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ABSTRACT
Goal orientation is an increasingly recognised Requirements
Engineering paradigm. However, integration of goal mod-
elling with operational models remains an open area for
which the few techniques that exist are cumbersome and im-
practical. In particular, the derivation of operational models
and operational requirements from goals is a manual and te-
dious task which is, currently, only partially supported by
operationalisation patterns. In this position paper we pro-
pose a framework for supporting such tasks by combining
model checking and machine learning. As a proof of concept
we instantiate the framework to show that progress checks
and inductive learning can be used to infer preconditions
and hence to support derivation of operational models.

Categories and Subject Descriptors: D.2.1 Software
EngineeringRequirement/Specifications [Elicitation methods];
I.2.6 Artificial IntelligenceLearning[Induction]

General Terms: Theory, Verification

Keywords: Goal-oriented requirements engineering, sce-
narios, inductive inference, Event Calculus, FLTL

1. INTRODUCTION
Goal orientation is an increasingly recognised paradigm

for eliciting, elaborating, structuring, specifying, analysing,
negotiating, documenting and modifying software require-
ments [7, 8]. Goals are prescriptive statements of intent
whose satisfaction requires the cooperation of agents (or ac-
tive components) in the software and its environment. Goals
are organised in refinement structures; high-level goals are
recursively refined into sub-goals until each terminal goal
is realisable by some individual agent, in the sense that it
is defined in terms of phenomena that are monitored and
controlled by the agent [12].

Although goal models naturally support a number of anal-
yses such as obstacle and conflict detection, their declara-
tive nature is not the best fit for validation techniques based
on executable models such as graphical animations, simula-
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tions, and rapid-prototyping. In addition, they do not nat-
urally support narrative style elicitation techniques, such
as those in scenario-based requirements engineering [20].
Moreover, they are not suitable for down-stream analyses
that focus on design and implementation issues which are of
an operational nature.

To address these issues, the construction of operational
event-based models from goal models has been investigated.
Such models can be derived automatically from goals ex-
pressed in temporal logic. However, because goals are typ-
ically expressed in a synchronous, non-interleaving seman-
tic framework while operational models are essentially asyn-
chronous, interleaved semantic frameworks, such derivation
can lead to operational models with deadlocks and live-
locks [10]. The essence of the problem lies in the fact that
goals under-specify system behaviour, requiring certain prop-
erties to hold at fixed time points (in this sense they are syn-
chronous [11]). However, it does not specify the sequence of
interleaved events that make these properties true.

It is possible to derive an operational model without dead-
locks and livelocks if the goal model has been fully refined
into operational requirements, i.e. preconditions and trig-
gering conditions have been identified for all events [10].
However, refinement of operational requirements from goals
is a tedious manual task that is only partially supported by
operationalisation patterns. Additionally, these patterns are
only defined for certain types of goals [13].

The aim of the work described in this position paper is
to support the elicitation of operational requirements such
as preconditions and triggers and, more generally, to aid
the construction of operational models from goal models.
Our approach combines scenarios, model checking and ma-
chine learning into a framework that supports iterative elab-
oration of goal models towards fully operationalised ones.
The overall approach (Figure 1) consists of three conceptual
phases; scenario generation where a negative scenario lead-
ing to deadlock or livelock is generated fully automatically
by the LTSA model checker, scenario elicitation where an
engineer produces positive scenarios that exemplify the cor-
rect behaviour of the system under similar circumstances
and inductive learning where the inductive learning tool,
Progol5, is used to compute preconditions and triggers that
would avoid the negative scenario and be consistent with
the positive ones.

This paper is organised as follows: Section 2 briefly presents
Labelled Transition Systems, Fluent Linear Temporal Logic,
Event Calculus and Learning Event Calculus programs, as
well as a running example, a Mine Pump Control System.
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Section 3 presents our approach and Section 4 presents a
discussion and related work. Finally, we conclude in Section
5 with future work.

2. BACKGROUND
We use a simplified version of the mine pump control sys-

tem described in [6] throughout this paper as a running ex-
ample. The system concerns a mine that tends to fill up
with water. The water must not rise above a specified level
otherwise the miners would drown. When the water level
starts to rise the pump can be turned on to lower it. How-
ever, in order to prevent explosions, the pump must not be
turned on if there is a high level of methane in the mine.

