Here, we see a lot of activity and variation, even within the first and second blocks of 
this stage.
For example, the first block utilizes 256 channels, while the second one jumps to 480 
channels.
This stage also reduces the resolution of the feature maps, taking you from an initial 
28x28 down to a 14x14 grid.
This kind of dynamic allocation between channels and blocks is one of the reasons why 
Inception is so effective.
Another point to note is that there are different versions of the Inception network.
These versions often differ in terms of the number of stages or blocks they include, 
usually as a trade-off for computational complexity and performance.
The variation in the number of stages or blocks is usually due to specific needs or 
constraints, such as computational resources or the complexity of the data being 
processed.
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Now let's dive into stages 4 and 5 of the Inception architecture.
Structurally, these stages are quite similar to each other.
The number of channels continues to increase, going from 512 in stage 4 up to 832 in 
stage 5.
You might wonder, why increase the channels before max pooling?
The reason is that max pooling will reduce the resolution, so it's advantageous to store 
as much information as possible per channel before that happens.
By the end of stage 5, the network boasts a whopping 1,024 channels.
Interestingly, this number aligns with the number of classes you might be trying to 
predict, depending on the dataset.
Then, the architecture employs a global average pooling operation.
Conducting global average pooling over a 7x7 grid is a clever design choice, as it enables 
the network to make more informed decisions based on the most essential features 
across the spatial dimensions.
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Let's talk about the evolution of GoogleNet, as it didn't just stop at the initial inception.
The architecture has seen several versions: GoogleNet v2, v3, and v4.
Each version introduced various improvements over its predecessor.
GoogleNet v2 incorporated a feature known as batch normalization, which we'll cover in 
more detail later on.
Then comes GoogleNet v3, which goes a step further in convolutional complexity.
Not satisfied with just the usual 1x1, 3x3, and 5x5 convolutions, this version experiments 
with more shapes like 1x5 or 5x1 or even 1x7.
This was an attempt to make each inception block even more versatile and deep.
If you're curious about what happens when you try to push this approach to its limits, 
look at AmoebaNet.
AmoebaNet is an interesting chapter in the world of convolutional neural networks.
It was developed using a form of AutoML, specifically neural architecture search via 
evolutionary algorithms.
The goal was to automatically discover a neural network architecture that performed 
well for a given task.
AmoebaNet doesn't adhere strictly to a single design principle, like the inception 
modules in GoogleNet.
Instead, its architecture is discovered through a process of evolutionary search, where 
many architectures are tested and the best-performing ones are "bred" to create new 
architectures.
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This architecture uses a plethora of different convolution shapes and styles.
This is like survival of the fittest, but for neural network structures.

Finally, GoogleNet v4 takes inspiration from another giant in the field, ResNet.
It imports some of the ResNet ideas into the Inception framework.
However, it's worth mentioning that, despite these innovations, GoogleNet v4 still 
doesn't outperform ResNet directly.
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Let's dissect the changes between different versions of the Inception architecture, 
focusing on stage 3.
In version 3, you'll notice a key modification compared to its predecessor.
On the right-hand side, the 5x5 convolution has been replaced by two 3x3 convolutions.
Why is this significant?
This change is actually in line with findings from the Simonian and Zisserman paper.
They examined whether wide and shallow networks are better than deep and narrow 
ones.
It turns out that deep and narrow networks perform better, providing the rationale for 
this architectural tweak.
So, replacing a single 5x5 with two 3x3 convolutions is not just an arbitrary change; it's 
backed by research.
It is, in the grand scheme of Inception architecture changes, a fairly benign modification, 
but one that builds upon empirical evidence.

