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• https://github.com/alievk/avatarify
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Learning outcomes

• After this course you will know a little bit more about:
• Feature extraction, convolutions and CNNs
• Automatic parameter optimisation
• RNNs, LSTMs, GRUs
• VAEs and GANs
• GNNs
• Deep learning programming frameworks
• Applications of deep learning
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Good to know

496 Mathematics for ML (prerequisite)
395 Introduction to ML (soft prerequisite, please read the basic ML 
notes if you haven’t done this course)
316 Computer vision
416 ML for imaging
490H Natural language processing
424H Reinforcement learning 
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Reference

• I. Goodfellow, Y. Bengio, A. Courville, Deep learning. MIT 
Press, 2016 www.deeplearningbook.org

• This lecture has been heavily influenced by Material from 
Michael Bronstein, Kilian Weinberger, Stefanos Zafeiriou, 
Andreas Maier, Alex Smola, Serena Yeung, Fei-Fei Li

• Dive into Deep Learning https://d2l.ai/
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Structure

• Lecture – theory and main concepts: videos. 
Experimental new format. Feedback welcome but be 
lenient please.

• Tutorials – Q&A sessions with TAs on Teams
• Lab – hands-on progrSamming exercises: individual 

with Q&A on Teams

Deep Learning – Bernhard Kainz
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Grading

• Assignments (3 assignments): 50%
• Exam 50% (2 questions)

Deep Learning – Bernhard Kainz
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Motivation

• Deep learning is popular because it works (often). 
• Big promise: just collect enough data and label it, then you get a magic black-

box predictor that can predict any correlations at the click of a button. (only 
supervised setting really works well) 

• Deep learning and Big data = big money = highly competitive and 
sometimes poisonous working environment.

• Deep learning can be dangerous, e.g. deep fakes, adversarial attacks, 
etc. 

Deep Learning – Bernhard Kainz

Fundamental learning system

Deep Learning – Bernhard Kainz

Feature extractor Task 
specific

Parameter optimisation

input output

classification, regression, synthesis, … 

*CNN = convolutional neural network

Why did 
neural 

networks fail 
in image 
analysis?

Deep Learning – Bernhard Kainz

Figure: adapted from Fei Fei et al.

Stack a 32x32x3 RGB image into a 3072x1 vector 

Curse of dimensionality

Deep Learning – Bernhard Kainz

As the number of features or dimensions grows, 
the amount of data we need to generalise accurately grows exponentially!

To approximate a (Lipschitz) continuous function 𝑓: ℝௗ  → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖ିௗ) samples

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
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As the number of features or dimensions grows, 
the amount of data we need to generalise accurately grows exponentially!

One parameter: Body weight or
Body size, …

20% samples = 0.2
5 unit intervals
10/5=2 samples/interval

Two parameters: Body weight and
Body size, …

20% samples = 0.452
5×5=25 unit squares
10/25 = 0.4 samples/interval

Three parameters: Body weight and
Body size and has a leech …

20% samples = 0.583
5x5x5 unit intervals
10/125 = 0.08 samples/interval

Curse of dimensionality

10 samples:

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
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Curse of dimensionality

The higher dimensional the feature space the more training samples will be in the corners of the hypercube, 
thus generalisation suffers.

Wikimedia hypersphere

Ratio between red and green

𝜋0.5ଶ  ≈ 0.785
ସ

ଷ
𝜋0.5ଷ  ≈ 0.52 10 dimensions ≈ 0.0159
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Curse of dimensionality

The higher dimensional the feature space the more training samples will be in the corners of the hypercube, 
thus generalisation suffers.

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

𝑉௦௣௛௘௥௘ 𝑑 =  
𝜋

ௗ
ଶ

Γ
𝑑
2

+ 1 2ௗ
  ∽ 𝑂(𝑐ିௗ)

Wikimedia hypersphere
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Curse of dimensionality
To approximate a (Lipschitz) continuous function 𝑓: ℝௗ  → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖ିௗ) samples

Input image resolution = 12 Mpixel * 3 channels = 36M elements
With 𝜖 ∼ 0.1, we need 1036000000 samples (1078 to 1082 atoms in the known, observable universe)

so what do we learn from that?

• a) feature selection is important to build good classifiers. As we will see, 
the key of deep learning is to learn this feature selection instead of doing it 
manually. 

• b) finding the right amount of features is key. Too few or too many will have 
a severe impact on the generalization abilities of your predictor model. Too 
few is easy too understand but too many requires an intuition about 
sample sparsity in high-dimensional spaces.

• c) the more features we choose as input the sparser our training samples 
will be distributed in the feature space. This means that decision 
boundaries become really tight around the used training samples because 
they all live close to each other at the boundaries of the space and our 
model will overfit the training data. 

Deep Learning – Bernhard Kainz
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Curse of dimensionality
To approximate a (Lipschitz) continuous function 𝑓: ℝௗ  → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖ିௗ) samples

Input image resolution = 12 Mpixel * 3 channels = 36M elements
With 𝜖 ∼ 0.1, we need 1036000000 samples (1078 to 1082 atoms in the known, observable universe)

n2 parameters!

Deep Learning – Bernhard Kainz

…

• Input image resolution = 12 Mpixel * 3 channels = 36M elements
• MLP with one hidden layer of width=100 has 3.6B parameters
• That’s more than the number of cats and dogs on earth!

Curse of dimensionality

36M

100

k*n parameters!
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…

• Input image resolution = 12 Mpixel * 3 channels = 36M elements
• MLP with one hidden layer of width=100 has 3.6B parameters
• That’s more than the number of cats and dogs on earth!

Curse of dimensionality

36M

100

k parameters!
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…

• Input image resolution = 12 Mpixel * 3 channels = 36M elements
• MLP with one hidden layer of width=100 has 3.6B parameters
• That’s more than the number of cats and dogs on earth!