2.1 Labelled Transition Systems
Labelled Transition Systems (LTS) are used to model a

system as a set of concurrent components [14]. Each com-
ponent is characterised by a set of states and transitions
between these states. Each transition is labelled with an
event describing an observable behaviour of the component.
The global system behaviour is given by the parallel com-
position of LTSs, which results in a LTS that interleaves the
behaviour of all components but forces synchronisation on
shared events.

Modelling discrete-time systems in LTS requires explicit
reference to an event tick. This event signals the regular
ticks of the system clock in which each timed-process is as-
sumed to synchronise. When modelling discrete-time sys-
tems in this way, it is important to check that the defined
LTS model does not indefinitely prevent time from progress-
ing. This can be checked automatically by the tool LTSA
(Labelled Transition Systems Analyser) through a progress
check. This ensures that the LTS model does not deadlock
and that a tick event occurs infinitely often in any infinite
execution trace [14]. We refer to this property as the time
progress property (TP).

2.2 Fluent Linear Temporal Logic
Fluent Linear Temporal Logic (FLTL) is a Linear Tempo-

ral Logic for expressing state-based temporal logic proper-
ties for an event-based operational model [5]. As in Linear
Temporal Logic, FLTL assertions are constructed from a
set of atomic propositions, the standard Boolean operators
¬,∨,∧,→ and ↔ and the temporal operators X (next), �

(always), � (eventually), U (until), and W (awaits). The
set of atomic propositions in FLTL is the set of fluents, a
proposition whose truth value changes over time. Given an
FLTL language, each fluent F l in the language is defined
in terms of an initiating (IF l) and terminating (TF l) set
of events and an initial value, initiallyF l; we assume that
fluents are initially false unless stated otherwise. The oc-
currence of an event in IF l (resp. TF l) makes the fluent F l
true (resp. false). We define a fluent as follows: fluent Fl =
<IF l,TF l > initially initiallyF l. In addition, every event e in
the alphabet A of a LTS model defines an implicit fluent:
fluent e = <{e},A-{e}> initially false.

Let Φ denote the set of fluents in a given FLTL language.
An interpretation is an infinite history h : Nat → 2Φ which
defines for each position i ∈ Nat the set of fluents that
are true at that position. A fluent F l is said to be true
at a given position i if and only if either of the following
conditions holds:

• F l initially holds and no terminating events has oc-
curred since (InitiallyF l ∧ (∀k ∈ Nat.0 ≤ k ≤ i, ek

	∈ TF l)).
• Some initiating event has occurred before position i

and no terminating event has occurred since (∃j ∈
Nat : ((j ≤ i) ∧ (ej ∈ IF l)∧ (∀k ∈ Nat j < k ≤ i, ek 	∈
TF l)).

Note that from the above definition, events have an imme-
diate effect on the values of fluents.

The notation (h,i) |= P is used to denote that the expres-
sion P is true at position i in the history h. Assuming P and
Q are two FLTL expressions, h is a given history, and i a
position in the history, the truth of an expression P is based
on the standard semantic meaning of the Boolean operators
and on the following semantic definitions of the temporal
logic operators [15]1:

• (h,i) |= X P iff (h,i+1) |= P.

• (h,i) |= � P iff (h,j) |= P for all j ≥ i
• (h,i) |= P U Q iff (h,j) |= � Q for any j ≥ i and (h,k) |=

P for all k s.t. i ≤ k < j .

Note that the definition of position i in history h, hence the
semantics of the temporal operators, can have different in-
terpretations. In an asynchronous interpretation of FLTL,
position i is the one after the ith event, while in a syn-
chronous interpretation, i would be interpreted as after the
ith tick of the global clock. For instance, an asynchronous
interpretation makes the expression ’�P’ mean P is true af-
ter the occurrence of every event in a history, while in a
synchronous interpretation ’�P’ would mean P is true af-
ter the occurrence of every tick event (assuming tick mod-
els the global clock). A technique for translating FLTL
expressions interpreted synchronously into equivalent asyn-
chronous FLTL expressions has been presented in [11]. Ac-
cording to this translation, the synchronous expression ’�P’
becomes ’�(tick → P)’.

Returning to the mine pump example, its goals can be for-
mulated with the following fluents and synchronous FLTL
expressions:

fluent PumpOn = <switchPumpOn,switchPumpOff>,
fluent Methane = <methaneAppears,methaneLeaves>,
PumpOnWhenHighWaterAndNoMethane =
� (HighWater && ¬Methane → X PumpOn ),
PumpOffWhenLowWater = � (LowWater → X ¬PumpOn),
PumpOffWhenMethane = � ( Methane → X ¬PumpOn),
RaiseWaterLevelPre[i] = � (PumpOn→ X¬raiseWaterLevel[i])2 .

