
Deep Learning - LeNet
Bernhard Kainz

Deep Learning – Bernhard Kainz

129

LeNet-5

Deep Learning – Bernhard Kainz

leNet was a network proposed in the 90s so LeNet-5 is around 1995 by Yann LeCun and
his team.
In the simplest version this was engineered for low resolution black and white object
recognition.
The inputs were 32 by 32 bit image size images
Those images were then convolved to turn into six channels of 28 by 28 pixels which
were then reduced through average pooling to 14 by 14

Remember the channel size is the same because pooling is applied to layers individually
and not across layers.
This was then followed by another convolution, which reduced it to 10 by 10 images
with 16 channels
The resolution gets halfed again by average pooling, so you get 16 5 by 5
This is in the end followed by 120 fully connected units, then by 84 fully connected units
In this case this was a Gaussian RBF network to map feature maps into 10 classes

At the time this was a serious engineering effort and it probably took about between
three months and half a year to implement including all the tooling that was needed

130

Handwritten digit recognition

Deep Learning – Bernhard Kainz

Why would people have care about it 95?

At&T at the time had a project about handwritten digit recognition.
Handwritten characters for postal codes on letters and also amounts on checks

Basically banks ant post offices wanted to automate the to this point manual
transcription of handwritten documents into computer readable digits.

Obviously that's not quite so trivial, object recognition is required to find the right area
to make a prediction

131

MNIST

• Cantered and scaled
• 50.000 training samples
• 10.000 test samples
• 28 x 28 images
• 10 classes

Deep Learning – Bernhard Kainz

MNIST was a data set that was engineered specifically for the purpose of handwritten
digit recognition. It consisted of centered and scaled images.

50,000 training data and 10,000 tests data at the resolution of 28 by 28 pixels.

There were 10 classes because, well, there are 10 digits and these digits were realistic
digits as obtained by looking at letters and
actually segmenting them appropriately.

132

Demo from 1995

Deep Learning – Bernhard Kainz

https://www.youtube.com/watch?v=yxuRnBEczUU

To see how this worked, let's have a look at the demo of LeNet. So here you can see
digits scanning through the network.
In the network outputting its estimate of what it thinks that digit would be

Even for different shifts it still recognizes a five is a five

Furthermore you can see on the left hand side the activations of the various layers.
In the first layer after the convolutions you pretty much just get edge detector, vertical
edges, horizonal edges, things that enhance contrast and so on.

on the next layer you can see how this now turns into higher level features but still sort
of spatially related

then beyond that there are activations of the fully connected layers and you can see that
this is now much more diverse

in the end this is converted into an estimate of a particular digit as a vector of
probabilities.

so the paper that documents this from 1998 is a really landmark paper

133

I strongly recommend reading this. It is also part of the notes.

there's a lot of detail in there also on graph transducers which I don't think are fully
appreciated even nowadays.

133

LeNet-5

Deep Learning – Bernhard Kainz

This is expensive if
you have many

outputs, here only
10

fully connected layers.
These fully connected layers can be quite expensive if we have many outputs, so for ten
classes it's not a big deal.
Once we will move to maybe a thousand classes for imagenet this will actually become
the dominant factor in our network design and we'll have to find ways around it.

134

Deep Learning – Bernhard Kainz

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

Let's have a look at how to actually implement that. We’ll do this in pytorch and
nowadays it is not too complicated to do this.
This fits nicly on a slide but In 1995 this would not have been so trivial to implement.

Here, we include torch.nn.functional to have direct access to network functions. We do
not need class wrappers here, but there are several ways to define these functions in
pytorch.
We have to define a network as child class of nn.Module to be acceptable for the
optimiser and then we can simply define all we need.
The data is passed through the network in the overloaded forward function. Backward()
is done automatically for you by pytorch for any differential functions.

In the forward pass I want to have a sequential composition of layers in that network
and then I just add a convolution average pooling another

convolution another average pooling operation and then two dense layers in the end

135

