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LeNet-5
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Handwritten digit recognition
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MNIST

• Cantered and scaled
• 50.000 training samples
• 10.000 test samples
• 28 x 28 images
• 10 classes
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Demo from 1995
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https://www.youtube.com/watch?v=yxuRnBEczUU

https://www.youtube.com/watch?v=yxuRnBEczUU


LeNet-5
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This is expensive if 
you have many 

outputs, here only 
10
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https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html


AlexNet
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AlexNet
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ImageNet (2010)
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Images Color images with nature 
objects

Gray image for hand-
written digits

Size 469 x 387 28 x 28 
# examples 1.2 M 60 K
# classes 1,000 10



AlexNet
• AlexNet won ImageNet competition in 

2012
• Deeper and bigger LeNet 
• Key modifications:

• Add a dropout layer after two 
hidden dense layers
(better robustness / regularization)

• Change activation function from 
sigmoid to ReLu
(no more vanishing gradient)

• MaxPooling
• Heavy data augmentation
• Model ensembling

• Paradigm shift for computer vision

Manually 
engineered 

features

SVM

Features learned 
by a CNN

Softmax 
regression
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Slide adopted from Alex Smola



AlexNet Architecture 

LeNetAlexNet

Larger kernel size, stride because
 of the increased image size, and 

more output channels.

Larger pool size, change to 
max pooling 
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Slide adopted from Alex Smola



AlexNet Architecture 

LeNet

AlexNet

More output channels.

3 additional
convolutional  layers
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Slide adopted from Alex Smola



AlexNet Architecture 
LeNetAlexNet

Increase hidden size 
from 120 to 4096

1000 classes output
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Slide adopted from Alex Smola



Complexity
#parameters FLOP

AlexNet LeNet AlexNet LeNet
Conv1 35K 150 101M 1.2M
Conv2 614K 2.4K 415M 2.4M

Conv3-5 3M 445M
Dense1 26M 0.48M 26M 0.48M
Dense2 16M 0.1M 16M 0.1M

Total 46M 0.6M 1G 4M
Increase 11x 1x 250x 1x
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Slide adopted from Alex Smola



demo
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Silicon Valley: Season 4 Episode 4: Not Hotdog (HBO)
https://www.youtube.com/watch?v=pqTntG1RXSY

https://www.youtube.com/watch?v=pqTntG1RXSY


code
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https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py


VGG
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Lecture inspired by Alex Smola with add-ons



VGG
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Softmax
FC1 FC2 FC3



• AlexNet = bigger than LeNet
• Bigger = better?
• Options
• More dense layers

(too expensive)
• More convolutions 
• Group into blocks

Deep Learning – Bernhard Kainz http://d2l.ai/chapter_convolutional-modern/vgg.html



VGG blocks

• Deeper vs. wider?
• 13x13?
• 5x5?
• 3x3?
• Deep and narrow = better

• VGG block
• 3x3 convolutions (pad 1)

(n layers, m channels)
• 2x2 max-pooling

(stride 2)
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progress

• LeNet (1995)
• 2 convolution + pooling layers
• 2 hidden dense layers

• AlexNet
• Bigger and deeper LeNet
• ReLu, Dropout, preprocessing

• VGG
• Bigger and deeper AlexNet (repeated VGG blocks)
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Wouldn’t have been 
possible without 
compute power 
progress (GPUs)
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VGGs

AlexNet
https://cv.gluon.ai/model_z
oo/classification.html
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https://github.com/pytorch/vision/blob/mas
ter/torchvision/models/vgg.py



Inception (GoogLeNet)
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https://arxiv.org/abs/1409.4842



Which convolution is the best!?

Deep Learning – Bernhard Kainz

NiNVGGAlexNetLeNet
Many 
1x1

5x53x31x1 Max-
pooling



Inception block
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https://arxiv.org/abs/1409.4842



Inception block
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https://arxiv.org/abs/1409.4842

Extract with 
different size 
convolutions

Same width and 
height as input

Extract spatial 
information with 

pooling

Four paths extract information from 
different aspects, then concatenate 
along the output channel



Inception block
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https://arxiv.org/abs/1409.4842

Allocate capacities 
to each channel

The first inception block has channel sizes specified

Reduce cannel size 
to lower model 

capacity

(256)

(128) (32) (32)

(16)(96)

(64)

(192x28x28)



Inception blocks

• Inception blocks have fewer parameters and less computation 
complexity than single 3x3 or 5x5 convolution layers
• They are a mix of different functions, which makes them a powerful 

function class
• Computing and memory wise they are efficient (good generalisation)
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#parameters FLOPS

Inception 0.16 M 128 M

3x3 Conv 0.44 M 346 M

5x5 Conv 1.22 M 963 M

As: replace all conv block with 3x3 or 5x5 in Inception



Less operations?