2.3 Event Calculus
Event Calculus (EC) is a logic-based formalism for rep-

resenting and reasoning about event-based systems. As in
FLTL, the basic idea in standard Event Calculus is that a
fluent, a property whose value varies over time, is true (resp.
false) at a particular time-point if an event has occurred at
an earlier time-point that initiates (resp. terminates) it, and
no terminating (resp. initiating) events have occurred in the
meantime [16].

EC is a specialised three-sorted first-order logic including
a sort A of events (e1,e2,..), a sort F of fluents (f1,f2..), and
a sort T of time-points ( t1,t2,..) isomorphic to the set of

1W is defined in terms of U and �; � is equivalent to ¬�¬.
2This is a precondition describing how the water level
changes using the following indexed set of asynchronous
FLTL expression
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non-negative integers. The basic predicates in EC are: Hold-
sAt ⊆ F ×T , Happens ⊆ A×T , Initiates ⊆ A×F ×T and
Terminates ⊆ A×F ×T . The predicate HoldsAt(f, t) indi-
cates that a fluent f is true at a time-point t. The predicate
Happens(e, t) means that the event e occurs at time-point
t. The predicates Initiates(e,f,t) (resp.Terminates(e,f,t)) de-
notes that if an event e occurs at time-point t, then e causes
the fluent f to be true (resp. false) immediately after-
wards. For example, the statement: ‘The pump is ini-
tially off, the switch is turned on at time 2, and turning the
switch on activates the pump’ can be expressed in EC as fol-
lows3: ¬HoldsAt(PumpOn,0), Happens(switchPumpOn,2),
and Initiates(switchPumpOn,PumpOn,t).

To capture the reasoning process underlying the effects of
events on fluents, an EC program is assumed to include a
set of core axioms. These are domain-independent axioms
that describe the default-persistence of the truth values of
fluents. For a full definition of these axioms, the reader
is referred to [16]. In addition to the core axioms, an EC
program consists of a set of domain-dependent axioms that
describe casual relations between events and fluents in terms
of Initiates and Terminates rules. The EC core axioms and
the domain-dependent axioms are used to derive information
about the truth value of fluents at future time-points. For
instance from the above example it is possible to derive that
Pump is on at time-point 4, i.e. HoldsAt(PumpOn, 4).

2.4 Learning Event Calculus Programs
An inductive learning task is the process of deriving a

hypothesis H from given partial background knowledge B
and evidence E which is consistent with B and, together
with B, explains E4. Formally, given a partial background
knowledge B and evidence E, the process tries to find a
theory H consistent with B such that B ∪ H |= E and
B ∪ H 	|= False.

Inductive logic programs are built from Horn clauses. A
Horn clause is a disjunction of literals with at most one
positive. In standard inductive learning programming (ILP)
problems, the background knowledge B is a conjunction of
Horn clauses and the evidence E is a set of ground facts.
Integrity constraints I can also be considered as part of an
inductive learning task and are used to further refine the
learning process. They are Horn clauses with no positive
literals.

Within the context of leaning EC programs, the back-
ground knowledge, denoted by TEC , consists of the EC core
axioms (TDIA), domain-dependent axioms (TDDA) and static
axioms (TStatic), i.e. TEC = TDIA ∪ TDDA ∪ TStatic [17].
The static axioms include a narrative (TNar) given by a set
of ground facts describing event occurrences, the initial state
also given as ground facts and any auxiliary axiom. The ev-
idence is a set of positive ground facts describing the truth
value of fluents at specific time-points.

In the above context, learning EC programs means com-
puting additional domain-dependent axioms that are con-
sistent with the given background knowledge TEC and that
together with TEC explain the evidence E. In formal terms,
the learning problem can be defined as: given a set of in-

3Free variables are assumed to be universally quantified un-
less specified.
4We can restrict ourselves to consider E to be just a set of
positive examples, since negative examples can be defined
as integrity constraints

Figure 1: Inference of operational requirements
from goals and scenarios

tegrity constraints I , background knowledge TEC and evi-
dence E, find a theory H such that TEC ∪ H ∪ I |= E and
TEC ∪ H ∪ I 	|= False.

