Deep Learning — VGG

Bernhard Kainz

Lecture inspired by Alex Smola with add-ons
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Deep Learning — Bernhard Kainz

Let’s talk about a network architecture that you’ll probably use in practice as a backbone

for feature extraction.
The next step in the evolution of design came in the form of VGG.

VGG stands for the visual geometry group in Oxford
They read the Alexnet paper and learned that apparently bigger is better so they

decided to go even bigger.
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let's have a look at how this looks like in detail

If we compare this to Alexnet and Lenet

To make it bigger you can add even more dense layers.

well maybe not really because that's too expensive.

or you add more convolutions

You can do that but then at some point you start getting tired of having to define every
convolution separately so you might as well group them into blocks

once you go to 20 30 40 layers it gets quite annoying having to specify by hand

so the key innovation in VGG is actually this grouping into blocks which then turns into
parametretisable repeated blocks that we can use for learning tasks.
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. In this work we investigate the effect of the convolutional network depth on its
L4 2X2 m aX— pool | ng accuracy in the large-scale image recognition setting. Our main contribution is
. a thorough evaluation of networks of increasing depth using an architecture with
(St ri d e 2 ) very small (3 x 3) convolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16-19

weight layers. These findings were the basis of our ImageNet Challenge 2014
submission, where our team secured the first and the second places in the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best-performing ConvNet models publicly available to facili-
Deep Learning — B¢ tate further research on the use of deep visual representations in computer vision.

Let’s look at the VGG blocks

the first thing they had to solve is whether you should use fewer wide convolutions or
more narrow ones

[paper] did a good comprehensive analysis and it showed that more layers of narrow
convolutions were more powerful than a smaller number of whide convolutions

this tends to be a trend overall in the network designs that a larger number of
compositions of simple functions turns out to be more expressive and more able to fit

meaningful models than a small number of shallower and more complicated functions.

The VGG block has a bunch of 3x3 convolutions

if you padded them by one it didn't change the size of the input relative to the output
and then in the end you have max pooling of two by two with a stride of two which
halves the resolution.

now if you stack several of those things together and combine it with the same dense
layers as we had in Alexnet, then you get VGG.
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you get actually entire family of different such architectures simply by varying the number
of such blocks that you will combine.

so you get eg VGG-16 or VGG-19 and so on.

If you think about the overall progress so far it basically boils down to bigger and deeper.
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progress

* LeNet (1995)
* 2 convolution + pooling layers
* 2 hidden dense layers

* AlexNet
* Bigger and deeper LeNet
* RelLu, Dropout, preprocessing

* VGG
* Bigger and deeper AlexNet (repeated VGG blocks)

Deep Learning — Bernhard Kainz

In LeNet you had 2 convolution and pooling layers
In AlexNet everything became bigger
Followed by VGG
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Here is a block of throughput vs. accuracy.

VGG is a lot slower but also more accurate than AlexNet

following one people move back to smaller networks but with higher accuracy
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def vgglé(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:

"VGG 16-layer model (configuration "D")

"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1469.1556.pdf> _

Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr

return _vge('vggls', 'D', False, pretrained, progress, **kwargs)

def _vgg(arch: str, cfg: str, batch_norm: bool, pretrained: bool, progress: bool, **kwargs: Any) -> VGG:

if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
model.load_state_dict(state_dict)

return model

def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential:
layers: List[nn.Module] = []
in_channels = 3
for v in cfg:

M

layers += [nn.MaxPool2d(kernel_size=2, stride=2)]

if v

else:
v = cast(int, v)
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.RelLU(inplace=True)]
in_channels = v

R 3ernhard Kainz
return nn.Sequential(*layers)

class VGG(nn.Module):

def _init_(
self,
features: nn.Module,
num_classes: int = 1000,
init_weights: bool = True

) -> None:
super(VGG, self)._init_ ()
self.features = features

9ST9508

self.avgpool = nn.AdaptiveAvgPool2d((:
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4e96, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear (4096, num_classes),
)
if init_weights:

self._initialize weights()

def forward(self, x: torch.Tensor) -> tort

x = self.features(x)

x = self.avgpool (x)
X = torch.flatten(x, 1)
x = self.classifier(x)

return x
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https://github.com/pytorch/vision/blob/mas
ter/torchvision/models/vgg.py
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