• 𝑘!×𝑐"#× 𝑐$%&×𝑚'×𝑚(

• 𝑐"#×𝑚'×𝑚( ×[ ∑)*&'+ , 𝑘,!×𝑐$%&,, ]
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fixedfixed

allocating compute 
to different channels 
= better computing 



Inception

• 5 stages with 9 inception blocks
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https://d2l.ai/

Output

Stage 5

Stage 1

Stage 3

Stage 2

Stage 4



Stage 1 and 2

• Smaller kernel size and 
output channels because of
more layers
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https://d2l.ai/



Stage 3
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Channel allocation is 
different

Increases output 
channel

https://d2l.ai/
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Stage 4 & 5
Increases output 

channels

Increases output 
channels

1024 dimensional 
feature to output 

layer

Increase for output 
channel

https://d2l.ai/



Flavours of Inception Networks

• Inception-BN (v2) – added batch normalisation
• Inception-V3 – Modified the inception block 
• Replace 5x5 by multiple 3x3 convolutions 
• Replace 5x5 by 1x7 and 7x1 convolutions
• Replace 3x3 by 1x3 and 3x1 convolutions
• Generally deeper stack

• Inception-V4 – adds residual connections 
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Inception V3 block for stage 3

Deep Learning – Bernhard Kainz
https://d2l.ai/



Inception V3 block for stage 4

Deep Learning – Bernhard Kainz
https://d2l.ai/

7 x  1 1 x 7



Inception V3 block for stage 5

Deep Learning – Bernhard Kainz
https://d2l.ai/
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Inception v3

https://cv.gluon.ai/model_zoo/classification.html



What do we learn from that?

• Dense layers are computationally and memory intensive. Real-world 
problems with big input tensors and many classes will prohibit their 
use.
• Again: 1x1 convolutions act like a multi-layer perceptron per pixel.
• Scientists are humans and need a while to understand the power of 

new approaches. Eventually they do but a lot of vanity is involved in 
the process. 
• If not sure, just take all options and let the optimization decide or 

even learn this through trial and error (genetic algorithm, 
AmoebaNet)
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BatchNorm
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Batch Normalization

• Loss is calculated at last layer
• Last layers learn quickly

• Data input is at first layer
• First layers change - everything changes
• Last layers need to relearn many times
• Slow convergence

• This is like covariate shift...
Can we avoid changing last layers while 
learning first layers?
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Deep supervision 
to aid convergence 

(= reconstruct 
output and 

compare with 
ground truth at 
several stages)

input

loss



Batch Normalization

• Can we avoid changing last layers while learning first layers?
• Fix mean and variance

µ. =
1
|𝐵|-

"∈.

𝑥" 𝑎𝑛𝑑 𝜎.! =
1
|𝐵|-

"∈.

(𝑥" − 𝜇.)! + 𝜀

and adjust it separately
𝑥"01 = 𝛾

𝑥" − 𝜇.
𝜎.

+ 𝛽
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variance

mean



Batch Normalization

• Doesn’t really reduce covariate shift (Lipton et al. 2018) 
https://arxiv.org/abs/1805.10694
• Regularization by noise injection

𝑥! = 𝛾
𝑥! − �̂�"
'𝜎"

+ 𝛽

• Random shift per mini batch
• Random scale per mini batch

• No need to add dropout (both are capacity control)
• Ideal mini batch size: 64-256
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Random offset

Random scale
learned

learned

https://arxiv.org/abs/1805.10694


Batch Normalization

• Dense layer: One normalization for all
• Convolutional layer: One normalization per channel
• Compute new mean and variance for every minibatch
• Acts as regularisation
• Be careful when scaling up to multi-GPU training