3. NEW APPROACH
This section describes a semi-automated approach for in-

ferring operational requirements that refine a given goal
model. Figure 1 illustrates this approach. A goal model
is first transformed into a LTS model which is then checked
for time progress. If progress is violated, an example of such
violation is produced for the engineer. The engineer elab-
orates this example of negative behaviour and produces a
number of alternative acceptable scenarios. The resulting
scenarios are integrated and an inductive learning technique
is then used to infer new operational requirements.

3.1 Problem Statement
Let Gs be a consistent goal model composed of synchronous

FLTL assertions modelling high-level goals and operational
requirements. From Gs, it is possible to construct a se-
mantically equivalent set of asynchronous FLTL assertions
Ga [11]. In addition, these asynchronous assertions can be
used to derive a LTS model M such that M satisfies Ga:

M |= Ga.

However, M may not be a suitable operational model as it
may allow time not to progress. In other words, M may
allow traces in which tick never occurs because the environ-
ment or the system is continuously performing other events.
For example, consider the synchronous goal gs, �( Methane
→ X ¬PumpOn). Its asynchronous version ga, �(tick →
(Methane → X (¬tick W (tick && ¬ PumpOn)))) only con-
strains the occurrence of ticks. Hence, it permits traces such
as (switchPumpOn, switchPumpOff, switchPumpOn, switch-
PumpOff...) and (switchPumpOn, switchPumpOn...) which
do not allow time to progress, violating the TP property.
These traces vacuously satisfy ga as tick never occurs.

The problem with the example given above is that there
is no information as to when the pump must be switched on,
i.e. (the triggering condition for the event switchPumpOn),
and when it should not be turned on (i.e. the precondition
for the event switchPumpOn). The goal ga only provides
information as to when a tick of the clock is reasonable. In
fact, the model does not constrain the occurrence of any
event except tick. Hence, although M |= Ga, M may have
progress problems if suitable preconditions and triggering
conditions are not captured in Ga. The aim of this approach
is to support eliciting the missing operational requirements.

In this section we instantiate the framework described in
Figure 1 to learn preconditions. This involves, in particular,
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the introduction of a standard assumption in reactive sys-
tem modelling which is that of maximal progress (MP) [2].
It is assumed that the reactive system is fast enough to per-
form all necessary computation before the next input from
the environment. In this case, we are interested in assum-
ing that the system will perform all it needs to do before
the next global clock event. In a sense, the assumption is
that the system is greedy and will try to perform all the
operations it can while not violating any goals. If in doing
so time does not go forward, this implies that a precondi-
tion to some action is missing. For instance, in the example
above, setting ¬PumpOn && ¬Methane as a precondition for
switchPumpOn would avoid both traces mentioned above.
Note that our approach also takes into account the exis-
tence of additional assumptions, A, that may be relevant
to the goal oriented modelling framework being used. For
instance, the KAOS framework assumes a fluent can only
change value once per time unit. This assumption, as we
show in Section 3.2, can introduce deadlocks which are a
particular kind of progress violation.

Let Gs be a goal model containing synchronous FLTL
goals and operational requirements, and let Ga be its trans-
lation into asynchronous FLTL. Let F be a set of fluent def-
initions that define the fluents in Ga. We can now formulate
the learning problem for preconditions as follows: Given,

Ga ∧ F ∧ MP ∧ A 	|= TP. (1)

our aim is to derive a set of required preconditions Req such
that:

Req ∧ Ga ∧ F ∧ MP ∧ A |= TP, (2)

by means of an iterative process of learning from positive
and negative scenarios. Learnt required preconditions, Req,
when added to the initial goal assertions will have the effect
of disallowing sequences of events that previously led to the
violation of the TP property. The final set of requirements
Req together with the original goals Ga should then allow
time to progress while still satisfying the MP property.

Note that the above problem formulation can be adapted
to learn other operational requirements such as trigger con-
ditions. However, for these cases other assumptions instead
of maximum progress may be needed. In particular, for
learning triggers a “maximal laziness” assumption would be
needed to highlight scenarios in which if the system is not
forced (triggered) to perform an action, then an undesirable
situation, such as a goal violation, will occur.

3.2 Scenario Generation
The first phase of our approach consists of generating sce-

narios that exemplify the problems associated with lack of
operational requirements. More specifically, this phase gen-
erates traces that exemplify Equation 1.

