
02/01/2021

1

Deep Learning
Bernhard Kainz

Deep Learning – Bernhard Kainz

• https://github.com/alievk/avatarify

Deep Learning – Bernhard Kainz

Learning outcomes

• After this course you will know a little bit more about:
• Feature extraction, convolutions and CNNs
• Automatic parameter optimisation
• RNNs, LSTMs, GRUs
• VAEs and GANs
• GNNs
• Deep learning programming frameworks
• Applications of deep learning

Deep Learning – Bernhard Kainz

Good to know

496 Mathematics for ML (prerequisite)
395 Introduction to ML (soft prerequisite, please read the basic ML
notes if you haven’t done this course)
316 Computer vision
416 ML for imaging
490H Natural language processing
424H Reinforcement learning

Deep Learning – Bernhard Kainz

Reference

• I. Goodfellow, Y. Bengio, A. Courville, Deep learning. MIT
Press, 2016 www.deeplearningbook.org

• This lecture has been heavily influenced by Material from
Michael Bronstein, Kilian Weinberger, Stefanos Zafeiriou,
Andreas Maier, Alex Smola, Serena Yeung, Fei-Fei Li

• Dive into Deep Learning https://d2l.ai/

Deep Learning – Bernhard Kainz

Structure

• Lecture – theory and main concepts: videos.
Experimental new format. Feedback welcome but be
lenient please.

• Tutorials – Q&A sessions with TAs on Teams
• Lab – hands-on progrSamming exercises: individual

with Q&A on Teams

Deep Learning – Bernhard Kainz

1 2

3 4

5 6

02/01/2021

2

Grading

• Assignments (3 assignments): 50%
• Exam 50% (2 questions)

Deep Learning – Bernhard Kainz

Deep Learning
Bernhard Kainz

Deep Learning – Bernhard Kainz

Motivation

• Deep learning is popular because it works (often).
• Big promise: just collect enough data and label it, then you get a magic black-

box predictor that can predict any correlations at the click of a button. (only
supervised setting really works well)

• Deep learning and Big data = big money = highly competitive and
sometimes poisonous working environment.

• Deep learning can be dangerous, e.g. deep fakes, adversarial attacks,
etc.

Deep Learning – Bernhard Kainz

Fundamental learning system

Deep Learning – Bernhard Kainz

Feature extractor Task
specific

Parameter optimisation

input output

classification, regression, synthesis, …

*CNN = convolutional neural network

Why did
neural

networks fail
in image
analysis?

Deep Learning – Bernhard Kainz

Figure: adapted from Fei Fei et al.

Stack a 32x32x3 RGB image into a 3072x1 vector

Curse of dimensionality

Deep Learning – Bernhard Kainz

As the number of features or dimensions grows,
the amount of data we need to generalise accurately grows exponentially!

To approximate a (Lipschitz) continuous function 𝑓: ℝௗ → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖ିௗ) samples

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

7 8

9 10

11 12

02/01/2021

3

Deep Learning – Bernhard Kainz

As the number of features or dimensions grows,
the amount of data we need to generalise accurately grows exponentially!

One parameter: Body weight or
Body size, …

20% samples = 0.2
5 unit intervals
10/5=2 samples/interval

Two parameters: Body weight and
Body size, …

20% samples = 0.452
5×5=25 unit squares
10/25 = 0.4 samples/interval

Three parameters: Body weight and
Body size and has a leech …

20% samples = 0.583
5x5x5 unit intervals
10/125 = 0.08 samples/interval

Curse of dimensionality

10 samples:

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

Deep Learning – Bernhard Kainz

Curse of dimensionality

The higher dimensional the feature space the more training samples will be in the corners of the hypercube,
thus generalisation suffers.

Wikimedia hypersphere

Ratio between red and green

𝜋0.5ଶ ≈ 0.785
ସ

ଷ
𝜋0.5ଷ ≈ 0.52 10 dimensions ≈ 0.0159

Deep Learning – Bernhard Kainz

Curse of dimensionality

The higher dimensional the feature space the more training samples will be in the corners of the hypercube,
thus generalisation suffers.

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

𝑉௦௣௛௘௥௘ 𝑑 =
𝜋

ௗ
ଶ

Γ
𝑑
2

+ 1 2ௗ
 ∽ 𝑂(𝑐ିௗ)

Wikimedia hypersphere

Deep Learning – Bernhard Kainz

Curse of dimensionality
To approximate a (Lipschitz) continuous function 𝑓: ℝௗ → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖ିௗ) samples

Input image resolution = 12 Mpixel * 3 channels = 36M elements
With 𝜖 ∼ 0.1, we need 1036000000 samples (1078 to 1082 atoms in the known, observable universe)

so what do we learn from that?

• a) feature selection is important to build good classifiers. As we will see,
the key of deep learning is to learn this feature selection instead of doing it
manually.

• b) finding the right amount of features is key. Too few or too many will have
a severe impact on the generalization abilities of your predictor model. Too
few is easy too understand but too many requires an intuition about
sample sparsity in high-dimensional spaces.

• c) the more features we choose as input the sparser our training samples
will be distributed in the feature space. This means that decision
boundaries become really tight around the used training samples because
they all live close to each other at the boundaries of the space and our
model will overfit the training data.

Deep Learning – Bernhard Kainz

Deep Learning
Bernhard Kainz

Deep Learning – Bernhard Kainz

13 14

15 16

17 18

02/01/2021

4

Deep Learning – Bernhard Kainz

Curse of dimensionality
To approximate a (Lipschitz) continuous function 𝑓: ℝௗ → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖ିௗ) samples

Input image resolution = 12 Mpixel * 3 channels = 36M elements
With 𝜖 ∼ 0.1, we need 1036000000 samples (1078 to 1082 atoms in the known, observable universe)

n2 parameters!

Deep Learning – Bernhard Kainz

…

• Input image resolution = 12 Mpixel * 3 channels = 36M elements
• MLP with one hidden layer of width=100 has 3.6B parameters
• That’s more than the number of cats and dogs on earth!

Curse of dimensionality

36M

100

k*n parameters!

