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Motivation

• Deep learning is popular because it works (often). 
• Big promise: just collect enough data and label it, then you get a magic black-

box predictor that can predict any correlations at the click of a button. (only 
supervised setting really works well) 

• Deep learning and Big data = big money = highly competitive and 
sometimes poisonous working environment.

• Deep learning can be dangerous, e.g. deep fakes, adversarial attacks, 
etc. 
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Fundamental learning system
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Feature extractor Task 
specific

Parameter optimisation

input output

classification, regression, synthesis, … 

*CNN = convolutional neural network



Why did 
neural 

networks fail 
in image 
analysis?
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Figure: adapted from Fei Fei et al.

Stack a 32x32x3 RGB image into a 3072x1 vector 



Curse of dimensionality
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As the number of features or dimensions grows, 
the amount of data we need to generalise accurately grows exponentially!

To approximate a (Lipschitz) continuous function 𝑓: ℝௗ  → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖ିௗ) samples

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
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As the number of features or dimensions grows, 
the amount of data we need to generalise accurately grows exponentially!

One parameter: Body weight or
Body size, …

20% samples = 0.2
5 unit intervals
10/5=2 samples/interval

Two parameters: Body weight and
Body size, …

20% samples = 0.452
5×5=25 unit squares
10/25 = 0.4 samples/interval

Three parameters: Body weight and
Body size and has a leech …

20% samples = 0.583
5x5x5 unit intervals
10/125 = 0.08 samples/interval

Curse of dimensionality

10 samples:

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
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Curse of dimensionality

The higher dimensional the feature space the more training samples will be in the corners of the hypercube, 
thus generalisation suffers.

Wikimedia hypersphere

Ratio between red and green

𝜋0.5ଶ  ≈ 0.785
ସ

ଷ
𝜋0.5ଷ  ≈ 0.52 10 dimensions ≈ 0.0159



Deep Learning – Bernhard Kainz

Curse of dimensionality

The higher dimensional the feature space the more training samples will be in the corners of the hypercube, 
thus generalisation suffers.

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
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Curse of dimensionality
To approximate a (Lipschitz) continuous function 𝑓: ℝௗ  → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖ିௗ) samples

Input image resolution = 12 Mpixel * 3 channels = 36M elements
With 𝜖 ∼ 0.1, we need 1036000000 samples (1078 to 1082 atoms in the known, observable universe)



what do we learn from that?

• a) feature selection is important to build good classifiers. As we will see, 
the key of deep learning is to learn this feature selection instead of doing it 
manually. 

• b) finding the right amount of features is key. Too few or too many will have 
a severe impact on the generalization abilities of your predictor model. Too 
few is easy too understand but too many requires an intuition about 
sample sparsity in high-dimensional spaces.

• c) the more features we choose as input the sparser our training samples 
will be distributed in the feature space. This means that decision 
boundaries become really tight around the used training samples because 
they all live close to each other at the boundaries of the space and our 
model will overfit the training data. 
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Curse of dimensionality
To approximate a (Lipschitz) continuous function 𝑓: ℝௗ  → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖ିௗ) samples

Input image resolution = 12 Mpixel * 3 channels = 36M elements
With 𝜖 ∼ 0.1, we need 1036000000 samples (1078 to 1082 atoms in the known, observable universe)



n2 parameters!
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…

• Input image resolution = 12 Mpixel * 3 channels = 36M elements
• MLP with one hidden layer of width=100 has 3.6B parameters
• That’s more than the number of cats and dogs on earth!

Curse of dimensionality

36M

100



k*n parameters!
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…

• Input image resolution = 12 Mpixel * 3 channels = 36M elements
• MLP with one hidden layer of width=100 has 3.6B parameters
• That’s more than the number of cats and dogs on earth!

Curse of dimensionality

36M

100



k parameters!
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…

• Input image resolution = 12 Mpixel * 3 channels = 36M elements
• MLP with one hidden layer of width=100 has 3.6B parameters
• That’s more than the number of cats and dogs on earth!

