
Deep Learning – some popular
architectures and history

Bernhard Kainz

Deep Learning – Bernhard Kainz

LeNet-5

Deep Learning – Bernhard Kainz

Handwritten digit recognition

Deep Learning – Bernhard Kainz

MNIST

• Cantered and scaled
• 50.000 training samples
• 10.000 test samples
• 28 x 28 images
• 10 classes

Deep Learning – Bernhard Kainz

Demo from 1995

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=yxuRnBEczUU

https://www.youtube.com/watch?v=yxuRnBEczUU

LeNet-5

Deep Learning – Bernhard Kainz

This is expensive if
you have many

outputs, here only
10

Deep Learning – Bernhard Kainz

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

AlexNet

Deep Learning – Bernhard Kainz

AlexNet

Deep Learning – Bernhard Kainz

ImageNet (2010)

Deep Learning – Bernhard Kainz

Images Color images with nature
objects

Gray image for hand-
written digits

Size 469 x 387 28 x 28
examples 1.2 M 60 K
classes 1,000 10

AlexNet
• AlexNet won ImageNet competition in

2012
• Deeper and bigger LeNet
• Key modifications:

• Add a dropout layer after two
hidden dense layers
(better robustness / regularization)

• Change activation function from
sigmoid to ReLu
(no more vanishing gradient)

• MaxPooling
• Heavy data augmentation
• Model ensembling

• Paradigm shift for computer vision

Manually
engineered

features

SVM

Features learned
by a CNN

Softmax
regression

Deep Learning – Bernhard Kainz
Slide adopted from Alex Smola

AlexNet Architecture

LeNetAlexNet

Larger kernel size, stride because
 of the increased image size, and

more output channels.

Larger pool size, change to
max pooling

Deep Learning – Bernhard Kainz

Slide adopted from Alex Smola

AlexNet Architecture

LeNet

AlexNet

More output channels.

3 additional
convolutional layers

Deep Learning – Bernhard Kainz

Slide adopted from Alex Smola

AlexNet Architecture
LeNetAlexNet

Increase hidden size
from 120 to 4096

1000 classes output

Deep Learning – Bernhard Kainz

Slide adopted from Alex Smola

Complexity
#parameters FLOP

AlexNet LeNet AlexNet LeNet
Conv1 35K 150 101M 1.2M
Conv2 614K 2.4K 415M 2.4M

Conv3-5 3M 445M
Dense1 26M 0.48M 26M 0.48M
Dense2 16M 0.1M 16M 0.1M

Total 46M 0.6M 1G 4M
Increase 11x 1x 250x 1x

Deep Learning – Bernhard Kainz
Slide adopted from Alex Smola

demo

Deep Learning – Bernhard Kainz

Silicon Valley: Season 4 Episode 4: Not Hotdog (HBO)
https://www.youtube.com/watch?v=pqTntG1RXSY

https://www.youtube.com/watch?v=pqTntG1RXSY

code

Deep Learning – Bernhard Kainz
https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

VGG

Deep Learning – Bernhard Kainz

Lecture inspired by Alex Smola with add-ons

VGG

Deep Learning – Bernhard Kainz

Softmax
FC1 FC2 FC3

• AlexNet = bigger than LeNet
• Bigger = better?
• Options
• More dense layers

(too expensive)
• More convolutions
• Group into blocks

Deep Learning – Bernhard Kainz http://d2l.ai/chapter_convolutional-modern/vgg.html

VGG blocks

• Deeper vs. wider?
• 13x13?
• 5x5?
• 3x3?
• Deep and narrow = better

• VGG block
• 3x3 convolutions (pad 1)

(n layers, m channels)
• 2x2 max-pooling

(stride 2)

Deep Learning – Bernhard Kainz

progress

• LeNet (1995)
• 2 convolution + pooling layers
• 2 hidden dense layers

• AlexNet
• Bigger and deeper LeNet
• ReLu, Dropout, preprocessing

• VGG
• Bigger and deeper AlexNet (repeated VGG blocks)

Deep Learning – Bernhard Kainz

Wouldn’t have been
possible without
compute power
progress (GPUs)

Deep Learning – Bernhard Kainz

VGGs

AlexNet
https://cv.gluon.ai/model_z
oo/classification.html

Deep Learning – Bernhard Kainz
https://github.com/pytorch/vision/blob/mas
ter/torchvision/models/vgg.py

Inception (GoogLeNet)

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Which convolution is the best!?