Deep Learning – Bernhard Kainz

…

• Input image resolution = 12 Mpixel * 3 channels = 36M elements
• MLP with one hidden layer of width=100 has 3.6B parameters
• That’s more than the number of cats and dogs on earth!

Curse of dimensionality

36M

100

k parameters!

Deep Learning – Bernhard Kainz

…

• Input image resolution = 12 Mpixel * 3 channels = 36M elements
• MLP with one hidden layer of width=100 has 3.6B parameters
• That’s more than the number of cats and dogs on earth!

Curse of dimensionality

36M

100

Self similarity

Deep Learning – Bernhard Kainz

n2 parameters, 36M2 parameters!

Deep Learning – Bernhard Kainz

DL/math lingo
‘intractable’ =

hard to control or
deal with

𝑦௝ = 𝑤௝,ଵ𝑥ଵ + ⋯ + 𝑤௝,௡𝑥௡

19 20

21 22

23 24

02/01/2021

5

Each input neuron is connected to a small number k of
hidden neurons.
Sparse connections: k*n parameters, e.g., 3*36M parameters!

Deep Learning – Bernhard Kainz

Early work, e.g.,
Y. LeCun et al.,

did this

𝑦௝ = 𝑤௝,௜ିଵ𝑥௜ିଵ + 𝑤௝,௜𝑥௜ + 𝑤௝,௜ାଵ𝑥௜ାଵ

Each input neuron is connected to a small number k of hidden neurons
and weights are shared
Shared weights (position independent): k parameters, e.g. 3 parameters!

Deep Learning – Bernhard Kainz

DL lingo ‘weight
sharing’ = a

subset of weights
are identical

𝑦௝ = 𝑤ିଵ𝑥௜ିଵ + 𝑤଴𝑥௜ + 𝑤ାଵ𝑥௜ାଵ

0 0 0 0 0 0

0 0

0

0 0

Deep Learning – Bernhard Kainz

∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

1 0 0 0 0 0

0 0

0

0 0

Deep Learning – Bernhard Kainz

∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

1 1 0 0 0 0

1 0

0.25

0 0

Deep Learning – Bernhard Kainz

∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

1 1 1 0 0 0

1 0

0.5

1 0

Deep Learning – Bernhard Kainz

∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

25 26

27 28

29 30

02/01/2021

6

1 1 1 1 0 0

1 0

0.75

1 1

Deep Learning – Bernhard Kainz

∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

0 1 1 1 1 0

1 1

1

1 1

Deep Learning – Bernhard Kainz

∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

0 0 1 1 1 1

0 1

0.75

1 1

Deep Learning – Bernhard Kainz

∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

0 0 0 1 1 1

0 1

0.5

0 1

Deep Learning – Bernhard Kainz

∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

0 0 0 0 0 1

0 1

0.25

0 0

Deep Learning – Bernhard Kainz

∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

0 0 0 0 0 0

0 0

0

0 0

Deep Learning – Bernhard Kainz

∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

31 32

33 34

35 36

02/01/2021

7

e.g., 3 parameters!

1

0
Key take away: weight sharing! (a limited number of learnable “filter”
parameters for a fixed but overlapping input range);
Think filtering with sliding window!

Deep Learning – Bernhard Kainz

learned through backpropagation,
dependant on the task! Up to hundreds per layer.

, = filter
kernel

Why “convolution”?

Deep Learning – Bernhard Kainz

1

0

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛: (𝑥 ∗ 𝑤)௜ = ∑௞𝑥௞𝑤௜ି௞ = ∑௞𝑥௜ି௞𝑤௞

𝑐𝑝. 𝑐𝑟𝑜𝑠𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛: (𝑥 ∗ 𝑤)௜ = ∑௞𝑥௞𝑤௜ା௞

wikipedia.org

Why not simply input = output for this feature detector?
Signals in the wild: Features in the wild:

Deep Learning – Bernhard Kainz

Network output (continuous):

𝑓 ∗ 𝑔 𝑡 = න 𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏 𝑓𝑜𝑟 𝑓, 𝑔 ∶ 0, ∞ → ℝ
௧

଴

Some features of convolution are similar
to cross-correlation:
for real-valued functions, of a continuous or
discrete variable, it differs from cross-correlation
only in that either f(x) or g(x) is reflected about the
y-axis; thus it is a cross-correlation of f(x) and g(−x),
or f(−x) and g(x).

Watch:
https://www.youtube.com/watch?v=N-zd-T17uiE

Properties of convolutions

• Commutativity, 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓

• Associativity, 𝑓 ∗ 𝑔 ∗ ℎ = 𝑓 ∗ 𝑔 ∗ ℎ

• Distributivity, 𝑓 ∗ 𝑔 + ℎ = 𝑓 ∗ 𝑔 + (𝑔 ∗ ℎ)

• Associativity with scalar multiplication, 𝑎(𝑓 ∗ 𝑔) = 𝑎𝑓 ∗ 𝑔

Deep Learning – Bernhard Kainz

What do we learn from this

• a) weight sharing reduces the number of parameters from n^2 in a
multi-layer perception to a small number, for example 3 as in our
experiment or 3 by 3 image filter kernels or similar

• b) these filter kernels can be learned through back propagation
exactly in the same way as you would train a multi-layer perception.
Each layer may have many filter-kernels, so it will produce many
filtered versions of the input with different filter functions.

• c) for real-valued functions, of a continuous or discrete variable,
convolution differs from cross-correlation only in that
either f(x) or g(x) is reflected about the y-axis; so it is a cross-
correlation of f(x) and g(−x), or f(−x) and g(x).

Deep Learning – Bernhard Kainz Deep Learning – Bernhard Kainz

Interruption talk: what we learn from this

47 48

49 50

51 52

02/01/2021

8

Second problem: no spatial structure
preservation, fully connected layer

Deep Learning – Bernhard Kainz

Figure: adapted from Fei Fei et al.

Stack a 32x32x3 RGB image into a 3072x1 vector

• we need priors about the data!

spatial structure preservation, convolutional
layer

Deep Learning – Bernhard Kainz

Figure: adapted from Fei Fei et al.