The input to this phase is a set of goals, a set of op-
erational requirements (if available) and assumptions of the
goal modelling framework. Goals are described in synchronous
FLTL and include the definition of the fluents in terms of
initiating and terminating events. Operational requirements
are described by associating fluent expressions with opera-
tions in the style of KAOS [13]. For instance, the operational
requirements for event switchPumpOn might be: Operation
switchPumpOn Trigger: HighWater Precondition: ¬Methane
∧ ¬PumpOn. Finally, assumptions are given as synchronous
or asynchronous FLTL assertions depending on the mod-
elling framework used.

The construction of an operational model requires a set
of asynchronous FLTL formulae. Goals can be translated to
asynchronous FLTL by following the translation described
in [11]. The asynchronous FLTL assertion for the trigger
Trig of an event e can be constructed according to the pat-
tern �(Trig→Xe ), while the asynchronous FLTL assertion
for the precondition Pre of an event e can be constructed
using �(¬ Pre → X¬e). The resulting asynchronous FLTL
theory can be used by the LTSA tool to produce a LTS
model that satisfies the goal model.

In our Pump example, we assume Gs to be the set of goals
defined in Section 2.2 and A to restrict, as in KAOS, fluents
from changing value more than once per tick. The output
of LTSA is as follows:

Trace to terminal set of states

tick

methaneAppears METHANE

switchPumpOn METHANE && PUMPON

raiseWaterLevel.0 METHANE && PUMPON

This trace shows a sequence of events that leads to dead-
lock and represents an example of why Equation 2 does not
hold. The capitalised text on the right column indicates
the fluents that are true after the occurrence of the event
on the left. The cause of deadlock is that all events are
constrained from occurring due to some goal or assump-
tion; the event tick is constrained from occurring because
the pump is on but PumpOffWhenLowWater requires the
pump to be off at the next tick. Nonetheless, the assump-
tion on changes of fluent values in one time unit restricts
the pump from being turned off and methane from leav-
ing. Preconditions on switchPumpOn and methaneAppears
prevent these actions from occurring if the pump is on and
there is methane present respectively. Finally, the water
level is prevented from rising when the pump is on.

On inspecting the above trace, the engineer may see as
anomalous the fact that the pump is switched on when
methane is present, situation which is not prevented by the
synchronous goal PumpOnWhenHighWaterNoMethane. Al-
ternatively, the engineer may identify that the pump should
not have been switched on because at the end of the time
unit, the goal PumpOffWhenLowWater requires the pump to
be off. In any case, engineers can use the trace produced
in a fully automated way to locate such specific negative
scenarios. We believe this is an intuitive task that can to
be performed manually, in particular because the negative
scenario will always be a prefix of the trace fed back by the
progress check.

We define a negative scenario as a sequence of events we,
where w is a sequence of events and e is an undesired event.
The intended meaning of ωe is that if the system exhibits w,
then e should not occur next . In the following we assume
that the negative scenario identified by the engineer is as
follows: tick, methaneAppears, switchPumpOn.

Once a negative scenario has been identified, a scenario
that exemplifies the correct behaviour of the system under
similar circumstances needs to be given. More precisely, if
we is the negative scenario identified, the positive scenario
is required to be of the form ww′, where w′ is a sequence of
events that contains e. Furthermore, this positive scenario
must be consistent with all existing goals and assumptions.

In our example, a positive scenario showing the pump be-
ing switched on once the water level has surpassed the low
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water threshold (e.g. level 2) may be: tick, mathaneAp-
pears, tick, raiseWaterLevel.0, methaneLeaves, tick, raiseWa-
terLevel.1, tick, raiseWaterlevel.2, tick, switchPumpOn.

Note to guarantee that the positive scenario is consistent
with existing goals and assumptions, the engineer can walk
through or animate the LTS model on which the progress
check was performed. This model is guaranteed to satisfy
all goals and assumptions, hence any trace generated by it
will be adequate. Finally, note that although in this case the
progress violation is a deadlock, the same procedure applies
to time locks.

3.3 Learning Preconditions
This section describes the learning stage of our approach

in which operational requirements are learnt from scenarios
generated in the previous phase. As before, we consider
the case of learning preconditions, although the approach is
applicable to event triggers as discussed in Section 3.1.

3.3.1 Overview
As described in Section 2.3, EC is a framework for reason-

ing about action and change. The framework assumes that
events occur at certain time points and, consequently, fluents
may change truth value. When learning EC programs using
ILP, the aim is to learn a set of axioms, H , that describes
(or prescribes) the rules that govern the relation between
events occurring and changes to the truth values of fluents.
The static axioms, particularly the narrative TNar and the
evidence E, play a crucial role in the learning process. The
learning attempts to explain the relation between the nar-
rative and the evidence.