Curse of dimensionality

36M

100

Self similarity

Deep Learning – Bernhard Kainz

n2 parameters, 36M2 parameters!

Deep Learning – Bernhard Kainz

DL/math lingo 
‘intractable’ = 

hard to control or 
deal with

𝑦௝ = 𝑤௝,ଵ𝑥ଵ + ⋯ + 𝑤௝,௡𝑥௡
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Each input neuron is connected to a small number k of 
hidden neurons.
Sparse connections: k*n parameters, e.g., 3*36M parameters!

Deep Learning – Bernhard Kainz

Early work, e.g., 
Y. LeCun et al., 

did this

𝑦௝ = 𝑤௝,௜ିଵ𝑥௜ିଵ + 𝑤௝,௜𝑥௜ + 𝑤௝,௜ାଵ𝑥௜ାଵ

Each input neuron is connected to a small number k of hidden neurons 
and weights are shared
Shared weights (position independent): k parameters, e.g. 3 parameters!

Deep Learning – Bernhard Kainz

DL lingo ‘weight 
sharing’ = a 

subset of weights  
are identical

𝑦௝ = 𝑤ିଵ𝑥௜ିଵ + 𝑤଴𝑥௜ + 𝑤ାଵ𝑥௜ାଵ

0 0 0 0 0 0

0 0

0

0 0
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∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

1 0 0 0 0 0

0 0

0

0 0
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∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

1 1 0 0 0 0

1 0

0.25

0 0
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∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

1 1 1 0 0 0

1 0

0.5

1 0
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∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output
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1 1 1 1 0 0

1 0

0.75

1 1
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∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

0 1 1 1 1 0

1 1

1

1 1
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∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

0 0 1 1 1 1

0 1

0.75

1 1
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∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

0 0 0 1 1 1

0 1

0.5

0 1
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∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

0 0 0 0 0 1

0 1

0.25

0 0
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∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

0 0 0 0 0 0

0 0

0

0 0
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∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =

1

4
∑𝑎௜

ଵ

output

31 32

33 34

35 36



02/01/2021

7

e.g., 3 parameters!

1

0
Key take away: weight sharing! (a limited number of learnable “filter” 
parameters for a fixed but overlapping input range); 
Think filtering with sliding window!

Deep Learning – Bernhard Kainz

learned through backpropagation, 
dependant on the task! Up to hundreds per layer.

,          = filter 
kernel

Why “convolution”?

Deep Learning – Bernhard Kainz

1

0

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛:  (𝑥 ∗ 𝑤)௜ = ∑௞𝑥௞𝑤௜ି௞ = ∑௞𝑥௜ି௞𝑤௞

𝑐𝑝. 𝑐𝑟𝑜𝑠𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛: (𝑥 ∗ 𝑤)௜ = ∑௞𝑥௞𝑤௜ା௞

wikipedia.org

Why not simply input = output for this feature detector?
Signals in the wild: Features in the wild:

Deep Learning – Bernhard Kainz

Network output (continuous):  

𝑓 ∗ 𝑔 𝑡 =  න 𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏  𝑓𝑜𝑟 𝑓, 𝑔 ∶ 0, ∞ → ℝ
௧

଴

 

Some features of convolution are similar 
to cross-correlation: 
for real-valued functions, of a continuous or 
discrete variable, it differs from cross-correlation 
only in that either f(x) or g(x) is reflected about the
y-axis; thus it is a cross-correlation of f(x) and g(−x), 
or f(−x) and g(x).

Watch: 
https://www.youtube.com/watch?v=N-zd-T17uiE

Properties of convolutions

• Commutativity, 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓

• Associativity, 𝑓 ∗ 𝑔 ∗ ℎ = 𝑓 ∗ 𝑔 ∗ ℎ

• Distributivity, 𝑓 ∗ 𝑔 + ℎ = 𝑓 ∗ 𝑔 + (𝑔 ∗ ℎ)

• Associativity with scalar multiplication, 𝑎(𝑓 ∗ 𝑔)  = 𝑎𝑓 ∗ 𝑔

Deep Learning – Bernhard Kainz

What do we learn from this

• a) weight sharing reduces the number of parameters from n^2 in a 
multi-layer perception to a small number, for example 3 as in our 
experiment or 3 by 3 image filter kernels or similar

• b) these filter kernels can be learned through back propagation 
exactly in the same way as you would train a multi-layer perception. 
Each layer may have many filter-kernels, so it will produce many 
filtered versions of the input with different filter functions.

• c) for real-valued functions, of a continuous or discrete variable, 
convolution differs from cross-correlation only in that 
either f(x) or g(x) is reflected about the y-axis; so it is a cross-
correlation of f(x) and g(−x), or f(−x) and g(x).

Deep Learning – Bernhard Kainz Deep Learning – Bernhard Kainz

Interruption talk: what we learn from this

47 48

49 50
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Second problem: no spatial structure 
preservation, fully connected layer

Deep Learning – Bernhard Kainz

Figure: adapted from Fei Fei et al.

Stack a 32x32x3 RGB image into a 3072x1 vector 

• we need priors about the data!

spatial structure preservation, convolutional 
layer

Deep Learning – Bernhard Kainz

Figure: adapted from Fei Fei et al.

Stack a 32x32x3 RGB image into a 3072x1 vector 

• we need priors about the data!

Deep Learning – Bernhard Kainz

Examples of 2D image filters

Remember: all learned 
through backpropagation, 
dependant on the task!

Deep Learning – Bernhard Kainz
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6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4
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6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

6 8
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6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4
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6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4
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What CNNs learn?

Deep Learning – Bernhard Kainz

What CNNs learn?

Deep Learning – Bernhard Kainz

What CNNs learn?