37

Inception V3 block for stage 3

Deep Learning – Bernhard Kainz
https://d2l.ai/



Let's now focus our attention on Stage 4 of the Inception architecture, where some of 
the most impactful changes were made over time.
One of the most significant shifts was the replacement of 5x5 convolutions with 
asymmetric 1x7 and 7x1 convolutions.
This was a groundbreaking moment in CNN design -- employing asymmetric 
convolutions for the first time.
What makes 7x1 unique?
Well, it's quite narrow, and it requires just 7 parameters per channel, which is 
computationally more efficient than a 3x3 convolution.
So how does this compare to the traditional 5x5 convolution?
A 5x5 convolution has 25 parameters, while alternating four layers of 7x1 and 1x7 
convolutions only costs 28 parameters.
The computational cost is roughly the same, but the network becomes more expressive.
So, why do we even need to alternate between 1x7 and 7x1 convolutions?
Why not just stick to one of them?
The reason is that using only 1x7 or 7x1 would focus the network's learning on either 
vertically or horizontally contiguous features.
If you stick to one, you could end up with a network that's excellent at recognizing one 
type of feature but terrible at the other.
Generally, that's not what you'd want, unless you have a very specific goal in network 
design.
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Now let's delve into Stage 5 of the Inception architecture, where things get even more 
interesting.
In this stage, the architecture replaces the traditional 3x3 convolutions with 1x3 and 3x1 
convolutions.
Yes, you're right if you've noticed a pattern here; the architecture is progressively 
employing more asymmetric shapes for its convolutions.
With these changes, the Inception architecture inches closer to achieving state-of-the-
art performance.
This shows how iterative refinements and innovative ideas can substantially impact the 
effectiveness of a neural network.

39

Inception V3 block for stage 5

Deep Learning – Bernhard Kainz
https://d2l.ai/



Let's now look at a plot that shows accuracy versus throughput for a variety of models.
This data comes from the Gluon Model Zoo, where multiple architectures are 
implemented and trained in a consistent manner.
The size of each dot on the plot corresponds to the memory footprint required to run 
that specific model.
Smaller dots indicate models that are more computationally efficient, whereas dots that 
are higher up the y-axis represent models with better accuracy.
The lines you see on the plot indicate attempts at reproduction by independent 
researchers.
These lines help highlight the gap between published results and what is actually 
achievable, often revealing that a lot of the performance gains are due to better training 
methods, not just the architecture.
Having so much variety lends traction to the idea of just ensembling a lot of these 
architectures to obtain even better results. 
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What do we learn from that?

• Dense layers are computationally and memory intensive. Real-world 
problems with big input tensors and many classes will prohibit their 
use.
• Again: 1x1 convolutions act like a multi-layer perceptron per pixel.
• Scientists are humans and need a while to understand the power of 

new approaches. Eventually they do but a lot of vanity is involved in 
the process. 
• If not sure, just take all options and let the optimization decide or 

