
Deep Learning: Motivation

The curse of dimensionality

The curse of dimensionality is a term introduced by Richard Bellman to describe the rapid increase in volume
as more dimensions are added to a mathematical space.

Leo Breiman describes exemplarily that 100 observations cover well the one-dimensional space of real
numbers between 0 and 1. From these observations a histogram can be calculated and conclusions can be
drawn. If comparatively in a 10-dimensional space of the same kind (each dimension can take values between
0 and 1) 100 samples are collected, these are isolated points which do not cover the space sufficiently to
make meaningful statements about this space. To achieve a similar coverage as in one-dimensional space,
10010 = 1020 samples must be taken, which results in a much higher effort.

An often quoted formulation of the ”curse” says that for different kinds of random distributions of the data
sets, the difference between the smallest and the largest distance between data sets becomes arbitrarily small
compared to the smallest distance if the dimensionality d increases (in other words, the smallest and largest
distance differ only relatively little), [1] and therefore the results of distance functions (and algorithms based on
them) are no longer useful for the distributions in question in high-dimensional spaces. This can be formalized
as

lim
d→∞

distmax − distmin

distmin
= 0

However, current research results indicate that it is not the pure number of dimensions that is decisive, [2]
as additional relevant information can better separate the data. Only additional dimensions that are ”irrelevant”
to the separation cause the effect. While the exact distance values become more similar, the resulting order then
remains stable. Cluster analysis and outlier detection is still possible with suitable methods [3].

Another way to characterize the ”curse” is to compare VSphere = 2rdπd/2

d Γ(d/2) , where Γ describes the gamma-
function with the Volume of the hyper-cube, which is defined by VCube = (2r)d. If we now ignore the quotient,
it is noticeable that the volume of the hypersphere becomes very small (”insignificant”) compared to the volume
of the hypercube with increasing dimension, because

Vsphere

Vcube
=

2rdπd/2

d Γ(d/2)

(2r)d
=

πd/2

d2d−1Γ(d/2)
→ 0

for d → ∞.
This convergence can be shown by the estimation:

πd/2

d2d−1Γ(d/2)
<

(22)d/2

d2d−1Γ(d/2)
=

2d

d2d−1Γ(d/2)
=

2

dΓ(d/2)
→ 0

for d → ∞, where π = 3.14... < 4 = 22 and Γ(x) > 0 for x > 0.
The curse of dimensionality is a serious hurdle in machine learning problems that have to learn the structure

of a high-dimensional space from a few sample elements.

Convolution of functions

In functional analysis, a branch of mathematics, convolution (from Latin convolvere ”to roll up”) describes a
mathematical operator that returns for two function f and g a third function f ∗ g.

Intuitively, the convolution f∗g means that each value of f is replaced by the weighted average of the values
surrounding it. More precisely, for the mean value f ∗g the function value f(τ) is weighted with g(x− τ). The
resulting “superposition” between f and mirrored and shifted versions of g (this is also called a “smearing” of
f ) can be used, for example, to form a moving average.

Deep Learning : Three Dimensional graphics 1



Definition

convolution for functions on Rn :→ C is defined by:

(f ∗ g)(x) :=
∫
Rn

f(τ)g(x− τ)dτ

.
In order to keep the definition as general as possible, one does not limit the space of the admissible functions

at first, and instead demands that the integral for almost all values of x is well defined.
For periodic functions f and g of a real variable with period T > 0 the convolution is defined as

(f ∗ g)(t) = 1

T

∫ a+T

a
f(τ)g(t− τ)dτ,

where the integration extends over any interval with period length T . It is f ∗ g again a periodic function with
period T .

In the case of a limited definition range D as it is the case for convolutional networks, one can continue
f and g to the entire space to perform the convolution. There are several approaches to this depending on the
application.

“Continuation through zero”: One continues the functions by definition outside the definition range by the
null function: f

∣∣∣
Rn\D

≡ 0.

“Periodic continuation”: One continues the functions outside the definition range (e.g. mirror or copy) and
uses the convolution defined for periodic functions.

Algebraic properties

The convolution defines a product on the linear space of integrable functions.

• Commutativity: f ∗ g = g ∗ f

• Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h

• Distributivity:f ∗ (g + h) = (f ∗ g) + (f ∗ h)

• Associativity with scalar multiplication: a(f ∗ g) = (af) ∗ g for any real (or complex) number a.

• Derivative: D(f ∗ g) = (Df) ∗ g = f ∗Dg

Here Df is the distributional derivative of f . If f is (totally) differentiable, the distributional derivative
and the (total) derivative are identical. Two interesting examples are:

– D(f ∗ δ)(x) = (f ∗ Dδ)(x) = Df(x), where Dδ is the derivative of delta distribution. The
derivative can thus be understood as a convolution operator.

– (f ∗Θ)(x) =
∫ x
−∞ f(t)dt¿, where Θ is the jump function, yields a stem function for f .

Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or
discrete variable, it differs from cross-correlation (f ∗ g) only in that either f(x) or g(x) is reflected about the
y-axis; thus it is a cross-correlation of f(x) and g(−x), or f(−x) and g(x).

Why do I need this?

In convolutional neural networks, convolutions can be implemented through weight sharing, i.e., the weights
of N spacial neighbours are identical as illustrated in the extremely simple example in Figure 1. These shared
weights can be interpreted as weights of a filter function. The input tensor is convoluted with this filter function
(c.p. sliding window filter) before the activation of a convolutional layer.
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Figure 1: The weights of this network are sparse and spatially shared. red, green and blue are defining identical
values.
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[2] Michael E Houle, Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Can shared-
neighbor distances defeat the curse of dimensionality? In International conference on scientific and statis-
tical database management, pages 482–500. Springer, 2010.

[3] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on unsupervised outlier detection in
high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal,
5(5):363–387, 2012.

Deep Learning : Three Dimensional graphics 3