We can instantiate the inductive learning task described
in Subsection 2.4 for the problem statement given in Sec-
tion 3.1 by having the set of goals Ga, MP , and A as
integrity constraints I , the fluent definitions F as TDDA,
the narrative derived from positive and negative scenarios
as TNar and the fluent trace derived from positive and neg-
ative scenarios as evidence E.

A key to the correctness and utility of the result provided
by this learning setting is how the scenarios generated as in
the previous section are used to construct the narrative and
evidence. Furthermore, the formalisation of the narrative
and evidence depends on the form of assertions that are to
be learnt(e.g triggers or preconditions).

In this paper, we aim to learn preconditions for an event
e of the asynchronous FLTL form �(¬ Pre → X ¬ e) where
Pre =

V
i(¬)(fi). These preconditions are formalised in EC

as Impossible(e, t) ← V
i(¬)HoldsAt(fi, t). Consequently,

the narrative and evidence must be formalised such that a
relation between the impossibility of an event occurring and
the values of fluents can be explained. The EC core axioms
given in [16] provide an axiomatization which essentially de-
fines Happens as follows: Happens(e,t) ↔ Performs(e,t) ∧¬
Impossible(e,t), where the predicate Performs is interpreted
as “e is attempted to be performed”. The above definition
of Happens(e,t) can therefore be understood as: if an at-
tempt to perform e is made and it is actually possible (or
permitted) for it to occur then e happens.

In the next subsection we show how this axiomatization is
exploited to learn assertions with Impossible predicates by
formalising the narrative using Performs, fluent traces with
HoldsAt, and fluent definitions in terms of the predicates
Initiates/Terminates.

3.3.2 Narratives and Evidence
In an EC learning program, a narrative is a single sequence

of events. Hence, positive and negative scenarios need to be
integrated. However, one needs to ensure that no informa-
tion is lost on what is considered good and bad behaviour.
This is captured in the way the fluent trace is constructed.

Suppose we have a negative scenario SN = ωe, and a
positive scenario SP = ωω′ where ω and ω′ are sequences
of events and e is an undesired event. We define the re-
sult of integrating SN and SP as the sequence of events
N = ωeω′. For instance, from our running example, the
negative and positive scenarios result in the following narra-
tive: tick, methaneAppears, switchPumpOn, tick, raiseWater-
Level.0, methaneLeaves, tick, raiseWaterLevel.1, tick, raiseWa-
terLevel.2, tick, switchPumpOn where ω ={tick, methaneAp-
pears}, e ={switchPumpOn} and ω′ = {tick,raiseWaterLevel.0,
methaneLeaves, tick, raiseWaterLevel.1, tick, raiseWaterLevel.2,
tick, switchPumpOn}.

The fluent trace is built based on the narrative and the
definition of fluents. The first set of fluent values of the
fluent trace, i.e. those corresponding to time-point t = 0, is
given by the initial value of fluents as defined in F . Hence,
for the mine pump, the initial values of fluents PumpOn,
Methane, HighWater and LowWater are false, false, false and
true respectively. The set of fluent values for a time-point
t > 0 is then computed based on the changes provoked by
the event occurring at t − 1 and on the set of fluent values
of time-point t − 1. In other words, the truth value of the
fluent f at t will be true, false or the same as its value at
t − 1 depending on whether the event occurring at t − 1
in the narrative is, according to the fluent definition of f ,
initiating, terminating or neither. The exception to this rule
is for the fluent values at time point t = |SN | where |SN | is
the number of events in the negative scenario, i.e. for the
event in the narrative that represents undesired behaviour.
For this time-point, the set of fluents at t is defined to be
exactly as the set at |SN | − 1.

The above construction effectively builds a fluent trace
in which the occurrence of the undesired event is ignored
in terms of its impact in fluent values. In our running ex-
ample it is the switchPumpOn after the first tick which is
considered as undesirable and consequently ignored for the
computation of fluent values at t = 3. This leads to the
following narrative and fluent trace:

t Narrative Fluent trace

0 tick LowWater && ¬Methane && ¬PumpOn...

1 methaneAppears LowWater && Methane && ¬PumpOn...

2 switchPumpOn LowWater && Methane && ¬PumpOn...

3 tick LowWater && Methane && ¬PumpOn...

4 raiseWaterLevel.0 LowWater && Methane && ¬PumpOn...