Stack a 32x32x3 RGB image into a 3072x1 vector

• we need priors about the data!

Deep Learning – Bernhard Kainz

Examples of 2D image filters

Remember: all learned
through backpropagation,
dependant on the task!

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz Deep Learning – Bernhard Kainz

55 56

58 61

62 63

02/01/2021

9

Deep Learning – Bernhard Kainz Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz Deep Learning – Bernhard Kainz

64 65

66 67

68 69

02/01/2021

10

Deep Learning – Bernhard Kainz Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz Deep Learning – Bernhard Kainz

70 71

72 73

74 75

02/01/2021

11

Deep Learning – Bernhard Kainz

6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

Deep Learning – Bernhard Kainz

6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

6

Deep Learning – Bernhard Kainz

6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

6 8

Deep Learning – Bernhard Kainz

6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

6 8

5

Deep Learning – Bernhard Kainz

6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

6 8

5 4

Deep Learning – Bernhard Kainz

76 77

78 79

80 81

02/01/2021

12

What CNNs learn?

Deep Learning – Bernhard Kainz

What CNNs learn?

Deep Learning – Bernhard Kainz

What CNNs learn?

Deep Learning – Bernhard Kainz

What CNNs learn?

Deep Learning – Bernhard Kainz

Most of this initially propose in 1980 and the 1990s

Deep Learning – Bernhard Kainz

Lacks backprop Adds backprop

No GPUs, no success for larger problems…

Success in 2012!

So what do we learn from this?

• a) convolutions can massively reduce the computational complexity of
neural networks but the real power of CNNs is revealed when priors are
implemented and for example spatial structure is preserved. This is also
one of the reasons why CNNs have been so successful in Computer Vision

• b) CNNs are pipeline of learnable filters interleaved with nonlinear
activation functions producing d-dimensional feature maps at every stage.
Training works like a common neural network: initialise randomly, present
exampled from the training database, update the filter weights through
backpropagation by propagating the error back through the network.

• c) convolution and pooling can be used to reduce the dimensionality of the
input data until it forms a small enough representation space for either
traditional machine learning methods for classification or regression or to
steer other networks to for example generate a semantic interpretation like
a mask of a particular object in the input.

Deep Learning – Bernhard Kainz

83 84

85 86

87 88

02/01/2021

13

Deep Learning –
Equivariance and Invariance

Bernhard Kainz

Deep Learning – Bernhard Kainz

Invariance and equivariance

• Shift invariance

Deep Learning – Bernhard Kainz

Invariance and equivariance

• Shift invariance

Deep Learning – Bernhard Kainz

Shift invariance

Deep Learning – Bernhard Kainz

Shift equivariance

Deep Learning – Bernhard Kainz

Invariance vs equivariance

Deep Learning – Bernhard Kainz

89 90

91 92

93 94

02/01/2021

14

How shift invariance is achieved in CNNs?

Deep Learning – Bernhard Kainz

Equivariance in CNNs

Deep Learning – Bernhard Kainz

Equivariance in CNNs

Deep Learning – Bernhard Kainz

Approximate invariance in CNNs with pooling

Deep Learning – Bernhard Kainz

Approximate invariance in CNNs with pooling

Deep Learning – Bernhard Kainz

Not the full story…

• But striding ignores the Nyquist sampling
theorem and aliases

Deep Learning – Bernhard Kainz

Nyquist sampling
theorem = sample

at least twice as fast
to keep all

information

R. Zhang.
Making Convolutional Networks Shift-Invariant Again.
In ICML, 2019.

BK1

95 96

97 98

99 100

Slide 100

BK1 Bernhard Kainz, 15/09/2020

02/01/2021

15

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

101 102

103 104

105 106

02/01/2021

16

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

107 108

109 110

111 112

02/01/2021

17

Simple example

• Max-pooling breaks shift equivariance
• Partial solution: use what you learned about anti-aliasing in Computer

Vision: blur and then down sample

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

R. Zhang.
Making Convolutional Networks Shift-Invariant Again.
In ICML, 2019.

Beyond shifts: group equivariance

Deep Learning – Bernhard Kainz

Rotation invariant CNNs

Deep Learning – Bernhard Kainz
https://www.youtube.com/watch?v=qoWAFBYOtoU

Daniel Worrall et al.: Harmonic Networks: Deep Translation and Rotation Equivariance

Rotation invariant CNNs

Deep Learning – Bernhard Kainz
https://www.youtube.com/watch?v=qoWAFBYOtoU

Daniel Worrall et al.: Harmonic Networks: Deep Translation and Rotation Equivariance

Approximate deformation invariance

Deep Learning – Bernhard Kainz

Approximate deformation invariance

Deep Learning – Bernhard Kainz

113 114

115 116

117 118

02/01/2021

18

So what do we learn from this?

a) CNNs are approximately shift equivariant through convolutions and
approximately shift invariant because of pooling or striding, i.e.
subsampling operations

b) Mathematically this is hand-wavey because it depends on the type of
problem one tries to solve. In theory CNNs do very basic but learned
signal processing operations. In practice often what works is accepted
and some attempts to explain their mathematical properties fall short.

c) In practice equivariance and invariance will be improved through
encoding expected and realistic data transformations directly into the
data. This is called data augmentation and we will talk about it in a future
video.