even learn this through trial and error (genetic algorithm, 
AmoebaNet)
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Let's now shift our focus briefly to the concept of Batch Normalization, a key innovation aimed 
at addressing the challenges posed by very deep networks.
Deep networks often struggle with convergence, making training both difficult and time-
consuming.
Some solutions like "deep supervision" exist, which involve backpropagating loss from 
intermediate stages to help the network learn.
However, this approach had limitations, prompting researchers to seek more effective methods.
Enter Batch Normalization or 'Batch Norm,' which was developed to solve this exact issue.
The intuition behind Batch Norm is that during training, gradients flow from the top layer down 
to the bottom layers of the network.
As a result, the last layers start to adapt first, followed by the layers below them, creating a 
cascade of adaptations throughout the network.
However, this leads to a problem: As the bottom layers adapt, they change the features that are 
fed back up to the top layers.
This means that the top layers, which had already started to adapt, have to readjust to these 
new inputs.
Essentially, each layer's learning destabilizes the next, causing a slow convergence process that 
takes a long time for all layers to adapt properly.
Batch Norm mitigates this issue by normalizing the features within each mini-batch, thereby 
stabilizing the training process and speeding up convergence.
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Let's dive into how Batch Normalization or 'Batch Norm' actually functions in solving the 
problem of slow convergence in deep networks.
The idea is to make minor corrections to the layers by adjusting their mean and variance 
during training.
We don't aim to fully fix these layers, but rather fine-tune them using an affine 
transform that the model learns during training.
An affine transform essentially means multiplication and addition operations.
So, what we do is compute the mean and variance -- represented by mu and Sigma 
squared—of a given mini-batch during training.
The next step is to re-normalize each input feature by subtracting its mean and dividing 
it by its standard deviation.
But we don't stop there; we introduce two new parameters, gamma and beta, which the 
model learns.
These parameters are used to scale (gamma) and shift (beta) the normalized features.
This process is what we refer to as Batch Normalization.
You might be asking why exactly this works or if the initial intuition about correcting the 
internal covariate shift was really why Batch Norm was created.
Well, the efficacy of Batch Norm has been proven across numerous experiments, 
although the complete understanding of why it works so effectively is still a topic of 
ongoing research.
The first equation μB=∣B∣1∑i∈Bxi calculates the mean (μB) of the mini-batch B. Here, ∣B∣
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is the size of the mini-batch, and xi are the individual data points in that mini-batch.
The second equation σB2=∣B∣1∑i∈B(xi−μB)2+ϵ calculates the variance (σB2) of the same 
mini-batch. The term ϵ is a small constant added for numerical stability.
Now, the idea is to adjust these first and second moments separately from the rest of the 
network learning. That leads us to the third equation xi+1=γσB(xi−μB)+β.
In this equation, xi+1 is the normalized and adjusted version of the original data point xi. 
The terms γ and β are scale and shift parameters that are learned during training.
By using these equations, we're able to "normalize" each mini-batch separately, making 
the training of deep networks more stable and faster. However, remember that γ and β 
are learned, allowing the network some flexibility to undo this normalization if it finds it 
beneficial for the learning task at hand.
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Let's address a crucial point about Batch Normalization: its original motivation of 
reducing covariate shift is actually not correct.
A study by Lipton and colleagues revealed that BatchNorm may even worsen covariate 
shift, yet it still aids in model convergence.
So, what's going on here?
It turns out that BatchNorm is effectively acting as a form of regularization by 
introducing noise into the model.
Here's how it works: You calculate the mean and variance of a mini-batch, let's say, of 64 
observations.
Since you're working with a small sample, both the mean and the variance are subject to 
noise.
You then normalize the features using these noisy statistics, introducing a random scale 
and shift into your model at each batch.
This random noise acts as a regularizing factor, which is why you often don't need 
additional regularization techniques like dropout when you're using BatchNorm.
However, this property makes BatchNorm sensitive to the size of the mini-batch.
If your mini-batch is too large, you're not introducing enough noise for effective 
regularization.
If it's too small, the noise level becomes counterproductive, affecting convergence.
This mini-batch size sensitivity becomes especially significant in multi-GPU settings, 
where batch sizes are often adjusted.
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So, what happens during inference or test time?
You don't want this randomness when you're using the model for predictions.
So, you fix the gamma and beta parameters that the model has learned during training.
Instead of using batch statistics, you use the running average for the mean and variance 
to normalize the features.
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If you're working with a dense layer, a single normalization is applied to all the 
activations in that layer.
In the case of a convolutional layer, a separate normalization is performed for each 
channel.
Batch normalization calculates a new mean and variance for every mini-batch during the 
training phase.
It's essential to set the 'train' flag correctly in your network to ensure appropriate 
behavior.
This is because batch normalization acts differently during the training and testing 
phases.
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Let's talk about ResNet, a go-to architecture if you want a reliable, off-the-shelf network.
The initial motivation behind ResNet was a bit unconventional, focusing on the issue of 
gradients not effectively propagating through many layers.
When you add more layers to a network, you change its function class, making it more 
versatile but also different.
More layers means more parameters, granting us the power to model more complex 
functions.
However, as we add layers, our function classes do become more powerful but also 
diverge from each other.
Imagine trying to approximate a 'true function,' represented here by a red dot.
Adding more layers might get you closer to this truth initially, but after a certain point, 
you could drift away.
This situation makes it difficult to make engineering decisions about how many layers 
should be in your network.
In an ideal world, like the theories presented in statistical learning papers, your function 
classes would be neatly nested as you add layers, each one more powerful but similar to 
the last.
Unfortunately, deep networks don't always work this way, so how can we make it more 
like our ideal scenario?
The goal is to have function classes that are both increasingly powerful and nested as we 
add layers.
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This way, as we continue to add layers, we keep moving closer to approximating the 'true 
function' represented by the red dot.
While these function classes may not be convex, the aim is to make them as nested as 
possible, which is what ResNet achieves.
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The ingenious innovation of ResNet came from He et al. in 2015.
Instead of parameterizing around a zero function f(x)=0, ResNet parameterizes around 
the identity function f(x)=x.
This shift is incredibly insightful because when all parameters are zero, adding the input 
to the output results in the simplest function, which is the identity function.
You can think of this approach as akin to a Taylor expansion but for neural networks.
Now, as you tune your parameters, you start to diverge from this identity function.
The beauty is that you don't have to learn the identity function from scratch, reducing 
unnecessary computational overhead.
It implies a different inductive bias and allows for the addition of new layers without 
disrupting the outputs of previous layers.
Although ResNet doesn't precisely implement nested function classes, it comes 
remarkably close.
This approach is encapsulated in what we call a ResNet block, where the input is added 
to the output residual.
This simple yet effective change allows for deeper networks without the degradation 
problems commonly associated with them.