. . .

. . .

. . .

11 switchPumpOn ¬LowWater && ¬Methane && ¬PumpOn...

12 ¬LowWater && ¬Methane && PumpOn...

In conclusion, the construction of fluent traces is not the
trace derived merely from the narratives and fluent defini-
tions, but is a variation to encode undesirable events.

Returning to our main objective, learning preconditions of
the form Impossible(a, t) ← V

i(¬)HoldsAt(fi, t) and given
the axiomatization of Happens(e,t) ↔ Performs(e,t) ∧ ¬
Impossible(e,t), we formalise the narrative and fluent trace
in terms of Performs and HoldsAt respectively. In our run-
ning example, the narrative is formalised with the following
set of axioms: {Performs(tick, 0), Performs(methaneAppears,
1), Performs(switchPumpOn, 2), Performs(tick, 3), . . . , Per-
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forms (switchPumpOn, 11)}, while the fluent trace is for-
malised with the following set of axioms: {HoldsAt(LowWater,
0) ∧ ¬ HoldsAt(Methane, 0) ∧ ¬ HoldsAt(PumpOn, 0), ...,
HoldsAt(LowWater, 1) ∧ HoldsAt(Methane, 1) ∧ ¬ Hold-
sAt(PumpOn,1), ..., ¬ HoldsAt(LowWater, 12) ∧ ¬HoldsAt
(Methane, 12), ∧ HoldsAt(PumpOn, 12), ...}.

3.3.3 Computing preconditions
Given the above formalisation, the learning algorithm finds

an event e corresponding to the undesired behaviour that is
(attempted to be) performed (Performs(e,|SN |−1)) and has
no effect on the fluent trace at time point |SN |. Moreover,
it finds another occurrence Performs(e,t) that changes the
fluent value at the consecutive time-point. From this, the
learning algorithm infers that it cannot be the case that
Happens(e, |SN |−1). Consequently, under conditions hold-
ing at time-point |SN | − 1, it is impossible for e to hap-
pen, i.e. Impossible(e, |SN | − 1). However, it does not in-
fer Impossible(e, t). In our running example, the learning
algorithm tries to infer an explanation as to why Impossi-
ble(switchPumpOn,3) and not Impossible(swithPumpOn,11).

To allow the learning algorithm to relate Happens predi-
cates with HoldAt predicates, and hence perform the infer-
ence described above, we need to provide as part of the EC
program the relation between fluents and events as given by
the fluent definitions for the FLTL goal model. The trans-
lation can be described as: given an FLTL fluent definition
Fl=〈IF l, TF l〉, sentences of the form Initiates(eI ,Fl,t) and
Terminates (eT ,Fl,t) are generated for every event eI ∈ IF l

and event eT ∈ TF l. Implicit FLTL fluents defined by
events are also translated in a similar way. The set of these
Initiates and Terminates ground predicates generated con-
stitutes the domain dependent theory TDDA used by the
learning system with the core axioms to generate H .

The actual learning is provided by the Progol5 system [18]
which, in addition to the integrity constraints I , the back-
ground knowledge TEC , and the evidence E, requires a lan-
guage bias that guides Progol5’s search through the hy-
potheses space for assertions of the form Impossible(e, t) ←V

i(¬)HoldsAt(fi, t) that explain E. Although the inductive
learning algorithm allows us to learn assertions of that exact
form, a weaker form of preconditions is computed. This is
due to limitations introduced by Progol5 when dealing with
negation as failure [18]. Instead of learning assertions that
describe when it is impossible for an event to occur, the sys-
tem learns when it is possible for an event to occur , where
Possible means an event e is possible to occur at time-point
t. An example hypothesis that is learnt in the above case is:

Possible(switchPumpOn,t)← ¬HoldsAt(Methane,t).
However, other tools have been introduced to handle nega-

tion as failure. For instance, the system HAIL (Hybrid Ab-
ductive Inductive Learning) is capable of learning hypothe-
ses where the head of a clause appears negated in the back-
ground [19]. It would thereby learn hypotheses of the form:

Impossible(switchPumpOn,t)← HoldsAt(Methane,t),
which can be translated back into the asynchronous FLTL

formula � (Methane → X ¬ switchPumpOn)5.
Once a precondition has been learnt, it can be added to

the goal model and the learning process can be restarted
generating new scenarios.

5This corresponds to the FLTL syntax for defining precon-
ditions by assuming the condition as ¬(¬ Methane).