Deep Learning – Bernhard Kainz

Deep Learning - LeNet
Bernhard Kainz

Deep Learning – Bernhard Kainz

LeNet-5

Deep Learning – Bernhard Kainz

Handwritten digit recognition

Deep Learning – Bernhard Kainz

MNIST

• Cantered and scaled
• 50.000 training samples
• 10.000 test samples
• 28 x 28 images
• 10 classes

Deep Learning – Bernhard Kainz

Demo from 1995

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=yxuRnBEczUU

119 126

127 128

129 130

02/01/2021

19

LeNet-5

Deep Learning – Bernhard Kainz

This is expensive if
you have many

outputs, here only
10

Deep Learning – Bernhard Kainz

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

Deep Learning - AlexNet
Bernhard Kainz

Deep Learning – Bernhard Kainz

AlexNet

Deep Learning – Bernhard Kainz

ImageNet (2010)

Deep Learning – Bernhard Kainz

Images Color images with nature
objects

Gray image for hand-
written digits

Size 469 x 387 28 x 28
examples 1.2 M 60 K
classes 1,000 10

AlexNet
• AlexNet won ImageNet competition in

2012
• Deeper and bigger LeNet
• Key modifications:

• Add a dropout layer after two
hidden dense layers
(better robustness / regularization)

• Change activation function from
sigmoid to ReLu
(no more vanishing gradient)

• MaxPooling
• Heavy data augmentation
• Model ensembling

• Paradigm shift for computer vision

Manually
engineered

features

SVM

Features learned
by a CNN

Softmax
regression

Deep Learning – Bernhard Kainz
Slide adopted from Alex Smola

131 132

133 134

136 137

02/01/2021

20

Complexity
#parameters FLOP

AlexNet LeNet AlexNet LeNet
Conv1 35K 150 101M 1.2M
Conv2 614K 2.4K 415M 2.4M

Conv3-5 3M 445M
Dense1 26M 0.48M 26M 0.48M
Dense2 16M 0.1M 16M 0.1M

Total 46M 0.6M 1G 4M
Increase 11x 1x 250x 1x

Deep Learning – Bernhard Kainz
Slide adopted from Alex Smola

demo

Deep Learning – Bernhard Kainz

Silicon Valley: Season 4 Episode 4: Not Hotdog (HBO)
https://www.youtube.com/watch?v=pqTntG1RXSY

BK2

code

Deep Learning – Bernhard Kainz
https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

+ additional tricks

• Change activation function from sigmoid to ReLu
(no more vanishing gradient)

• Add a dropout layer after two hidden dense layers
(better robustness / regularization)

• Heavy data augmentation
• Model ensembling

Deep Learning – Bernhard Kainz

Deep Learning – VGG
Bernhard Kainz

Deep Learning – Bernhard Kainz

Lecture inspired by Alex Smola with add-ons

VGG

Deep Learning – Bernhard Kainz

Softmax
FC1 FC2 FC3

141 142

143 144

145 146

Slide 142

BK2 Bernhard Kainz, 22/09/2020

02/01/2021

21

• AlexNet = bigger than LeNet
• Bigger = better?
• Options

• More dense layers
(too expensive)

• More convolutions
• Group into blocks

Deep Learning – Bernhard Kainz http://d2l.ai/chapter_convolutional-modern/vgg.html

VGG blocks

• Deeper vs. wider?
• 13x13?
• 5x5?
• 3x3?
• Deep and narrow = better

• VGG block
• 3x3 convolutions (pad 1)

(n layers, m channels)
• 2x2 max-pooling

(stride 2)

Deep Learning – Bernhard Kainz

progress

• LeNet (1995)
• 2 convolution + pooling layers
• 2 hidden dense layers

• AlexNet
• Bigger and deeper LeNet
• ReLu, Dropout, preprocessing

• VGG
• Bigger and deeper AlexNet (repeated VGG blocks)

Deep Learning – Bernhard Kainz

Wouldn’t have been
possible without
compute power
progress (GPUs)

Deep Learning – Bernhard Kainz

VGGs

AlexNet
https://cv.gluon.ai/model_z
oo/classification.html

Deep Learning – Bernhard Kainz
https://github.com/pytorch/vision/blob/mas
ter/torchvision/models/vgg.py

Deep Learning – NiN,
Inception

Bernhard Kainz

Deep Learning – Bernhard Kainz

147 148

149 150

151 152

02/01/2021

22

Networks in Networks

Deep Learning – Bernhard Kainz

Non-linear mapping layers
introduced as mlpconv.

Consists of multiple fully
connected layers with
non-linear activation

function

Networks in Networks

Deep Learning – Bernhard Kainz

Networks in Networks

• Convolution layers are parameter
cheap

𝑐௜ × 𝑐଴ × 𝑘ଶ

• Last layer is parameter expensive for n
classes

𝑐 × 𝑚௪ × 𝑚௛ × 𝑛

• LeNet: 16x5x5x120 = 48k parameters
• AlexNet: 256x5x5x4096 = 26M
• VGG 512x7x7x4096 = 103M

Deep Learning – Bernhard Kainz

NiN block

• A convolutional layer
• Kerel size, stride, and padding are hyper parameters

• Two 1x1 convolutions
• 1 stride and no padding, share the same output

channels as first layer
• These act like dense layers

Deep Learning – Bernhard Kainz

https://d2l.ai/chapter_convolutional-modern/nin.html

NiN

Deep Learning – Bernhard Kainz

• Final dense layers get
replaced by ‘internal’
quasi dense layers

• Mapping to number
of output classes
is done via
globalAveragePooling

NiN in pytorch

• Inception and ResNet superseded this approach

Deep Learning – Bernhard Kainz

153 154

155 156

157 158

02/01/2021

23

Inception (GoogLeNet)

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Which convolution is the best!?

Deep Learning – Bernhard Kainz

NiNVGGAlexNetLeNet
Many
1x1

5x53x31x1 Max-
pooling

Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Extract with
different size
convolutions

Same width and
height as input

Extract spatial
information with

pooling

Four paths extract information from
different aspects, then concatenate
along the output channel

Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Allocate capacities
to each channel

The first inception block has channel sizes specified

Reduce cannel size
to lower model

capacity

(256)

(128) (32) (32)

(16)(96)

(64)

(192x28x28)

Inception blocks

• Inception blocks have fewer parameters and less computation
complexity than single 3x3 or 5x5 convolution layers

• They are a mix of different functions, which makes them a powerful
function class

• Computing and memory wise they are efficient (good generalisation)

Deep Learning – Bernhard Kainz

#parameters FLOPS

Inception 0.16 M 128 M

3x3 Conv 0.44 M 346 M

5x5 Conv 1.22 M 963 M

As: replace all conv block with 3x3 or 5x5 in Inception

159 160

161 162

163 164

02/01/2021

24

Less parameters?