Curse of dimensionality

36M

100



Self similarity
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n2 parameters, 36M2 parameters!
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DL/math lingo 
‘intractable’ = 

hard to control or 
deal with

𝑦௝ = 𝑤௝,ଵ𝑥ଵ + ⋯ + 𝑤௝,௡𝑥௡



Each input neuron is connected to a small number k of 
hidden neurons.
Sparse connections: k*n parameters, e.g., 3*36M parameters!
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Early work, e.g., 
Y. LeCun et al., 

did this

𝑦௝ = 𝑤௝,௜ିଵ𝑥௜ିଵ + 𝑤௝,௜𝑥௜ + 𝑤௝,௜ାଵ𝑥௜ାଵ



Each input neuron is connected to a small number k of hidden neurons 
and weights are shared
Shared weights (position independent): k parameters, e.g. 3 parameters!
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DL lingo ‘weight 
sharing’ = a 

subset of weights  
are identical

𝑦௝ = 𝑤ିଵ𝑥௜ିଵ + 𝑤଴𝑥௜ + 𝑤ାଵ𝑥௜ାଵ
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0
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∑𝑎௜
଴ ≥ 2 → 𝑎௜

ଵ = 1

𝑎௢௨௧
ଶ =
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4
∑𝑎௜

ଵ
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e.g., 3 parameters!

1

0
Key take away: weight sharing! (a limited number of learnable “filter” 
parameters for a fixed but overlapping input range); 
Think filtering with sliding window!
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learned through backpropagation, 
dependant on the task! Up to hundreds per layer.

,          = filter 
kernel



Why “convolution”?
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1

0

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛: (𝑥 ∗ 𝑤)௜ = ∑௞𝑥௞𝑤௜ି௞ = ∑௞𝑥௜ି௞𝑤௞

𝑐𝑝. 𝑐𝑟𝑜𝑠𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛: (𝑥 ∗ 𝑤)௜ = ∑௞𝑥௞𝑤௜ା௞



wikipedia.org

Why not simply input = output for this feature detector?
Signals in the wild: Features in the wild:
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Network output (continuous):  

𝑓 ∗ 𝑔 𝑡 =  න 𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏  𝑓𝑜𝑟 𝑓, 𝑔 ∶ 0, ∞ → ℝ
௧

଴

 

Some features of convolution are similar 
to cross-correlation: 
for real-valued functions, of a continuous or 
discrete variable, it differs from cross-correlation 
only in that either f(x) or g(x) is reflected about the
y-axis; thus it is a cross-correlation of f(x) and g(−x), 
or f(−x) and g(x).

Watch: 
https://www.youtube.com/watch?v=N-zd-T17uiE



Properties of convolutions

• Commutativity, 
• Associativity,
• Distributivity, 
• Associativity with scalar multiplication, 
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What do we learn from this

• a) weight sharing reduces the number of parameters from n^2 in a 
multi-layer perception to a small number, for example 3 as in our 
experiment or 3 by 3 image filter kernels or similar

• b) these filter kernels can be learned through back propagation 
exactly in the same way as you would train a multi-layer perception. 
Each layer may have many filter-kernels, so it will produce many 
filtered versions of the input with different filter functions.

• c) for real-valued functions, of a continuous or discrete variable, 
convolution differs from cross-correlation only in that 
either f(x) or g(x) is reflected about the y-axis; so it is a cross-
correlation of f(x) and g(−x), or f(−x) and g(x).
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Second problem: no spatial structure 
preservation, fully connected layer
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Figure: adapted from Fei Fei et al.

Stack a 32x32x3 RGB image into a 3072x1 vector 

• we need priors about the data!



spatial structure preservation, convolutional 
layer
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Figure: adapted from Fei Fei et al.

Stack a 32x32x3 RGB image into a 3072x1 vector 

• we need priors about the data!
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Examples of 2D image filters

Remember: all learned 
through backpropagation, 
dependant on the task!
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What CNNs learn?
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What CNNs learn?
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What CNNs learn?
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Most of this initially proposed in 1980 and the 1990s
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Lacks backprop Adds backprop

No GPUs, no success for larger problems…

Success in 2012!



So what do we learn from this?

• a) convolutions can massively reduce the computational complexity of 
neural networks but the real power of CNNs is revealed when priors are 
implemented and for example spatial structure is preserved. This is also 
one of the reasons why CNNs have been so successful in Computer Vision

• b) CNNs are pipeline of learnable filters interleaved with nonlinear 
activation functions producing d-dimensional feature maps at every stage. 
Training works like a common neural network: initialise randomly, present 
exampled from the training database, update the filter weights through 
backpropagation by propagating the error back through the network. 

• c) convolution and pooling can be used to reduce the dimensionality of the 
input data until it forms a small enough representation space for either 
traditional machine learning methods for classification or regression or to 
steer other networks to for example generate a semantic interpretation like 
a mask of a particular object in the input. 
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