49

Residual Networks

• Adding a layer 
changes function class
• We want to add 

to the function class
• ‘Taylor expansion’ 

style parametrization
𝑓 𝑥 = 𝑥 + 𝑔(𝑥)

Deep Learning – Bernhard Kainz

He et al. 2015 https://arxiv.org/abs/1512.03385

Before After

https://d2l.ai/

https://arxiv.org/abs/1512.03385


ResNet architecture consists of multiple building blocks, each with specific layers.
Each block generally contains two or more convolutions, each followed by a batch 
normalization and a Rectified Linear Unit (ReLU).
The innovation lies in adding the original input back to the output of this sequence.
In some cases, we might run a 1x1 convolution on the input before adding it to the 
output, especially if we need to change the dimensionality of the input to match the 
output.
This setup makes it easier for the network to learn an identity mapping, essentially 
enabling the network to decide whether or not a change is beneficial.
What we're discussing here is primarily the forward function, which defines how the 
network transforms the input to the output.
In a typical block, you'd have something like y=BatchNorm1(Conv1(x)), followed by ReLU, 
and then another batch norm.
If the block includes a shortcut connection, you'd add the original input x to this 
sequence, after potentially applying another convolution to x.
To make this work seamlessly, you need to carefully choose the dimensions of your 
convolutions, which is a concept we already covered when discussing the Inception 
architecture.
Finally, this arrangement of batch norm and ReLU blocks makes for a powerful, yet 
computationally efficient, network structure.
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Let's take a closer look at how ResNet's architecture is implemented in code.
The forward method defines the sequence of operations that each ResNet block 
performs.
The input, denoted as X, first passes through a convolutional layer, conv1, followed by 
batch normalization, bn1.
We then apply the ReLU activation function to add non-linearity to the output.
The next sequence is another convolution, conv2, followed by another batch 
normalization, bn2.
Now, if we have an additional convolution layer, conv3, it will be applied to the original 
input X.
Finally, we add this potentially transformed input X to Y and apply ReLU.
This is the essential magic of ResNet: the addition of the original input to the output, 
which helps the network learn more efficiently and effectively.
Remember, the conditional if self.conv3: allows us to optionally adjust the dimensions 
of X to ensure that it can be added to Y.
This is a simplified representation; in a real-world application, you might have additional 
complexities.
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ResNet has seen various adaptations and experiments over the years.
Researchers have tried different configurations, especially in terms of the placement of 
Batch Normalization and the addition operation.
Some studies have placed the batch normalization after the addition, challenging 
conventional sequence.
Others have experimented with the order of ReLU, convolutions, and batch 
normalization, testing all three permutations.
The block sequence might remain the same, but the internal ordering can differ.
Interestingly, there's no one-size-fits-all answer to which configuration is best; it often 
depends on the specific problem and dataset at hand.
This may sound frustrating, but it's the reality of deep learning.
The field progresses by trial and error: researchers experiment, find what works well in a 
given context, and then those architectures often become standard practice.
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Let's delve into the ResNet module.
It closely resembles what we've previously seen, but the primary building block here is 
the ResNet block, not the Inception block.
A typical ResNet module may include a block with downsampling; this usually employs a 
stride of 2.
Following this, several other standard ResNet blocks are stacked.
Downsampling in each module is commonly performed using a stride of 2, serving to 
reduce the spatial dimensions of the feature maps.
To introduce complexity and non-linearity into the network, 1x1 convolutions are often 
employed within the ResNet blocks.
Finally, these blocks are stacked together to form a deep and complex network 
architecture.
This structure has proven to be highly effective for a wide range of machine learning 
tasks.
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Let's take a moment to appreciate the full architecture of ResNet, which scales 
impressively from 18 layers all the way up to 200+ layers.
The lower layers of this architecture closely resemble what we've observed in previous 
architectures like VGG and GoogleNet.
They usually start off with a typical sequence of convolutions, batch normalization, and 
pooling layers.
Residual connections are a defining feature that contribute to the network's 
expressiveness and allow for training deeper models without facing vanishing or 
exploding gradients.
To manage dimensionality, ResNet uses pooling and strides just like earlier architectures.
Batch normalization layers are interspersed throughout to control the capacity and 
stabilize the training process.
What makes ResNet particularly remarkable is that it's designed to be trainable at scale.
The naming convention for ResNet variants is straightforward; the number of layers 
corresponds to the variant name, such as ResNet-18 for an 18-layer architecture.
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On this slide, you'll see a chart that plots accuracy against throughput.
ResNet-101, represented by the dot at the top, is virtually state-of-the-art.
Yes, it may be slower in terms of processing speed, but what it lacks in speed, it makes 
up for in accuracy.
In terms of its size or footprint, ResNet-101 is actually more compact compared to the 
Inception network we discussed earlier.
If you look at the orange circle on the chart, that represents the performance of the 
Inception network, which you'll notice sits lower on the accuracy axis.
ResNet-101 offers a balanced trade-off, providing you with both high accuracy and a 
smaller model size.
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https://cv.gluon.ai/model_zoo/classificat
ion.html