• 𝑘ଶ × 𝑐௜௡ × 𝑐௢௨௧ × 𝑚௛ × 𝑚௪

• 𝑐௜௡ × 𝑚௛ × 𝑚௪ × [∑ 𝑘௝
ଶ × 𝑐௢௨௧,௝]௣௔௧௛௦ ௝

Deep Learning – Bernhard Kainz

fixedfixed

allocating compute
to different channels
= better computing

Inception

• 5 stages with 9 inception blocks

Deep Learning – Bernhard Kainz

https://d2l.ai/

Output

Stage 5

Stage 1

Stage 3

Stage 2

Stage 4

Stage 1 and 2

• Smaller kernel size and
output channels because of
more layers

Deep Learning – Bernhard Kainz

https://d2l.ai/

Stage 3

Deep Learning – Bernhard Kainz

Channel allocation is
different

Increases output
channel

https://d2l.ai/

Deep Learning – Bernhard Kainz

Stage 4 & 5
Increases output

channels

Increases output
channels

1024 dimensional
feature to output

layer

Increase for output
channel

https://d2l.ai/

Flavours of Inception Networks

• Inception-BN (v2) – added batch normalisation
• Inception-V3 – Modified the inception block

• Replace 5x5 by multiple 3x3 convolutions
• Replace 5x5 by 1x7 and 7x1 convolutions
• Replace 3x3 by 1x3 and 3x1 convolutions
• Generally deeper stack

• Inception-V4 – adds residual connections

Deep Learning – Bernhard Kainz

165 166

167 168

169 170

02/01/2021

25

Inception V3 block for stage 3

Deep Learning – Bernhard Kainz
https://d2l.ai/

Inception V3 block for stage 4

Deep Learning – Bernhard Kainz
https://d2l.ai/

7 x 1 1 x 7

Inception V3 block for stage 5

Deep Learning – Bernhard Kainz
https://d2l.ai/

Deep Learning – Bernhard Kainz

Inception v3

https://cv.gluon.ai/model_zoo/classification.html

What do we learn from that?

• Dense layers are computationally and memory intensive. Real-world
problems with big input tensors and many classes will prohibit their
use.

• Again: 1x1 convolutions act like a multi-layer perceptron per pixel.
• Scientists are humans and need a while to understand the power of

new approaches. Eventually they do but a lot of vanity is involved in
the process.

• If not sure, just take all options and let the optimization decide or
even learn this through trial and error (genetic algorithm,
AmoebaNet)

Deep Learning – Bernhard Kainz

Deep Learning - BatchNorm
Bernhard Kainz

Deep Learning – Bernhard Kainz

171 172

173 174

175 176

02/01/2021

26

Batch Normalization

• Loss is calculated at last layer
• Last layers learn quickly

• Data input is at first layer
• First layers change - everything changes
• Last layers need to relearn many times
• Slow convergence

• This is like covariate shift...
Can we avoid changing last layers while
learning first layers?

Deep Learning – Bernhard Kainz

Deep supervision
to aid convergence

(= reconstruct
output and

compare with
ground truth at
several stages)

input

loss
Batch Normalization

• Can we avoid changing last layers while learning first layers?
• Fix mean and variance

μ஻ =
1

|𝐵|
෍ 𝑥௜ 𝑎𝑛𝑑 𝜎஻

ଶ =
1

|𝐵|
෍(𝑥௜ − 𝜇஻)ଶ + 𝜀

௜∈஻௜∈஻

and adjust it separately
𝑥௜ାଵ = 𝛾

𝑥௜ − 𝜇஻

𝜎஻
+ 𝛽

Deep Learning – Bernhard Kainz

variance

mean

Batch Normalization

• Doesn’t really reduce covariate shift (Lipton et al. 2018)
https://arxiv.org/abs/1805.10694

• Regularization by noise injection
𝑥௜ = 𝛾

𝑥௜ − �̂�஻

𝜎ො஻
+ 𝛽

• Random shift per mini batch
• Random scale per mini batch

• No need to add dropout (both are capacity control)
• Ideal mini batch size: 64-256

Deep Learning – Bernhard Kainz

Random offset

Random scale
learned

learned

Batch Normalization

• Dense layer: One normalization for all
• Convolutional layer: One normalization per channel
• Compute new mean and variance for every minibatch

• Acts as regularisation
• Be careful when scaling up to multi-GPU training

Deep Learning – Bernhard Kainz

https://xkcd.com/

Deep Learning - ResNet
Bernhard Kainz

Deep Learning – Bernhard Kainz

Does adding layers improve accuracy?

Deep Learning – Bernhard Kainz

The true solution is here •

𝑓

Generic function classes Nested function classes

𝑓

The true solution is here •

177 178

179 180

182 183

02/01/2021

27

Residual Networks

• Adding a layer
changes function class

• We want to add
to the function class

• ‘Taylor expansion’
style parametrization

𝑓 𝑥 = 𝑥 + 𝑔(𝑥)

Deep Learning – Bernhard Kainz

He et al. 2015 https://arxiv.org/abs/1512.03385

Before After

https://d2l.ai/

ResNet Block

Deep Learning – Bernhard Kainz
https://d2l.ai/

ResNet Block

Deep Learning – Bernhard Kainz

ResNet block flavours

Deep Learning – Bernhard Kainz

Trial and error of every permutation
https://d2l.ai/

ResNet Module

• Downsample per
module (stride=2)

• Enforce some nontrivial
nonlinearity per module
(via 1x1 convolution)

• Stack up in blocks

Deep Learning – Bernhard Kainz
https://d2l.ai/

N times

Stride 2

ResNet

Deep Learning – Bernhard Kainz

Same block structure as e.g. VGG or
GoogleNet
• Residual connection to add to

expressiveness
• Pooling/stride for dimensionality reduction
• Batch Normalization for capacity control

• Trainable at scale
• Variant name depends on how many blocks

(18 layers = ResNet-18 ->)