Deep Learning – Bernhard Kainz

What CNNs learn?

Deep Learning – Bernhard Kainz

Most of this initially propose in 1980 and the 1990s

Deep Learning – Bernhard Kainz

Lacks backprop Adds backprop

No GPUs, no success for larger problems…

Success in 2012!

So what do we learn from this?

• a) convolutions can massively reduce the computational complexity of 
neural networks but the real power of CNNs is revealed when priors are 
implemented and for example spatial structure is preserved. This is also 
one of the reasons why CNNs have been so successful in Computer Vision

• b) CNNs are pipeline of learnable filters interleaved with nonlinear 
activation functions producing d-dimensional feature maps at every stage. 
Training works like a common neural network: initialise randomly, present 
exampled from the training database, update the filter weights through 
backpropagation by propagating the error back through the network. 

• c) convolution and pooling can be used to reduce the dimensionality of the 
input data until it forms a small enough representation space for either 
traditional machine learning methods for classification or regression or to 
steer other networks to for example generate a semantic interpretation like 
a mask of a particular object in the input. 

Deep Learning – Bernhard Kainz
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Deep Learning –
Equivariance and Invariance

Bernhard Kainz

Deep Learning – Bernhard Kainz

Invariance and equivariance

• Shift invariance

Deep Learning – Bernhard Kainz

Invariance and equivariance

• Shift invariance

Deep Learning – Bernhard Kainz

Shift invariance

Deep Learning – Bernhard Kainz

Shift equivariance

Deep Learning – Bernhard Kainz

Invariance vs equivariance

Deep Learning – Bernhard Kainz
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How shift invariance is achieved in CNNs?

Deep Learning – Bernhard Kainz

Equivariance in CNNs

Deep Learning – Bernhard Kainz

Equivariance in CNNs

Deep Learning – Bernhard Kainz

Approximate invariance in CNNs with pooling

Deep Learning – Bernhard Kainz

Approximate invariance in CNNs with pooling

Deep Learning – Bernhard Kainz

Not the full story…

• But striding ignores the Nyquist sampling 
theorem and aliases 

Deep Learning – Bernhard Kainz

Nyquist sampling 
theorem = sample 

at least twice as fast 
to keep all 

information

R. Zhang.
Making Convolutional Networks Shift-Invariant Again.
In ICML, 2019.

BK1

95 96
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Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max
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Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

• Max-pooling breaks shift equivariance

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg
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Simple example

• Max-pooling breaks shift equivariance
• Partial solution: use what you learned about anti-aliasing in Computer 

Vision: blur and then down sample 

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=eZa56DqXTHg

R. Zhang.
Making Convolutional Networks Shift-Invariant Again.
In ICML, 2019.

Beyond shifts: group equivariance

Deep Learning – Bernhard Kainz

Rotation invariant CNNs

Deep Learning – Bernhard Kainz
https://www.youtube.com/watch?v=qoWAFBYOtoU

Daniel Worrall et al.: Harmonic Networks: Deep Translation and Rotation Equivariance

Rotation invariant CNNs

Deep Learning – Bernhard Kainz
https://www.youtube.com/watch?v=qoWAFBYOtoU

Daniel Worrall et al.: Harmonic Networks: Deep Translation and Rotation Equivariance

Approximate deformation invariance

Deep Learning – Bernhard Kainz

Approximate deformation invariance

Deep Learning – Bernhard Kainz
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So what do we learn from this?

a) CNNs are approximately shift equivariant through convolutions and 
approximately shift invariant because of pooling or striding, i.e. 
subsampling operations

b) Mathematically this is hand-wavey because it depends on the type of 
problem one tries to solve. In theory CNNs do very basic but learned 
signal processing operations. In practice often what works is accepted 
and some attempts to explain their mathematical properties fall short.

c) In practice equivariance and invariance will be improved through 
encoding expected and realistic data transformations directly into the 
data. This is called data augmentation and we will talk about it in a future 
video. 

Deep Learning – Bernhard Kainz

Deep Learning - LeNet
Bernhard Kainz

Deep Learning – Bernhard Kainz

LeNet-5

Deep Learning – Bernhard Kainz

Handwritten digit recognition

Deep Learning – Bernhard Kainz

MNIST

• Cantered and scaled
• 50.000 training samples
• 10.000 test samples
• 28 x 28 images
• 10 classes

Deep Learning – Bernhard Kainz

Demo from 1995

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=yxuRnBEczUU
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LeNet-5

Deep Learning – Bernhard Kainz

This is expensive if 
you have many 

outputs, here only 
10

Deep Learning – Bernhard Kainz

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

Deep Learning - AlexNet
Bernhard Kainz

Deep Learning – Bernhard Kainz

AlexNet

Deep Learning – Bernhard Kainz

ImageNet (2010)

Deep Learning – Bernhard Kainz

Images Color images with nature 
objects

Gray image for hand-
written digits

Size 469 x 387 28 x 28 
# examples 1.2 M 60 K
# classes 1,000 10

AlexNet
• AlexNet won ImageNet competition in 

2012
• Deeper and bigger LeNet
• Key modifications:

• Add a dropout layer after two 
hidden dense layers
(better robustness / regularization)

• Change activation function from 
sigmoid to ReLu
(no more vanishing gradient)

• MaxPooling
• Heavy data augmentation
• Model ensembling

• Paradigm shift for computer vision

Manually 
engineered 

features

SVM

Features learned 
by a CNN

Softmax 
regression

Deep Learning – Bernhard Kainz
Slide adopted from Alex Smola
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Complexity
#parameters FLOP