ResNet101

https://cv.gluon.ai/model_zoo/classification.html
https://cv.gluon.ai/model_zoo/classification.html


So, you might be wondering, what comes after ResNet?
It's a valid question, given how pivotal ResNet has been in the field of computer vision.
Well, ResNet opened the floodgates to a whole zoo of architectures that were inspired 
by, or built upon, its foundational ideas.
What I'll present next is just the tip of the iceberg, but it's enough to give you a sense of 
the innovation that has occurred post-ResNet.
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More ideas…

Deep Learning – Bernhard Kainz



DenseNet stands for Densely Connected Convolutional Networks, and as the name 
suggests, its defining feature is dense connectivity.
Each layer in a DenseNet is connected to every other layer in a feed-forward manner, 
quite unlike traditional CNNs where each layer is only connected to its immediate 
successor.
The key advantage of this dense connectivity is feature reuse: each layer gets the feature 
maps from all the preceding layers, not just the last one.
This feature reuse not only makes the network highly efficient but also requires fewer 
parameters for high performance.
So, you get a network that's both computationally and memory-efficient.
Dense connections also help alleviate the vanishing gradient problem, which is often a 
challenge in very deep networks.
This improves the gradient flow through the network, making optimization easier.
Additionally, the architecture itself acts as a form of regularization, reducing the 
likelihood of overfitting, even when the model is large.
One of the big wins of DenseNet is its scalability: you can easily adjust the number of 
layers and other hyperparameters to make it suitable for a variety of tasks and data 
sizes.
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DenseNet

• Huang et al., 2016 https://arxiv.org/abs/1608.06993
• ResNet combines 𝑥 and 𝑓(𝑥)
• DenseNet uses higher order ‘Taylor series’ expansion

𝑥"01 = 𝑥" , 𝑓" 𝑥"
𝑥1 = 𝑥
𝑥! = 𝑥, 𝑓1 𝑥
𝑥2 = 𝑥, 𝑓1 𝑥 , 𝑓! 𝑥, 𝑓1 𝑥

• Occasionally need to reduce resolution (transition layer)
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Let's dive into a network architecture that's a bit more 'exciting'—the Squeeze-Excite 
Network, or SE-NET for short. What sets this apart is its use of attention mechanisms."

What is Attention?
"In machine learning, attention allows a model to focus on significant features within 
the data, rather than indiscriminately treating all features equally. Think of it like 
spotlighting the essential parts in an otherwise noisy scene."

Analogy: Channels for Cat, Dog, Dinosaur
"Now, imagine you have various 'channels' within an image you're analyzing. Let's call 
them 'cat,' 'dog,' and 'dinosaur' channels. These channels represent the features that 
the model is focusing on at any given time."

The Paradox of Recognition
"Here's the tricky part: To effectively recognize a cat, for instance, you'd think you'd 
need to focus on the 'cat channel.' But how can you do that before you know it's a cat? 
That's a paradox SE-NET aims to solve."

Information Transfer in Conventional CNNs
"In traditional Convolutional Neural Networks, or CNNs, information moves relatively 
slowly from layer to layer. This can mean that it takes several layers for information from 
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Squeeze-Excite Net 

• Hu et al., 2017 https://arxiv.org/abs/1709.01507

• Learn global weighting function per channel
• Allows for fast information transfer between pixels in different 

locations of the image
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one corner of an image to influence the other corner."