184 185

186 187

188 189

02/01/2021

28

Deep Learning – Bernhard Kainz

https://cv.gluon.ai/model_zoo/classificat
ion.html

ResNet101

ResNext

Deep Learning – Bernhard Kainz

https://arxiv.org/abs/1611.05431

Reducing the cost of convolutions

• Parameters
𝑘௛ × 𝑘௪ × 𝑐௜ × 𝑐௢

• Computation
𝑚௛ × 𝑚௪ × 𝑘௛ × 𝑘௪ × 𝑐௜ × 𝑐௢

• Slicing convolutions (Inception v4) e.g. 3x3 vs. 1x5
and 5x1

• Break up channels (mix only within)
𝑚௛ × 𝑚௪ × 𝑘௛ × 𝑘௪ ×

𝑐௜

𝑏
×

𝑐௢

𝑏
× 𝑏

Deep Learning – Bernhard Kainz
https://d2l.ai/

Reducing the cost of convolutions

• Parameters
𝑘௛ × 𝑘௪ × 𝑐௜ × 𝑐௢

• Computation
𝑚௛ × 𝑚௪ × 𝑘௛ × 𝑘௪ × 𝑐௜ × 𝑐௢

• Slicing convolutions (Inception v4) e.g. 3x3 vs. 1x5
and 5x1

• Break up channels (mix only within)
𝑚௛ × 𝑚௪ × 𝑘௛ × 𝑘௪ ×

𝑐௜

𝑏
×

𝑐௢

𝑏
× 𝑏

Deep Learning – Bernhard Kainz
https://d2l.ai/

More ideas…

Deep Learning – Bernhard Kainz

DenseNet

• Huang et al., 2016 https://arxiv.org/abs/1608.06993
• ResNet combines 𝑥 and 𝑓(𝑥)

• DenseNet uses higher order ‘Taylor series’ expansion
𝑥௜ାଵ = 𝑥௜, 𝑓௜ 𝑥௜
𝑥ଵ = 𝑥
𝑥ଶ = 𝑥, 𝑓ଵ 𝑥
𝑥ଷ = 𝑥, 𝑓ଵ 𝑥 , 𝑓ଶ 𝑥, 𝑓ଵ 𝑥

• Occasionally need to reduce resolution (transition layer)

Deep Learning – Bernhard Kainz https://d2l.ai/

190 191

192 193

194 195

02/01/2021

29

Squeeze-Excite Net

• Hu et al., 2017 https://arxiv.org/abs/1709.01507

• Learn global weighting function per channel
• Allows for fast information transfer between pixels in different

locations of the image

Deep Learning – Bernhard Kainz

ShuffleNet

• Zhang et al., 2018 https://arxiv.org/abs/1707.01083

• ResNext breaks convolution into channels
• ShuffleNet mixes by grouping (very efficient for mobile)

Deep Learning – Bernhard Kainz

Things to explore

• AutoML (find best model architecture automatically Google Cloud
AutoML)

• Hypernetworks (a network that proposes the weights for another
network), also neural processes

• Networks with memory, e.g. kanerva machine
• Almost no new basic architectures accepted nowadays (see

https://nips.cc/virtual/2020/public/cal_main.html NeurIPS 2020
programme, focuses on meta findings)

Deep Learning – Bernhard Kainz

Summary

• Inception
• Inhomogeneous mix of convolutions (varying depth)
• Batch norm regularization

• ResNet
• Taylor expansion of functions
• ResNext decomposes convolutions

• Model Zoo
• DenseNet, ShuffleNet, Separable Convolutions, …

Deep Learning – Bernhard Kainz https://in.pinterest.com/pin/556124253981912489/

What do we learn from that

• Deeper is not necessarily better if the function space is not
regularised

• ResNet is the workhorse of Deep learning (for now. Do you have a
better idea that hasn’t been tried yet? Let me know but look on arXiv
first!)

• Lot’s of variations have been proposed but it often boils down to how
you train a network and for what purpose.

Deep Learning – Bernhard Kainz

Deep Learning –
Activation Functions

Bernhard Kainz

Deep Learning – Bernhard Kainz

196 197

198 199

200 201

02/01/2021

30

Where else to tune?

Deep Learning – Bernhard Kainz

Feature extractor Task
specific

Parameter optimisation

input outputCNN
Loss

Activation
Functions

Where else to tune?

Deep Learning – Bernhard Kainz

Feature extractor Task
specific

Parameter optimisation

input outputCNN
Loss

Activation
Functions

Activation functions

• Consider a neuron,

Input = ෍ 𝑤௜ ȉ 𝑖𝑛𝑝𝑢𝑡 + 𝑏௜

• Naïve activation:
• If the value of Y is above a certain value, declare it activated.
• Not differentiable, no backprop

Deep Learning – Bernhard Kainz

O
ut

pu
t

Input

Linear activation

• 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑐 ȉ 𝑥

• Constant gradient, no relationship to x
during backprop

Deep Learning – Bernhard Kainz

Sigmoid function

• 𝑂𝑢𝑡𝑝𝑢𝑡 =
ଵ

ଵା௘ష೔೙೛ೠ೟

• Nonlinear

Deep Learning – Bernhard Kainz

tanh function

• 𝑂𝑢𝑡𝑝𝑢𝑡 =
௘ೣି௘షೣ

௘ೣା௘షೣ

• Scaled sigmoid

Deep Learning – Bernhard Kainz

202 203

204 205

206 207

02/01/2021

31

ReLU

• 𝑂𝑢𝑡𝑝𝑢𝑡 = max 0, 𝑥

• Efficient
• combinations of ReLU and ReLU

are non linear
• Bound: [0, inf)
• dying ReLu problem

Deep Learning – Bernhard Kainz

Leaky ReLU

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 = ቊ
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0
𝑒. 𝑔. 0.01 ȉ 𝑥 𝑓𝑜𝑟 𝑥 < 0

• Mitigates dying ReLu

atcold.github.io

PReLU

• 𝑂𝑢𝑡𝑝𝑢𝑡 = ቊ
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0
𝑎 ȉ 𝑥 𝑓𝑜𝑟 𝑥 < 0