AlexNet LeNet AlexNet LeNet
Conv1 35K 150 101M 1.2M
Conv2 614K 2.4K 415M 2.4M

Conv3-5 3M 445M
Dense1 26M 0.48M 26M 0.48M
Dense2 16M 0.1M 16M 0.1M

Total 46M 0.6M 1G 4M
Increase 11x 1x 250x 1x

Deep Learning – Bernhard Kainz
Slide adopted from Alex Smola

demo

Deep Learning – Bernhard Kainz

Silicon Valley: Season 4 Episode 4: Not Hotdog (HBO)
https://www.youtube.com/watch?v=pqTntG1RXSY

BK2

code

Deep Learning – Bernhard Kainz
https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

+ additional tricks

• Change activation function from sigmoid to ReLu
(no more vanishing gradient)

• Add a dropout layer after two hidden dense layers
(better robustness / regularization)

• Heavy data augmentation
• Model ensembling

Deep Learning – Bernhard Kainz

Deep Learning – VGG
Bernhard Kainz

Deep Learning – Bernhard Kainz

Lecture inspired by Alex Smola with add-ons

VGG

Deep Learning – Bernhard Kainz

Softmax
FC1 FC2 FC3

141 142

143 144

145 146
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• AlexNet = bigger than LeNet
• Bigger = better?
• Options

• More dense layers
(too expensive)

• More convolutions 
• Group into blocks

Deep Learning – Bernhard Kainz http://d2l.ai/chapter_convolutional-modern/vgg.html

VGG blocks

• Deeper vs. wider?
• 13x13?
• 5x5?
• 3x3?
• Deep and narrow = better

• VGG block
• 3x3 convolutions (pad 1)

(n layers, m channels)
• 2x2 max-pooling

(stride 2)

Deep Learning – Bernhard Kainz

progress

• LeNet (1995)
• 2 convolution + pooling layers
• 2 hidden dense layers

• AlexNet
• Bigger and deeper LeNet
• ReLu, Dropout, preprocessing

• VGG
• Bigger and deeper AlexNet (repeated VGG blocks)

Deep Learning – Bernhard Kainz

Wouldn’t have been 
possible without 
compute power 
progress (GPUs)

Deep Learning – Bernhard Kainz

VGGs

AlexNet
https://cv.gluon.ai/model_z
oo/classification.html

Deep Learning – Bernhard Kainz
https://github.com/pytorch/vision/blob/mas
ter/torchvision/models/vgg.py

Deep Learning – NiN, 
Inception

Bernhard Kainz

Deep Learning – Bernhard Kainz
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Networks in Networks

Deep Learning – Bernhard Kainz

Non-linear mapping layers 
introduced as mlpconv. 

Consists of multiple fully 
connected layers with 
non-linear activation 

function 

Networks in Networks

Deep Learning – Bernhard Kainz

Networks in Networks

• Convolution layers are parameter 
cheap 

𝑐௜  × 𝑐଴ × 𝑘ଶ

• Last layer is parameter expensive for n 
classes

𝑐 × 𝑚௪ × 𝑚௛ × 𝑛

• LeNet: 16x5x5x120 = 48k parameters
• AlexNet: 256x5x5x4096 = 26M
• VGG 512x7x7x4096 = 103M

Deep Learning – Bernhard Kainz

NiN block

• A convolutional layer
• Kerel size, stride, and padding are hyper parameters

• Two 1x1 convolutions
• 1 stride and no padding, share the same output 

channels as first layer
• These act like dense layers

Deep Learning – Bernhard Kainz

https://d2l.ai/chapter_convolutional-modern/nin.html

NiN

Deep Learning – Bernhard Kainz

• Final dense layers get 
replaced by ‘internal’
quasi dense layers

• Mapping to number
of output classes
is done via
globalAveragePooling

NiN in pytorch

• Inception and ResNet superseded this approach

Deep Learning – Bernhard Kainz
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Inception (GoogLeNet)

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Which convolution is the best!?

Deep Learning – Bernhard Kainz

NiNVGGAlexNetLeNet
Many 
1x1

5x53x31x1 Max-
pooling

Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Extract with 
different size 
convolutions

Same width and 
height as input

Extract spatial 
information with 

pooling

Four paths extract information from 
different aspects, then concatenate 
along the output channel

Inception block

Deep Learning – Bernhard Kainz
https://arxiv.org/abs/1409.4842

Allocate capacities 
to each channel

The first inception block has channel sizes specified

Reduce cannel size 
to lower model 

capacity

(256)

(128) (32) (32)

(16)(96)

(64)

(192x28x28)

Inception blocks

• Inception blocks have fewer parameters and less computation 
complexity than single 3x3 or 5x5 convolution layers

• They are a mix of different functions, which makes them a powerful 
function class

• Computing and memory wise they are efficient (good generalisation)

Deep Learning – Bernhard Kainz

#parameters FLOPS

Inception 0.16 M 128 M

3x3 Conv 0.44 M 346 M

5x5 Conv 1.22 M 963 M

As: replace all conv block with 3x3 or 5x5 in Inception
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Less parameters?

• 𝑘ଶ × 𝑐௜௡ ×  𝑐௢௨௧ × 𝑚௛ × 𝑚௪

• 𝑐௜௡ × 𝑚௛ × 𝑚௪ × [ ∑ 𝑘௝
ଶ × 𝑐௢௨௧,௝ ]௣௔௧௛௦ ௝

Deep Learning – Bernhard Kainz

fixedfixed

allocating compute 
to different channels 
= better computing 

Inception

• 5 stages with 9 inception blocks

Deep Learning – Bernhard Kainz

https://d2l.ai/

Output

Stage 5

Stage 1

Stage 3

Stage 2

Stage 4

Stage 1 and 2

• Smaller kernel size and 
output channels because of
more layers

Deep Learning – Bernhard Kainz

https://d2l.ai/

Stage 3

Deep Learning – Bernhard Kainz

Channel allocation is 
different

Increases output 
channel

https://d2l.ai/

Deep Learning – Bernhard Kainz

Stage 4 & 5
Increases output 

channels

Increases output 
channels

1024 dimensional 
feature to output 

layer

Increase for output 
channel

https://d2l.ai/

Flavours of Inception Networks

• Inception-BN (v2) – added batch normalisation
• Inception-V3 – Modified the inception block 

