Deep Learning - BatchNorm

Bernhard Kainz

179



Deep supervision
to aid convergence
(= reconstruct
output and
compare with
ground truth at
several stages)

Batch Normalization

* Loss is calculated at last layer
* Last layers learn quickly

* Data input is at first layer
* First layers change - everything changes
* Last layers need to relearn many times
* Slow convergence

@T

* This is like covariate shift...
Can we avoid changing last layers while
learning first layers?

Deep Learning — Bernhard Kainz

The problem with very deep networks is that they often have a difficult time to
converge.

Some tricks like deep supervision help, where you reconstruct a partial output at
intermediate stages and backpropagate the loss also from there. This helps to some
degree but people thought that there must be better ideas.

This is what the original idea in batch normalization was.

basically the idea is , at least that's what the intuition was when they invented it,
as I'm training my network the gradients percolate through from the top to the bottom

and so the last layers will start to adapt and so they adapt to whatever the labels are

and then the next layer down will start to adapt next layer down will start adapt and so |
get this cascade of stuff that keeps on adapting.

the trouble is as I'm adapting from the top down, the features are going back up, are
going to change so now that last layer that was actually fairly well

adapted to begin with, has to readapt now to the new inputs that it's getting.

so it takes a very long time to converge and adopt all layers.

180



180



Batch Normalization

* Can we avoid changing last layers while learning first layers?
* Fix mean and variance

1 2 1 2
Wp = ﬁzxi and o = EZ(XIZ —up)° t+e¢

IEB IEB

and adjust it separately _ mean
Xi — UB

Xit1 =J’T+/f

variance

maybe we can fix things. Maybe we can fix at least something.

we can fix them by picking a given mean and a given variance and just at least
correcting for that as we train these.

you don’t want to completely fix those layers but at least you could say we’re going to
fix them up to an affine transform that we’re going to learn separately.

Affine transform means multiply and add.

okay so let's just say and we pick a mean and the variance
you know mu and Sigma squared and we then renormalize the data

so we take Xi minus the mean divided by the variance or standard deviation

and then | allow for a separate coefficient gamma and a separate offset beta to take care
of things

this is batch normalization.

this is the part where you should start asking questions
with the benefit of hindsight it's always really easy to ask those questions whether that

181



covariance shift correction was really the entire reason of what this was made for and
whether that's really why it works.

Well it works, that has been shown in many experiments.

181



Batch Normalization

* Doesn’t really reduce covariate shift (Lipton et al. 2018)
https://arxiv.org/abs/1805.10694

* Regularization by noise injection

Randqm offset

Yl g
Gs

Xi =Y

learned

AN

Iearned/ o ; |
* Random shift per mini batch andom scale
* Random scale per mini batch

* No need to add dropout (both are capacity control)
* |deal mini batch size: 64-256

Deep Learning — Bernhard Kainz

The awful truth is that the original motivation was wrong and it does not really reduce
covariate shift.

there's a paper by Lipton et al. where they go and measure the contribution of
BatchNorm and they find out that it actually makes covariate shift worse.

However, it works and helps convergence. WHY?

So it actually turns out that basically this is doing regularization by noise injection.

you compute a mean and the variance on a mini batch

a mini batch of maybe 64 observations and so what you’re effectively doing is you’re
subtracting some empirical mean and that's obviously noisy

And you're dividing by some empirical standard deviation. That's obviously also noisy.
so you're basically getting a random shift and a random scale from any batch.

this is one of the reasons why if you use batch normalization you really don't need drop

182



out in the same network.
they kind of do similar things in terms of capacity control.
This is also the reason why batch norm is quite sensitive to mini batch size.

if you pick a mini batch that’s too large then you're not injecting enough noise and you're
not regularizing enough.

if you're picking one that’s too small then basically the noise becomes too high and then
you’re not converging very well.

this doesn’t matter so much for single GPU training but as soon as you go to multi-gpu it
starts to matter quite immensely.

what do you do during test time?

well what you do during test time is you just fix this essentially.

so remember there are those parameters gamma and beta. They are learned so they are
basically a learned scale and offset.

We fix them and for the means and variances we’re actually going to use just the running
average and the large sample size mean.

182



Batch Normalization

* Dense layer: One normalization for all
* Convolutional layer: One normalization per channel
* Compute new mean and variance for every minibatch

https://xkcd.com

* Acts as regularisation
* Be careful when scaling up to multi-GPU training

Deep Learning — Bernhard Kainz

THIS 15 YOUR MACHINE. LEARNING SYSTETT?

YUP! YoU POUR THE DATA INTD THIS BIG
PILE OF UNEAR ALGEBRA, THEN (OLLECT
THE ANSLIERS ON THE OTHER SIDE.

wmrmamﬁﬂsmﬂ

JUST STIR THE PILE UNTIL
THEY STRRT LOOKING RIGHT

if you have a dense layer then you just use one normalization for all the activations and

if you have a convolution then you use one per channel.

For every mini batch a batch-norm layer computes a new mean and variance during

training.

This layer requires the train flag to be set correctly in your network. Behaviour is

different during testing and training.

183



X

A\ 4
weight layer
F(x) Jrelu %
weight layer identity

Deep Learning — Bernhard Kainz

184