• 𝑎 is learnable
• Either one or a separate 𝑎 is

used for each input channel

Deep Learning – Bernhard Kainz

SoftPlus

• 𝑂𝑢𝑡𝑝𝑢𝑡 =
ଵ

ఉ
ȉ log 1 + 𝑒 ఉȉ௫

• Smooth approximation of ReLU
• Output always positive
• Numerical stability:

use linear if
𝛽 ȉ 𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Deep Learning – Bernhard Kainz

ELU

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 = max 0, 𝑥 + min (0, 𝛼 ȉ 𝑒௫ − 1)

• Element-wise

CELU

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 = max 0, 𝑥 + min (0, 𝛼 ȉ (𝑒
ೣ

ഀ − 1))

• Element-wise
• Barron (2017)

https://arxiv.org/abs/1704.07483

208 209

210 211

212 213

02/01/2021

32

SELU

• 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑐𝑎𝑙𝑒 ȉ (max 0, 𝑥 + min 0, 𝛼 ȉ 𝑒௫ − 1)
• with α = 1.6732632423543772848170429916717 and scale = 1.0507009873554804934193349852946

Deep Learning – Bernhard Kainz

GELU

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑥 ȉ Φ(𝑥)

• Φ(𝑥) is the Cumulative Distribution
Function for Gaussian Distribution.

ReLU6

• 𝑂𝑢𝑡𝑝𝑢𝑡 = min (max 0, 𝑥 , 6)

Deep Learning – Bernhard Kainz

LogSigmoid

• 𝑂𝑢𝑡𝑝𝑢𝑡 = log (
ଵ

ଵା௘షೣ)

• Element-wise

Deep Learning – Bernhard Kainz

Softmin

• 𝑂𝑢𝑡𝑝𝑢𝑡 =
௘షೣ೔

∑ ௘
షೣೕ

ೕ

• Applies the Softmin function
to an n-dimensional input
Tensor rescaling them so
that the elements of the
n-dimensional output Tensor lie
in the range [0,1] and sum up to 1.

Deep Learning – Bernhard Kainz

Softmax

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 =
௘ೣ೔

∑ ௘
ೣೕ

ೕ

• Applies the Softmax function
to an n-dimensional input
Tensor rescaling them so
that the elements of the
n-dimensional output Tensor lie
in the range [0,1] and sum up to 1.

216 218

219 220

221 222

02/01/2021

33

LogSoftmax

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 = log (
௘ೣ೔

∑ ௘
ೣೕ

ೕ

)

• Applies the log(Softmax) function
to an n-dimensional input
Tensor

Periodic activations, SIREN

• Difficult convergence properties for general problems
• Has been used for implicit representations (find a continuous function

that represents sparse input data, e.g. an image)
• https://vsitzmann.github.io/siren/

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

What do we learn from this?

• Which function to use depends on the nature of the targeted
problem.

• Most often you will be fine with ReLUs for classification problems. If
the network does not converge, use leakyReLUs or PReLUs, etc.

• Tanh is quite ok for regression and continuous reconstruction
problems.

• The representative power of you training set will usually outweigh the
contribution of a smartly chosen activation function.

Deep Learning – Bernhard Kainz

Deep Learning –
Loss Functions

Bernhard Kainz

Deep Learning – Bernhard Kainz

Where else to tune?

Deep Learning – Bernhard Kainz

Feature extractor Task
specific

Parameter optimisation

input outputCNN
Loss

Activation
Functions

223 224

225 226

227 228

02/01/2021

34

Loss functions

Deep Learning – Bernhard Kainz

Lo
gi

ts

N
et

w
or

k

Co
nv

er
si

on
 (S

of
tm

ax
et

c.
)

‘S
ho

ul
d

be
’ g

ro
un

d
tr

ut
h

14.45
3.576
44.43
22.43
440.2
.
.
.

1.2564e-185
2.3802e-190
1.316e-172
3.6711e-182
1.00000
.
.
.

Loss

0
1
0
0
0
.
.
.

Error

Backprop

In
pu

t

O
r r

ec
on

st
ru

ct
io

n,
 re

gr
es

sio
n,

 …

L2 Norm, mean squared error

ℓ 𝑥, 𝑦 = 𝓛 = 𝑙ଵ, … , 𝑙ே
், 𝑙௡ = (𝑥௡ − 𝑦௡)ଶ

Reduction to a single value can be either 𝑚𝑒𝑎𝑛(𝓛) or sum(𝓛).
pytorch: nn.MSELoss()

Deep Learning – Bernhard Kainz

L1 Norm

ℓ 𝑥, 𝑦 = 𝓛 = 𝑙ଵ, … , 𝑙ே
், 𝑙௡ = |𝑥௡ − 𝑦௡|

Reduction to a single value can be either 𝑚𝑒𝑎𝑛(𝓛) or sum(𝓛).
Use for robust regression (noisy data)
pytorch: nn.L1Loss()

Deep Learning – Bernhard Kainz

Smooth L1

𝑙𝑜𝑠𝑠 𝑥, 𝑦 =
1

𝑛
෍ 𝑧௜

௜

𝑧௜ = ቊ
0.5(𝑥௜ − 𝑦௜)ଶ, 𝑖𝑓 𝑥௜ − 𝑦௜ < 1

𝑥௜ − 𝑦௜ − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

pytorch: nn.SmoothL1Loss()

Deep Learning – Bernhard Kainz

Negative log likelihood loss

• Assumption: Network output represents log liklihoods.
• Make the desired output as large as possible and all others as small as possible

ℓ 𝑥, 𝑦 = 𝓛 = 𝑙ଵ, … , 𝑙ே
், 𝑙௡ = −𝑤௬೙

𝑥௡,௬೙
,

 𝑤௖ = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐 ȉ 1{𝑐 ≠ 𝑖𝑔𝑛𝑜𝑟𝑒௜௡ௗ௘௫}

ℓ 𝑥, 𝑦 =

෍
1

∑ 𝑤௬೙
ே
௡ୀଵ

𝑙௡

ே

௡ୀଵ
, 𝑖𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑒𝑎𝑛

෍ 𝑙௡

ே

௡ୀଵ
, 𝑖𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑢𝑚

pytorch: nn.NLLLoss()
Implementation valid for all such problems, not only likelihoods.