• Replace 5x5 by multiple 3x3 convolutions 
• Replace 5x5 by 1x7 and 7x1 convolutions
• Replace 3x3 by 1x3 and 3x1 convolutions
• Generally deeper stack

• Inception-V4 – adds residual connections 

Deep Learning – Bernhard Kainz

165 166

167 168

169 170



02/01/2021

25

Inception V3 block for stage 3

Deep Learning – Bernhard Kainz
https://d2l.ai/

Inception V3 block for stage 4

Deep Learning – Bernhard Kainz
https://d2l.ai/

7 x  1 1 x 7

Inception V3 block for stage 5

Deep Learning – Bernhard Kainz
https://d2l.ai/

Deep Learning – Bernhard Kainz

Inception v3

https://cv.gluon.ai/model_zoo/classification.html

What do we learn from that?

• Dense layers are computationally and memory intensive. Real-world 
problems with big input tensors and many classes will prohibit their 
use.

• Again: 1x1 convolutions act like a multi-layer perceptron per pixel.
• Scientists are humans and need a while to understand the power of 

new approaches. Eventually they do but a lot of vanity is involved in 
the process. 

• If not sure, just take all options and let the optimization decide or 
even learn this through trial and error (genetic algorithm, 
AmoebaNet)

Deep Learning – Bernhard Kainz

Deep Learning - BatchNorm
Bernhard Kainz

Deep Learning – Bernhard Kainz
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Batch Normalization

• Loss is calculated at last layer
• Last layers learn quickly

• Data input is at first layer
• First layers change - everything changes
• Last layers need to relearn many times
• Slow convergence

• This is like covariate shift...
Can we avoid changing last layers while 
learning first layers?

Deep Learning – Bernhard Kainz

Deep supervision 
to aid convergence 

(= reconstruct 
output and 

compare with 
ground truth at 
several stages)

input

loss
Batch Normalization

• Can we avoid changing last layers while learning first layers?
• Fix mean and variance

μ஻ =
1

|𝐵|
෍ 𝑥௜ 𝑎𝑛𝑑 𝜎஻

ଶ =
1

|𝐵|
෍(𝑥௜ − 𝜇஻)ଶ + 𝜀

௜∈஻௜∈஻

and adjust it separately
𝑥௜ାଵ = 𝛾

𝑥௜ − 𝜇஻

𝜎஻
+ 𝛽

Deep Learning – Bernhard Kainz

variance

mean

Batch Normalization

• Doesn’t really reduce covariate shift (Lipton et al. 2018) 
https://arxiv.org/abs/1805.10694

• Regularization by noise injection
𝑥௜ = 𝛾

𝑥௜ − �̂�஻

𝜎ො஻
+ 𝛽

• Random shift per mini batch
• Random scale per mini batch

• No need to add dropout (both are capacity control)
• Ideal mini batch size: 64-256

Deep Learning – Bernhard Kainz

Random offset

Random scale
learned

learned

Batch Normalization

• Dense layer: One normalization for all
• Convolutional layer: One normalization per channel
• Compute new mean and variance for every minibatch

• Acts as regularisation
• Be careful when scaling up to multi-GPU training

Deep Learning – Bernhard Kainz

https://xkcd.com/

Deep Learning - ResNet
Bernhard Kainz

Deep Learning – Bernhard Kainz

Does adding layers improve accuracy?

Deep Learning – Bernhard Kainz

The true solution is here •

𝑓

Generic function classes Nested function classes

𝑓

The true solution is here •
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Residual Networks

• Adding a layer 
changes function class

• We want to add 
to the function class

• ‘Taylor expansion’ 
style parametrization

𝑓 𝑥 = 𝑥 + 𝑔(𝑥)

Deep Learning – Bernhard Kainz

He et al. 2015 https://arxiv.org/abs/1512.03385

Before After

https://d2l.ai/

ResNet Block

Deep Learning – Bernhard Kainz
https://d2l.ai/

ResNet Block

Deep Learning – Bernhard Kainz

ResNet block flavours

Deep Learning – Bernhard Kainz

Trial and error of every permutation
https://d2l.ai/

ResNet Module

• Downsample per 
module (stride=2)

• Enforce some nontrivial 
nonlinearity per module 
(via 1x1 convolution)

• Stack up in blocks

Deep Learning – Bernhard Kainz
https://d2l.ai/

N times

Stride 2

ResNet

Deep Learning – Bernhard Kainz

Same block structure as e.g. VGG or 
GoogleNet
• Residual connection to add to 

expressiveness
• Pooling/stride for dimensionality reduction
• Batch Normalization for capacity control