Deep Learning – Bernhard Kainz

NiNVGGAlexNetLeNet
Many
1x1

5x53x31x1 Max-
pooling

Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Extract with
different size
convolutions

Same width and
height as input

Extract spatial
information with

pooling

Four paths extract information from
different aspects, then concatenate
along the output channel

Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Allocate capacities
to each channel

The first inception block has channel sizes specified

Reduce cannel size
to lower model

capacity

(256)

(128) (32) (32)

(16)(96)

(64)

(192x28x28)

Inception blocks

• Inception blocks have fewer parameters and less computation
complexity than single 3x3 or 5x5 convolution layers
• They are a mix of different functions, which makes them a powerful

function class
• Computing and memory wise they are efficient (good generalisation)

Deep Learning – Bernhard Kainz

#parameters FLOPS

Inception 0.16 M 128 M

3x3 Conv 0.44 M 346 M

5x5 Conv 1.22 M 963 M

As: replace all conv block with 3x3 or 5x5 in Inception

Less operations?

• 𝑘!×𝑐"#× 𝑐$%&×𝑚'×𝑚(

• 𝑐"#×𝑚'×𝑚(×[∑)*&'+ , 𝑘,!×𝑐$%&,,]

Deep Learning – Bernhard Kainz

fixedfixed

allocating compute
to different channels
= better computing

Inception

• 5 stages with 9 inception blocks

Deep Learning – Bernhard Kainz

https://d2l.ai/

Output

Stage 5

Stage 1

Stage 3

Stage 2

Stage 4

Stage 1 and 2

• Smaller kernel size and
output channels because of
more layers

Deep Learning – Bernhard Kainz

https://d2l.ai/

Stage 3

Deep Learning – Bernhard Kainz

Channel allocation is
different

Increases output
channel

https://d2l.ai/

Deep Learning – Bernhard Kainz

Stage 4 & 5
Increases output

channels

Increases output
channels

1024 dimensional
feature to output

layer

Increase for output
channel

https://d2l.ai/

Flavours of Inception Networks

• Inception-BN (v2) – added batch normalisation
• Inception-V3 – Modified the inception block
• Replace 5x5 by multiple 3x3 convolutions
• Replace 5x5 by 1x7 and 7x1 convolutions
• Replace 3x3 by 1x3 and 3x1 convolutions
• Generally deeper stack

• Inception-V4 – adds residual connections

Deep Learning – Bernhard Kainz

Inception V3 block for stage 3

Deep Learning – Bernhard Kainz
https://d2l.ai/

Inception V3 block for stage 4

Deep Learning – Bernhard Kainz
https://d2l.ai/

7 x 1 1 x 7

Inception V3 block for stage 5

Deep Learning – Bernhard Kainz
https://d2l.ai/

Deep Learning – Bernhard Kainz

Inception v3

https://cv.gluon.ai/model_zoo/classification.html

What do we learn from that?

• Dense layers are computationally and memory intensive. Real-world
problems with big input tensors and many classes will prohibit their
use.
• Again: 1x1 convolutions act like a multi-layer perceptron per pixel.
• Scientists are humans and need a while to understand the power of

new approaches. Eventually they do but a lot of vanity is involved in
the process.
• If not sure, just take all options and let the optimization decide or

even learn this through trial and error (genetic algorithm,
AmoebaNet)

Deep Learning – Bernhard Kainz

BatchNorm

Deep Learning – Bernhard Kainz

Batch Normalization

• Loss is calculated at last layer
• Last layers learn quickly

• Data input is at first layer
• First layers change - everything changes
• Last layers need to relearn many times
• Slow convergence

• This is like covariate shift...
Can we avoid changing last layers while
learning first layers?

Deep Learning – Bernhard Kainz

Deep supervision
to aid convergence

(= reconstruct
output and

compare with
ground truth at
several stages)

input

loss

Batch Normalization

• Can we avoid changing last layers while learning first layers?
• Fix mean and variance

µ. =
1
|𝐵|-

"∈.

𝑥" 𝑎𝑛𝑑 𝜎.! =
1
|𝐵|-

"∈.

(𝑥" − 𝜇.)! + 𝜀

and adjust it separately
𝑥"01 = 𝛾

𝑥" − 𝜇.
𝜎.

+ 𝛽

Deep Learning – Bernhard Kainz

variance

mean

Batch Normalization

• Doesn’t really reduce covariate shift (Lipton et al. 2018)
https://arxiv.org/abs/1805.10694
• Regularization by noise injection

𝑥! = 𝛾
𝑥! − �̂�"
'𝜎"

+ 𝛽

• Random shift per mini batch
• Random scale per mini batch

• No need to add dropout (both are capacity control)
• Ideal mini batch size: 64-256

Deep Learning – Bernhard Kainz

Random offset

Random scale
learned

learned

https://arxiv.org/abs/1805.10694

Batch Normalization

• Dense layer: One normalization for all
• Convolutional layer: One normalization per channel
• Compute new mean and variance for every minibatch
• Acts as regularisation
• Be careful when scaling up to multi-GPU training

Deep Learning – Bernhard Kainz

https://xkcd.com/

https://xkcd.com/

ResNet

Deep Learning – Bernhard Kainz

Does adding layers improve accuracy?