Deep Learning – Bernhard Kainz

Cross Entropy (CE) Loss

• Combines LogSoftmax and NLLLoss
• Useful for classification problems with C classes

𝑙𝑜𝑠𝑠 𝑥, 𝑐𝑙𝑎𝑠𝑠 = − log
𝑒௫ ௖௟௔௦௦

∑ 𝑒௫ ௝
௝

= −𝑥 𝑐𝑙𝑎𝑠𝑠 + log ෍ 𝑒௫[௝]

௝

Classes can also be weighted.
The losses are averaged across observations for each minibatch.
pytorch: nn.CrossEntropyLoss()

Deep Learning – Bernhard Kainz

229 230

231 232

233 234

02/01/2021

35

Binary Cross Entropy (BCE) Loss

• CE loss for only two classes
ℓ 𝑥, 𝑦 = 𝓛 = 𝑙ଵ, … , 𝑙ே

்,
 𝑙௡ = −𝑤௡[𝑦௡ ȉ log 𝑥௡ + (1 − 𝑦௡) ȉ log (1 − 𝑥௡)

Reduction to a single value can be either 𝑚𝑒𝑎𝑛(𝓛) or sum(𝓛).
pytorch: nn.BCELoss()
Requires [0,1] probabilities. If this cannot be guaranteed, use
nn.BCEWithLogitsLoss()

Deep Learning – Bernhard Kainz

Kullback-Leibler Divergence Loss

• Measures distance between distributions

ℓ 𝑥, 𝑦 = 𝓛 = 𝑙ଵ, … , 𝑙ே
், 𝑙௡ = 𝑦௡ ȉ 𝑙𝑜𝑔𝑦௡ − 𝑥௡

Pytroch: nn.KLDivLoss()

Deep Learning – Bernhard Kainz

Margin Ranking Loss/Ranking
Losses/Contrastive loss

𝑙𝑜𝑠𝑠 𝑥, 𝑦 = max 0, −𝑦 ȉ 𝑥ଵ − 𝑥ଶ + 𝑚𝑎𝑟𝑔𝑖𝑛

Useful to push classes as far away
as possible and for metric learning
Practical: take category that scores
is closest or higher than correct one
change until difference is at least the margin
pytorch: nn.MarginRankingLoss()

Deep Learning – Bernhard Kainz https://gombru.github.io/

Triplet Margin Loss

• ℓ 𝑥, 𝑦 = 𝓛 = 𝑙ଵ, … , 𝑙ே
்,

𝑙௡(𝑥௔, 𝑥௣, 𝑥௡) = max(0, m + f 𝑥௔ − 𝑓 𝑥௣ − f 𝑥௔ − 𝑓 𝑥௡

Make samples from same classes close and different classes far away.
Objective: Distance for the good pair has to be smaller than distance to
the bad pair. Actual distance does not need to be small, just smaller.
Used for metric learning and Siamese networks
pytorch: nn.TripletMarginLoss()

Deep Learning – Bernhard Kainz

actual positive sample
negative sample

Triplet Margin Loss

Deep Learning – Bernhard Kainz

http://www.bmva.org/bmvc/2016/papers/paper119/index.html

Cosine Embedding Loss

𝑙𝑜𝑠𝑠(𝑥, 𝑦) = ቊ
1 − cos 𝑥ଵ, 𝑥ଶ , 𝑖𝑓 𝑦 = 1

max 0, cos 𝑥ଵ, 𝑥ଶ − 𝑚𝑎𝑟𝑔𝑖𝑛 , 𝑖𝑓 𝑦 = −1

Measure weather two inputs are similar or dissimilar
Basically a normalised Euclidian distance
pytroch: nn.CosineEmbeddingLoss()

Deep Learning – Bernhard Kainz

235 236

237 238

239 240

02/01/2021

36

What do we learn from this

• The choice of loss depends on the desired output (e.g., classification
vs. regression)

• Loss functions are a hot topic of research.
• It informs how the overall system behaves during training
• Don’t get scared by the equations. If you look closely the underlying

ideas are very simple.

Deep Learning – Bernhard Kainz

Deep Learning -
Augmentation

Bernhard Kainz

Deep Learning – Bernhard Kainz

Input augmentation

• Artificially inflate training data size through applying expected
transformations during training

• https://github.com/aleju/imgaug
• https://pytorch.org/docs/stable/torchvision/transforms.html
• Excellent regularizer against overfitting

Deep Learning – Bernhard Kainz

Transformations

• Random
• flipping
• scaling
• rotations
• intensity/contrast variations
• cropping/padding
• noise
• affine transformations
• perspective transformations

Deep Learning – Bernhard Kainz

Input augmentation

• Don’t just use all of them blindly. Carefully select expected
transformations

Deep Learning – Bernhard Kainz

Anomaly detection

• Predict continuation
• Measure distance in a latent space
• Reconstruct the input
• Classify artificial, subtle variations
• Also known as out-of-distribution detection

Deep Learning – Bernhard Kainz

241 242

243 244

245 246

02/01/2021

37

With Deep Networks

• Learns well from lots of data
• Own feature representation: Robust to noise and allows for
• learning cross domain patterns
• Already applied in ads: Google itself invests lots in this same
• kind of pattern recognition (targeting/relevance)

Deep Learning – Bernhard Kainz

approaches

• Unsupervised - Use autoencoder reconstruction error and use moving
averages, use dropout with a set time window

• Supervised - RNNs Learn from a set of yes/nos in a time series. RNNs
can learn from a series of time steps and predict when an anomaly is
about to occur.

• Use streaming/minibatches (all neural nets can learn like this)

Deep Learning – Bernhard Kainz

Anomalies in images

• Encode, find outliers in latent
space

• Reconstruct and build
difference to input (AnoGAN)

• Interpolate sample patches
into image and learn
interpolation factor
(Foreign patch interpolation)

• Example medical image
out-of-distribution channelling

-> https://youtu.be/0-JYFxY3zfw

Deep Learning – Bernhard Kainz

247 248

249