4. DISCUSSION AND RELATED WORK
This paper advocates an approach for deriving operational

requirements from goal models based on scenario generation
through model checking and inductive learning. As a proof
of concept, the paper describes in detail the case of learn-
ing preconditions for KAOS models. We believe that other
operational requirements could also be computed by suit-
able tailoring of the same approach. For instance, trigger
conditions could be learnt by providing the learning system
with appropriate language bias that expresses the perfor-
mance of an event as conditioned to (a conjunction of) flu-
ents. In the mine pump case study, a trigger condition of
the form: ‘switch the pump on when the water has reached
a high level’ could be learnt by considering a language bias
where the predicate Perform is conditioned by (a conjunc-
tion of) predicates HoldsAt so allowing the computation of
rules of the form: Performs(switchPumpOn,t) ← ¬ Hold-
sAt(PumpOn,t) ∧ HoldsAt(HighWater,t).

A formal underpinning of the ‘termination’ of the iterative
learning cycle proposed needs to be formulated. It is still
unclear what guarantees exist to ensure that by iteratively
adding learnt preconditions (or operational requirements in
general) to the goal model the engineer will eventually ob-
tain a fully operationalised model with no progress viola-
tions. We believe that to guarantee some notion of termina-
tion, the approach will need to be extended to learn triggers
and also to learn more general forms of preconditions, since
at the moment preconditions are restricted to conjunctive
normal form.

Key to the approach is the use of properties that can be
automatically verified and for which violations can prompt
the identification of incomplete aspects of a requirements
specification. Our approach exploits the semantic gap be-
tween synchronous non-interleaved goal models and asyn-
chronous operational models and also the maximal progress
assumption to generate traces that violate progress and that
can drive forward the refinement of a goal model.

Note that although the methodology uses different for-
malisms as FLTL, EC, and ILP, the engineer only deals with
FLTL assertions and scenarios. Nonetheless, the approach
makes use of these formalisms to exploit existing tools.

Various examples of application of learning techniques to
software engineering have been proposed in the literature [1,
21, 4, 3]. Among these, the most relevant is the work de-
scribed in [9], which proposes an approach for extracting
goal requirements, as temporal formulae, from single sce-
narios using explanation-based learning. The scenarios are
single positive scenarios provided by the stakeholder and tai-
lored manually to improve the output of the learning; the
explanation-based learning is used to support the generation
of new goals that explain the given scenario. These goals are
then added to the given KAOS goal structure to which the
full KOAS methodology of goal decomposition and obstacle
detection is applied.

Our work differs from that proposed in [9] not only in the
type of learning technique adopted, which is inductive logic
programming instead of explanation-based learning but also
in the overall objective of the approach. In [9] the learning
process is to support the elicitation of arbitrary requirements
from user provided scenarios, whereas our approach is much
more targeted. We aim to learn a specific kind of require-
ments, those on operations that the system provides. In
addition, in our approach the starting point for learning is
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an automatically-generated scenario which exemplifies the
consequences of having a partially-refined goal model. We
believe that, although the more focused application of ma-
chine learning is less general than that of [9], it will allow
for increased automation in learning requirements as well as
less and simpler forms of user intervention.

5. CONCLUSION
This paper presents an approach for learning operational

requirements from positive and negative scenarios in order to
support the operationalisation process of goal models. Up to
now this has been only partially supported by operationali-
sation patterns [13], which must be applied manually. This
represents a tedious task that may lead to over-specification.

The approach deploys a well established inductive logic
programming system that facilitates the computation of hy-
potheses that together with a given background knowledge
can explain the positive but not the negative observations.

The overall operationalisation process advocated in this
paper builds upon existing work by some of the authors on
automated generation of LTS models from goal models [10].
These LTS models, although consistent with the given goal
model, can exhibit progress violations due to lack of op-
erational requirements. By identifying these violations as
negative scenarios and eliciting positive scenarios that avoid
such progress problems, new operational requirements can
be inferred automatically.

We believe the approach is promising and we show that it
can be applied specifically to learning preconditions for op-
erations described in goal models. We have validated pre-
condition learning through the Mine Pump case study by
comparing learnt preconditions with the preconditions that
would have been computed manually by means of the oper-
ationalisation patterns.

Ongoing and future work involves developing the formal
underpinning to characterise the termination of the iterative
learning cycle, extending the work to learning triggers and
generalised forms of preconditions, automating the process
of the formalisation presented and validating the approach
with other case studies.
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