• Trainable at scale
• Variant name depends on how many blocks

(18 layers = ResNet-18 -> )
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Deep Learning – Bernhard Kainz

https://cv.gluon.ai/model_zoo/classificat
ion.html

ResNet101

ResNext

Deep Learning – Bernhard Kainz

https://arxiv.org/abs/1611.05431

Reducing the cost of convolutions

• Parameters
𝑘௛ × 𝑘௪ × 𝑐௜ × 𝑐௢

• Computation
𝑚௛ × 𝑚௪ × 𝑘௛ × 𝑘௪ × 𝑐௜ × 𝑐௢

• Slicing convolutions (Inception v4) e.g. 3x3 vs. 1x5 
and 5x1

• Break up channels (mix only within)
𝑚௛ × 𝑚௪ ×  𝑘௛ ×  𝑘௪ ×  

𝑐௜

𝑏
×

𝑐௢

𝑏
× 𝑏

Deep Learning – Bernhard Kainz
https://d2l.ai/

Reducing the cost of convolutions

• Parameters
𝑘௛ × 𝑘௪ × 𝑐௜ × 𝑐௢

• Computation
𝑚௛ × 𝑚௪ × 𝑘௛ × 𝑘௪ × 𝑐௜ × 𝑐௢

• Slicing convolutions (Inception v4) e.g. 3x3 vs. 1x5 
and 5x1

• Break up channels (mix only within)
𝑚௛ × 𝑚௪ ×  𝑘௛ ×  𝑘௪ ×  

𝑐௜

𝑏
×

𝑐௢

𝑏
× 𝑏

Deep Learning – Bernhard Kainz
https://d2l.ai/

More ideas…

Deep Learning – Bernhard Kainz

DenseNet

• Huang et al., 2016 https://arxiv.org/abs/1608.06993
• ResNet combines 𝑥 and 𝑓(𝑥)

• DenseNet uses higher order ‘Taylor series’ expansion
𝑥௜ାଵ = 𝑥௜, 𝑓௜ 𝑥௜
𝑥ଵ = 𝑥
𝑥ଶ = 𝑥, 𝑓ଵ 𝑥
𝑥ଷ = 𝑥, 𝑓ଵ 𝑥 , 𝑓ଶ 𝑥, 𝑓ଵ 𝑥

• Occasionally need to reduce resolution (transition layer)

Deep Learning – Bernhard Kainz https://d2l.ai/
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Squeeze-Excite Net 

• Hu et al., 2017 https://arxiv.org/abs/1709.01507

• Learn global weighting function per channel
• Allows for fast information transfer between pixels in different 

locations of the image

Deep Learning – Bernhard Kainz

ShuffleNet

• Zhang et al., 2018 https://arxiv.org/abs/1707.01083

• ResNext breaks convolution into channels
• ShuffleNet mixes by grouping (very efficient for mobile)

Deep Learning – Bernhard Kainz

Things to explore 

• AutoML (find best model architecture automatically Google Cloud 
AutoML)

• Hypernetworks (a network that proposes the weights for another 
network), also neural processes

• Networks with memory, e.g. kanerva machine
• Almost no new basic architectures accepted nowadays (see 

https://nips.cc/virtual/2020/public/cal_main.html NeurIPS 2020 
programme, focuses on meta findings) 

Deep Learning – Bernhard Kainz

Summary

• Inception
• Inhomogeneous mix of convolutions (varying depth)
• Batch norm regularization

• ResNet
• Taylor expansion of functions
• ResNext decomposes convolutions

• Model Zoo
• DenseNet, ShuffleNet, Separable Convolutions, …

Deep Learning – Bernhard Kainz https://in.pinterest.com/pin/556124253981912489/

What do we learn from that

• Deeper is not necessarily better if the function space is not 
regularised

• ResNet is the workhorse of Deep learning (for now. Do you have a 
better idea that hasn’t been tried yet? Let me know but look on arXiv
first!)

• Lot’s of variations have been proposed but it often boils down to how 
you train a network and for what purpose. 

Deep Learning – Bernhard Kainz

Deep Learning –
Activation Functions

Bernhard Kainz

Deep Learning – Bernhard Kainz
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Where else to tune?

Deep Learning – Bernhard Kainz

Feature extractor Task 
specific

Parameter optimisation

input outputCNN
Loss

Activation 
Functions

Where else to tune?

Deep Learning – Bernhard Kainz

Feature extractor Task 
specific

Parameter optimisation

input outputCNN
Loss

Activation 
Functions

Activation functions

• Consider a neuron,

Input = ෍ 𝑤௜ ȉ 𝑖𝑛𝑝𝑢𝑡 + 𝑏௜

• Naïve activation: 
• If the value of Y is above a certain value, declare it activated. 
• Not differentiable, no backprop

Deep Learning – Bernhard Kainz

O
ut

pu
t

Input

Linear activation

• 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑐 ȉ 𝑥 

• Constant gradient, no relationship to x
during backprop

Deep Learning – Bernhard Kainz

Sigmoid function

• 𝑂𝑢𝑡𝑝𝑢𝑡 =  
ଵ

ଵା௘ష೔೙೛ೠ೟

• Nonlinear 

Deep Learning – Bernhard Kainz

tanh function

• 𝑂𝑢𝑡𝑝𝑢𝑡 =  
௘ೣି௘షೣ

௘ೣା௘షೣ

• Scaled sigmoid

Deep Learning – Bernhard Kainz
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ReLU

• 𝑂𝑢𝑡𝑝𝑢𝑡 = max 0, 𝑥

• Efficient
• combinations of ReLU and ReLU

are non linear
• Bound: [0, inf)
• dying ReLu problem

Deep Learning – Bernhard Kainz

Leaky ReLU

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 = ቊ
𝑥                      𝑓𝑜𝑟 𝑥 ≥ 0
𝑒. 𝑔. 0.01 ȉ 𝑥 𝑓𝑜𝑟 𝑥 < 0

• Mitigates dying ReLu

atcold.github.io

PReLU

• 𝑂𝑢𝑡𝑝𝑢𝑡 = ቊ
𝑥                      𝑓𝑜𝑟 𝑥 ≥ 0
𝑎 ȉ 𝑥               𝑓𝑜𝑟 𝑥 < 0

• 𝑎 is learnable
• Either one or a separate 𝑎 is 

used for each input channel

Deep Learning – Bernhard Kainz

SoftPlus

• 𝑂𝑢𝑡𝑝𝑢𝑡 =  
ଵ

ఉ
ȉ log 1 + 𝑒 ఉȉ௫

• Smooth approximation of ReLU
• Output always positive
• Numerical stability:

use linear if
𝛽 ȉ 𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Deep Learning – Bernhard Kainz