Context Matters
"SE-NETs are smarter. Say you have a bowl of milk in one part of the image. The presence 
of this object might indicate there's likely to be a cat somewhere else. SE-NET uses this 
kind of contextual information to influence its decisions."

Technical Details
"So, how does SE-NET do it? Here's a simplified explanation:

The network calculates a global descriptor for each channel.
These descriptors go through a small neural network that outputs new descriptors.
These new descriptors are then used to scale or 'excite' the original channels.
This is computationally efficient and offers a more refined way to focus on what's crucial 
in the image."
Model Zoo
"In terms of performance, SE-NETs are a big deal. They are among the top-performing 
architectures in various model repositories, commonly known as 'model zoos.’”

The paradox of needing to know what you are recognizing before you actually recognize it 
is addressed in the Squeeze-and-Excite Network (SE-Net) through the use of attention 
mechanisms. The attention mechanism works by "squeezing" the information from all 
channels into a global descriptor and then "exciting" or re-weighting each channel based 
on this descriptor. Essentially, it uses global context to guide the focus on specific 
channels, without needing to first identify what the object is.
Here's a simplified explanation of how the paradox is resolved:
1.Squeeze: First, SE-Net takes a global average pooling of each channel to get a single 
descriptor that captures the global information of that channel.
2.Descriptor: These descriptors are then fed into a small neural network (usually a fully-
connected layer followed by a ReLU and another fully-connected layer) to create a new 
set of descriptors. These new descriptors are designed to capture which channels are 
more important given the current global context of the image.
3.Excite: The output descriptors are then used to scale the original channels. This scaling 
effectively "excites" or enhances the channels that are likely to be more important for a 
given task, based on the global context of the image.
4.Re-weighting Channels: So if the global context suggests that the image likely contains 
a cat, the "cat channel" would be scaled up, emphasizing features relevant to cats and 
making it easier for subsequent layers to detect the cat.
This procedure is computationally efficient and allows the network to focus on relevant 
features without needing to explicitly know in advance what those features represent 
(like a "cat" or a "dog"). It's a way of allowing the network to dynamically allocate its 
attention based on the overall features in the image, resolving the paradox.

SE-NETs combine the power of attention mechanisms with the foundational strengths of 
CNNs. They allow for a selective, context-aware focus on important features within 
images, making them both efficient and effective."
s
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Let's now look at some intriguing directions and trends in the field of neural network 
architectures.

First on the list is AutoML, specifically Google Cloud AutoML, which automates the 
process of finding the best model architecture.
It takes the guesswork out of model selection, aiming to automatically find the most 
effective network for your specific problem.
Next, we have Hypernetworks, which are essentially networks that generate weights for 
another network.
These networks offer a higher level of abstraction and can be particularly useful in 
complex tasks.
We also have networks with memory features, like the Kanerva machine, which enables 
more dynamic and contextual decision-making.
Interestingly, it seems that the introduction of fundamentally new architectures has 
slowed down.
For instance, a glance at the NeurIPS 2020 program shows that the focus has shifted 
more towards meta-findings rather than novel basic architectures.
Finally, keep an eye out for the second part of this course where we'll delve into the 
concept of Attention, a mechanism that's been revolutionary in various tasks, especially 
in NLP but increasingly in vision tasks as well.
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Things to explore 

• AutoML (find best model architecture automatically Google Cloud 
AutoML)
• Hypernetworks (a network that proposes the weights for another 

network), also neural processes
• Networks with memory, e.g. kanerva machine
• Almost no new basic architectures accepted nowadays (see 

https://nips.cc/virtual/2020/public/cal_main.html NeurIPS 2020 
programme, focuses on meta findings) 
• Attention! (second part of the course)
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Inception is notable for its inhomogeneous mix of convolutions, allowing the network to 
adapt to various scales and aspects of the input data.
Additionally, Inception employs batch normalization as a form of regularization, which 
aids in faster and more stable training.
On the other hand, ResNet introduces the idea of residual learning, which can be 
thought of as a form of Taylor expansion for neural networks.
It enables us to train very deep networks by ensuring more efficient gradient flow during 
backpropagation.
The architecture known as ResNeXt further extends ResNet by decomposing 
convolutions, offering even greater efficiency and performance.
Beyond these, there are various other noteworthy architectures like DenseNet, 
ShuffleNet, and Separable Convolutions, which bring their own unique innovations to 
the table.
In particular, SE-Net and ShuffleNet stand out for their innovative contributions to the 
field.
So, in essence, the landscape of CNN architectures is vast and ever-evolving, each with 
its own set of advantages tailored for different types of tasks and data.
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Summary