Deep Learning – Bernhard Kainz

The true solution is here •

𝑓

Generic function classes Nested function classes

𝑓

The true solution is here •

Residual Networks

• Adding a layer
changes function class
• We want to add

to the function class
• ‘Taylor expansion’

style parametrization
𝑓 𝑥 = 𝑥 + 𝑔(𝑥)

Deep Learning – Bernhard Kainz

He et al. 2015 https://arxiv.org/abs/1512.03385

Before After

https://d2l.ai/

https://arxiv.org/abs/1512.03385

ResNet Block

Deep Learning – Bernhard Kainz
https://d2l.ai/

ResNet Block

Deep Learning – Bernhard Kainz

ResNet block flavours

Deep Learning – Bernhard Kainz

Trial and error of every permutation
https://d2l.ai/

ResNet Module

• Downsample per
module (stride=2)
• Enforce some nontrivial

nonlinearity per module
(via 1x1 convolution)
• Stack up in blocks

Deep Learning – Bernhard Kainz
https://d2l.ai/

N times

Stride 2

ResNet

Deep Learning – Bernhard Kainz

Same block structure as e.g. VGG or
GoogleNet
• Residual connection to add to

expressiveness
• Pooling/stride for dimensionality reduction
• Batch Normalization for capacity control

• Trainable at scale
• Variant name depends on how many blocks

(18 layers = ResNet-18 ->)

Deep Learning – Bernhard Kainz

https://cv.gluon.ai/model_zoo/classificat
ion.html

ResNet101

https://cv.gluon.ai/model_zoo/classification.html
https://cv.gluon.ai/model_zoo/classification.html

More ideas…

Deep Learning – Bernhard Kainz

DenseNet

• Huang et al., 2016 https://arxiv.org/abs/1608.06993
• ResNet combines 𝑥 and 𝑓(𝑥)
• DenseNet uses higher order ‘Taylor series’ expansion

𝑥"01 = 𝑥", 𝑓" 𝑥"
𝑥1 = 𝑥
𝑥! = 𝑥, 𝑓1 𝑥
𝑥2 = 𝑥, 𝑓1 𝑥 , 𝑓! 𝑥, 𝑓1 𝑥

• Occasionally need to reduce resolution (transition layer)

Deep Learning – Bernhard Kainz https://d2l.ai/

https://arxiv.org/abs/1608.06993

Squeeze-Excite Net

• Hu et al., 2017 https://arxiv.org/abs/1709.01507

• Learn global weighting function per channel
• Allows for fast information transfer between pixels in different

locations of the image

Deep Learning – Bernhard Kainz

https://arxiv.org/abs/1709.01507

Things to explore

• AutoML (find best model architecture automatically Google Cloud
AutoML)
• Hypernetworks (a network that proposes the weights for another

network), also neural processes
• Networks with memory, e.g. kanerva machine
• Almost no new basic architectures accepted nowadays (see

https://nips.cc/virtual/2020/public/cal_main.html NeurIPS 2020
programme, focuses on meta findings)
• Attention! (second part of the course)

Deep Learning – Bernhard Kainz

https://nips.cc/virtual/2020/public/cal_main.html

Summary

• Inception
• Inhomogeneous mix of convolutions (varying depth)
• Batch norm regularization

• ResNet
• Taylor expansion of functions
• ResNext decomposes convolutions

• Model Zoo
• DenseNet, ShuffleNet, Separable Convolutions, …

Deep Learning – Bernhard Kainz https://in.pinterest.com/pin/556124253981912489/

https://in.pinterest.com/pin/556124253981912489/

What do we learn from that

• Deeper is not necessarily better if the function space is not
regularised
• ResNet is the workhorse of Deep learning (for now. Do you have a

better idea that hasn’t been tried yet? Let me know but look on arXiv
first!)
• Lot’s of variations have been proposed but it often boils down to how

you train a network and for what purpose.

Deep Learning – Bernhard Kainz

Data Augmentation

Deep Learning – Bernhard Kainz

Input augmentation

• Artificially inflate training data size through applying expected
transformations during training
• https://github.com/aleju/imgaug
• https://pytorch.org/docs/stable/torchvision/transforms.html
• Excellent regularizer against overfitting

Deep Learning – Bernhard Kainz

https://github.com/aleju/imgaug
https://pytorch.org/docs/stable/torchvision/transforms.html

Transformations

• Random
• flipping
• scaling
• rotations
• intensity/contrast variations
• cropping/padding
• noise
• affine transformations
• perspective transformations

Deep Learning – Bernhard Kainz