ELU

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 = max 0, 𝑥 + min (0, 𝛼 ȉ 𝑒௫ − 1 )

• Element-wise

CELU

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 = max 0, 𝑥 + min (0, 𝛼 ȉ (𝑒
ೣ

ഀ − 1))

• Element-wise
• Barron  (2017)

https://arxiv.org/abs/1704.07483
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SELU

• 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑐𝑎𝑙𝑒 ȉ (max 0, 𝑥 + min 0, 𝛼 ȉ 𝑒௫ − 1 )
• with α = 1.6732632423543772848170429916717 and scale = 1.0507009873554804934193349852946

Deep Learning – Bernhard Kainz

GELU

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑥 ȉ Φ(𝑥)

• Φ(𝑥) is the Cumulative Distribution
Function for Gaussian Distribution.

ReLU6

• 𝑂𝑢𝑡𝑝𝑢𝑡 = min (max 0, 𝑥 , 6)

Deep Learning – Bernhard Kainz

LogSigmoid

• 𝑂𝑢𝑡𝑝𝑢𝑡 = log (
ଵ

ଵା௘షೣ)

• Element-wise

Deep Learning – Bernhard Kainz

Softmin

• 𝑂𝑢𝑡𝑝𝑢𝑡 =  
௘షೣ೔

∑ ௘
షೣೕ

ೕ

• Applies the Softmin function 
to an n-dimensional input 
Tensor rescaling them so
that the elements of the 
n-dimensional output Tensor lie 
in the range [0,1] and sum up to 1.

Deep Learning – Bernhard Kainz

Softmax

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 =  
௘ೣ೔

∑ ௘
ೣೕ

ೕ

• Applies the Softmax function 
to an n-dimensional input 
Tensor rescaling them so
that the elements of the 
n-dimensional output Tensor lie 
in the range [0,1] and sum up to 1.
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LogSoftmax

Deep Learning – Bernhard Kainz

• 𝑂𝑢𝑡𝑝𝑢𝑡 = log (
௘ೣ೔

∑ ௘
ೣೕ

ೕ

)

• Applies the log(Softmax) function 
to an n-dimensional input 
Tensor

Periodic activations, SIREN

• Difficult convergence properties for general problems
• Has been used for implicit representations (find a continuous function 

that represents sparse input data, e.g. an image)
• https://vsitzmann.github.io/siren/

Deep Learning – Bernhard Kainz

Deep Learning – Bernhard Kainz

What do we learn from this?

• Which function to use depends on the nature of the targeted 
problem.

• Most often you will be fine with ReLUs for classification problems. If 
the network does not converge, use leakyReLUs or PReLUs, etc. 

• Tanh is quite ok for regression and continuous reconstruction 
problems. 

• The representative power of you training set will usually outweigh the 
contribution of a smartly chosen activation function. 

Deep Learning – Bernhard Kainz

Deep Learning –
Loss Functions

Bernhard Kainz

Deep Learning – Bernhard Kainz

Where else to tune?

Deep Learning – Bernhard Kainz

Feature extractor Task 
specific

Parameter optimisation

input outputCNN
Loss

Activation 
Functions
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Loss functions

Deep Learning – Bernhard Kainz

Lo
gi

ts
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k
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22.43
440.2
.
.
.

1.2564e-185
2.3802e-190
1.316e-172
3.6711e-182
1.00000
.
.
.

Loss

0
1
0
0
0
.
.
.

Error

Backprop

In
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t

O
r r
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on

st
ru

ct
io

n,
 re

gr
es

sio
n,

 …

L2 Norm, mean squared error

ℓ 𝑥, 𝑦 =  𝓛 = 𝑙ଵ, … , 𝑙ே
்,  𝑙௡ = (𝑥௡ − 𝑦௡)ଶ

Reduction to a single value can be either 𝑚𝑒𝑎𝑛(𝓛) or sum(𝓛).
pytorch: nn.MSELoss()

Deep Learning – Bernhard Kainz

L1 Norm 

ℓ 𝑥, 𝑦 =  𝓛 = 𝑙ଵ, … , 𝑙ே
்,  𝑙௡ = |𝑥௡ − 𝑦௡|

Reduction to a single value can be either 𝑚𝑒𝑎𝑛(𝓛) or sum(𝓛).
Use for robust regression (noisy data)
pytorch: nn.L1Loss() 

Deep Learning – Bernhard Kainz

Smooth L1

𝑙𝑜𝑠𝑠 𝑥, 𝑦 =  
1

𝑛
෍ 𝑧௜

௜

𝑧௜ =  ቊ
0.5(𝑥௜ − 𝑦௜)ଶ,   𝑖𝑓 𝑥௜ − 𝑦௜ < 1

𝑥௜ − 𝑦௜ − 0.5,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

pytorch: nn.SmoothL1Loss() 

Deep Learning – Bernhard Kainz

Negative log likelihood loss

• Assumption: Network output represents log liklihoods. 
• Make the desired output as large as possible and all others as small as possible

ℓ 𝑥, 𝑦 =  𝓛 = 𝑙ଵ, … , 𝑙ே
்,  𝑙௡ = −𝑤௬೙

𝑥௡,௬೙
,

 𝑤௖ = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐 ȉ 1{𝑐 ≠ 𝑖𝑔𝑛𝑜𝑟𝑒௜௡ௗ௘௫}

ℓ 𝑥, 𝑦 =  

෍
1

∑ 𝑤௬೙
ே
௡ୀଵ

𝑙௡

ே

௡ୀଵ
,   𝑖𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑒𝑎𝑛

෍ 𝑙௡

ே

௡ୀଵ
,                       𝑖𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑢𝑚

pytorch: nn.NLLLoss()
Implementation valid for all such problems, not only likelihoods. 