• Inception
• Inhomogeneous mix of convolutions (varying depth)
• Batch norm regularization

• ResNet
• Taylor expansion of functions
• ResNext decomposes convolutions

• Model Zoo
• DenseNet, ShuffleNet, Separable Convolutions, …
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One takeaway is that "deeper" doesn't automatically equate to "better," especially if the 
function space isn't properly regularized.
Regularization techniques help in constraining the function space, thereby making the 
network generalize better to unseen data.
ResNet has undeniably become the workhorse of deep learning, at least for the time 
being.
If you think you've got a groundbreaking idea that could surpass ResNet, it might be 
worthwhile to check if similar concepts have already been published on arXiv.
It's important to note that while various modifications and improvements on 
architectures like ResNet have been proposed, the effectiveness often comes down to 
how well you train the network and for what specific purpose.
So, the architecture is just one piece of the puzzle; the training regime and the problem 
you're tackling are equally crucial.
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What do we learn from that

• Deeper is not necessarily better if the function space is not 
regularised
• ResNet is the workhorse of Deep learning (for now. Do you have a 

better idea that hasn’t been tried yet? Let me know but look on arXiv
first!)
• Lot’s of variations have been proposed but it often boils down to how 

you train a network and for what purpose. 
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Data Augmentation
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Input data augmentation is a technique used to increase the size and diversity of your 
training set.
It does this by applying a series of random but realistic transformations to each data 
point during training.
While it might seem tangential to the topic of loss functions, data augmentation is 
actually a vital tool in deep learning.
By increasing the size of your training data artificially, you're effectively adding more 
"experiences" for your model, which can improve generalization.
Data augmentation can be done through various libraries, including imgaug for image 
data and PyTorch's torchvision.transforms for both image and non-image data.
You can find code samples and tutorials on their respective websites.
Here are some useful resources: imgaug GitHub repository and PyTorch Transforms 
Documentation.
One of the main benefits of data augmentation is its role as a regularizer.
It helps prevent overfitting by ensuring that the model encounters a variety of different, 
yet plausible, examples during training.
Do not underestimate the power of data augmentation.
It complements the choice of your loss function and serves to make your deep learning 
model more robust and adaptable.
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Input augmentation 

• Artificially inflate training data size through applying expected 
transformations during training
• https://github.com/aleju/imgaug
• https://pytorch.org/docs/stable/torchvision/transforms.html
• Excellent regularizer against overfitting
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Input data augmentation involves applying a variety of transformations to the original 
data.
These transformations are usually random and aim to mimic plausible variations that the 
model may encounter in the real world.

Random flipping can simulate the natural orientations of objects or scenes in images.
For example, a cat can be oriented left or right in a photo, and flipping allows your 
model to recognize both.

Scaling is another useful transformation.
It helps the model generalize across different sizes of the same object or feature.

Rotations add another layer of complexity by altering the angle of the data points.
This is especially useful in tasks like object recognition, where orientation can vary 
widely.

Intensity and contrast variations help the model adapt to different lighting conditions 
and image qualities.
These are crucial for image processing tasks, such as medical imaging or outdoor scene 
recognition.
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Transformations

• Random 
• flipping
• scaling
• rotations
• intensity/contrast variations
• cropping/padding
• noise
• affine transformations
• perspective transformations
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Cropping and padding alter the focus and frame of the data points.
This can be helpful for tasks where the subject can be off-center or partially visible.

Adding noise to the data serves as an effective way to improve the model's robustness.
It mimics real-world scenarios where data may not always be clean or noise-free.

Affine transformations include operations like translation, scaling, and shearing.
These offer another way to introduce variability into your data, helping your model 
generalize better.

Perspective transformations alter the viewpoint of the object or scene.
This helps in applications like augmented reality, where the perspective can dramatically 
change the appearance of objects.

These diverse transformations enable your model to generalize better and reduce the 
likelihood of overfitting.
Data augmentation, when used correctly, complements your chosen loss function to 
create a more robust learning process.
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