Deep Learning – Bernhard Kainz

https://xkcd.com/

https://xkcd.com/


ResNet
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Does adding layers improve accuracy?
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The true solution is here •

𝑓

Generic function classes Nested function classes

𝑓

The true solution is here •



Residual Networks

• Adding a layer 
changes function class
• We want to add 

to the function class
• ‘Taylor expansion’ 

style parametrization
𝑓 𝑥 = 𝑥 + 𝑔(𝑥)
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He et al. 2015 https://arxiv.org/abs/1512.03385

Before After

https://d2l.ai/

https://arxiv.org/abs/1512.03385


ResNet Block
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https://d2l.ai/



ResNet Block
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ResNet block flavours
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Trial and error of every permutation
https://d2l.ai/



ResNet Module

• Downsample per 
module (stride=2)
• Enforce some nontrivial 

nonlinearity per module 
(via 1x1 convolution)
• Stack up in blocks

Deep Learning – Bernhard Kainz
https://d2l.ai/

N times

Stride 2



ResNet

Deep Learning – Bernhard Kainz

Same block structure as e.g. VGG or 
GoogleNet
• Residual connection to add to 

expressiveness
• Pooling/stride for dimensionality reduction
• Batch Normalization for capacity control

• Trainable at scale
• Variant name depends on how many blocks

(18 layers = ResNet-18 -> )
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https://cv.gluon.ai/model_zoo/classificat
ion.html

ResNet101

https://cv.gluon.ai/model_zoo/classification.html
https://cv.gluon.ai/model_zoo/classification.html


More ideas…
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DenseNet

• Huang et al., 2016 https://arxiv.org/abs/1608.06993
• ResNet combines 𝑥 and 𝑓(𝑥)
• DenseNet uses higher order ‘Taylor series’ expansion

𝑥"01 = 𝑥", 𝑓" 𝑥"
𝑥1 = 𝑥
𝑥! = 𝑥, 𝑓1 𝑥
𝑥2 = 𝑥, 𝑓1 𝑥 , 𝑓! 𝑥, 𝑓1 𝑥

• Occasionally need to reduce resolution (transition layer)
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https://arxiv.org/abs/1608.06993


Squeeze-Excite Net 

• Hu et al., 2017 https://arxiv.org/abs/1709.01507

• Learn global weighting function per channel
• Allows for fast information transfer between pixels in different 

locations of the image
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https://arxiv.org/abs/1709.01507


Things to explore 

• AutoML (find best model architecture automatically Google Cloud 
AutoML)
• Hypernetworks (a network that proposes the weights for another 

network), also neural processes
• Networks with memory, e.g. kanerva machine
• Almost no new basic architectures accepted nowadays (see 

https://nips.cc/virtual/2020/public/cal_main.html NeurIPS 2020 
programme, focuses on meta findings) 
• Attention! (second part of the course)

Deep Learning – Bernhard Kainz

https://nips.cc/virtual/2020/public/cal_main.html


Summary

• Inception
• Inhomogeneous mix of convolutions (varying depth)
• Batch norm regularization

• ResNet
• Taylor expansion of functions
• ResNext decomposes convolutions

• Model Zoo
• DenseNet, ShuffleNet, Separable Convolutions, …

Deep Learning – Bernhard Kainz https://in.pinterest.com/pin/556124253981912489/

https://in.pinterest.com/pin/556124253981912489/


What do we learn from that

• Deeper is not necessarily better if the function space is not 
regularised
• ResNet is the workhorse of Deep learning (for now. Do you have a 

better idea that hasn’t been tried yet? Let me know but look on arXiv
first!)
• Lot’s of variations have been proposed but it often boils down to how 

you train a network and for what purpose. 
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Data Augmentation
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Input augmentation 

• Artificially inflate training data size through applying expected 
transformations during training
• https://github.com/aleju/imgaug
• https://pytorch.org/docs/stable/torchvision/transforms.html
• Excellent regularizer against overfitting
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https://github.com/aleju/imgaug
https://pytorch.org/docs/stable/torchvision/transforms.html


Transformations

• Random 
• flipping
• scaling
• rotations
• intensity/contrast variations
• cropping/padding
• noise
• affine transformations
• perspective transformations
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