Deep Learning – Bernhard Kainz

Cross Entropy (CE) Loss 

• Combines LogSoftmax and NLLLoss
• Useful for classification problems with C classes

𝑙𝑜𝑠𝑠 𝑥, 𝑐𝑙𝑎𝑠𝑠 = − log
𝑒௫ ௖௟௔௦௦

∑ 𝑒௫ ௝
௝

= −𝑥 𝑐𝑙𝑎𝑠𝑠 + log ෍ 𝑒௫[௝]

௝

Classes can also be weighted. 
The losses are averaged across observations for each minibatch.
pytorch: nn.CrossEntropyLoss() 

Deep Learning – Bernhard Kainz
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Binary Cross Entropy (BCE) Loss 

• CE loss for only two classes
ℓ 𝑥, 𝑦 =  𝓛 = 𝑙ଵ, … , 𝑙ே

்,
 𝑙௡ = −𝑤௡[𝑦௡ ȉ log 𝑥௡ + (1 − 𝑦௡) ȉ log (1 − 𝑥௡)

Reduction to a single value can be either 𝑚𝑒𝑎𝑛(𝓛) or sum(𝓛).
pytorch: nn.BCELoss() 
Requires [0,1] probabilities. If this cannot be guaranteed, use 
nn.BCEWithLogitsLoss()

Deep Learning – Bernhard Kainz

Kullback-Leibler Divergence Loss

• Measures distance between distributions

ℓ 𝑥, 𝑦 =  𝓛 = 𝑙ଵ, … , 𝑙ே
்,  𝑙௡ = 𝑦௡ ȉ 𝑙𝑜𝑔𝑦௡ − 𝑥௡

Pytroch: nn.KLDivLoss()
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Margin Ranking Loss/Ranking 
Losses/Contrastive loss

𝑙𝑜𝑠𝑠 𝑥, 𝑦 = max 0, −𝑦 ȉ 𝑥ଵ − 𝑥ଶ + 𝑚𝑎𝑟𝑔𝑖𝑛

Useful to push classes as far away 
as possible and for metric learning
Practical: take category that scores 
is closest or higher than correct one
change until difference is at least the margin
pytorch: nn.MarginRankingLoss()  

Deep Learning – Bernhard Kainz https://gombru.github.io/

Triplet Margin Loss

• ℓ 𝑥, 𝑦 =  𝓛 = 𝑙ଵ, … , 𝑙ே
்,    

𝑙௡(𝑥௔, 𝑥௣, 𝑥௡) = max(0, m + f 𝑥௔ − 𝑓 𝑥௣ − f 𝑥௔ − 𝑓 𝑥௡

Make samples from same classes close and different classes far away.
Objective: Distance for the good pair has to be smaller than distance to 
the bad pair. Actual distance does not need to be small, just smaller.  
Used for metric learning and Siamese networks
pytorch: nn.TripletMarginLoss() 

Deep Learning – Bernhard Kainz

actual positive sample
negative sample

Triplet Margin Loss

Deep Learning – Bernhard Kainz

http://www.bmva.org/bmvc/2016/papers/paper119/index.html

Cosine Embedding Loss

𝑙𝑜𝑠𝑠(𝑥, 𝑦) = ቊ
1 − cos 𝑥ଵ, 𝑥ଶ ,                             𝑖𝑓 𝑦 = 1

max 0, cos 𝑥ଵ, 𝑥ଶ  − 𝑚𝑎𝑟𝑔𝑖𝑛 ,  𝑖𝑓 𝑦 = −1
 

Measure weather two inputs are similar or dissimilar
Basically a normalised Euclidian distance
pytroch: nn.CosineEmbeddingLoss() 

Deep Learning – Bernhard Kainz
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What do we learn from this

• The choice of loss depends on the desired output (e.g., classification 
vs. regression)  

• Loss functions are a hot topic of research. 
• It informs how the overall system behaves during training
• Don’t get scared by the equations. If you look closely the underlying 

ideas are very simple. 
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Deep Learning -
Augmentation

Bernhard Kainz
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Input augmentation 

• Artificially inflate training data size through applying expected 
transformations during training

• https://github.com/aleju/imgaug
• https://pytorch.org/docs/stable/torchvision/transforms.html
• Excellent regularizer against overfitting
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Transformations

• Random 
• flipping
• scaling
• rotations
• intensity/contrast variations
• cropping/padding
• noise
• affine transformations
• perspective transformations
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Input augmentation 

• Don’t just use all of them blindly. Carefully select expected 
transformations

Deep Learning – Bernhard Kainz

Anomaly detection

• Predict continuation
• Measure distance in a latent space
• Reconstruct the input
• Classify artificial, subtle variations 
• Also known as out-of-distribution detection

Deep Learning – Bernhard Kainz
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With Deep Networks

• Learns well from lots of data
• Own feature representation: Robust to noise and allows for
• learning cross domain patterns
• Already applied in ads: Google itself invests lots in this same
• kind of pattern recognition (targeting/relevance)

Deep Learning – Bernhard Kainz

approaches

• Unsupervised - Use autoencoder reconstruction error and use moving 
averages, use dropout with a set time window

• Supervised - RNNs Learn from a set of yes/nos in a time series. RNNs 
can learn from a series of time steps and predict when an anomaly is 
about to occur.

• Use streaming/minibatches (all neural nets can learn like this)
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Anomalies in images

• Encode, find outliers in latent
space

• Reconstruct and build 
difference to input (AnoGAN)

• Interpolate sample patches
into image and learn
interpolation factor
(Foreign patch interpolation)

• Example medical image 
out-of-distribution channelling

-> https://youtu.be/0-JYFxY3zfw

Deep Learning – Bernhard Kainz
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