Deriving Non-zeno Behavior Models from Goal
Models Using ILP*

Dalal Alrajeh®, Alessandra Russo!, and Sebastian Uchitel®2

! Imperial College London
{da04,ar3, su2}@doc.ic.ac.uk
2 University of Buenos Aires
s.uchitel@dc.uba.ar

Abstract. This paper addresses the problem of automated derivation of
non-zeno behaviour models from goal models. The approach uses a novel
combination of model checking and machine learning. We first translate
a goal model formalised in linear temporal logic into a (potentially zeno)
labelled transition system. We then iteratively identify zeno traces in the
model and learn operational requirements in the form of preconditions
that prevent the traces from occurring. Identification of zeno traces is
acheived by model checking the behaviour model against a time progress
property expressed in linear temporal logic, while learning operational
requirements is achieved using Inductive Logic Programming. As a result
of the iterative process, not only a non-zeno behaviour model is produced
but also a set of preconditions that, in conjunction with the known goals,
ensure the non-zeno behaviour of the system.

1 Introduction

Goal oriented requirements engineering (GORE) is an increasingly popular ap-
proach to elaborating software requirements. Goals are prescriptive statements of
intent whose satisfaction requires the cooperation of components in the software
and its environment. One of the limitations of approaches to GORE [5l6/14]
is that the declarative nature of goals hinders the application of a number of
successful validation techniques based on executable models such as graphical
animations, simulations, and rapid-prototyping. They do not naturally support
narrative style elicitation techniques, such as those in scenario-based require-
ments engineering and are not suitable for down-stream analyses that focus on
design and implementation issues which are of an operational nature.

To address these limitations, techniques have been developed for constructing
behaviour models automatically from declarative descriptions in general [22] and
goal models specifically [I2]. The core of these techniques is based on temporal
logic to automata transformations developed in the model checking community.
For instance, in [I2] Labelled Transition Systems (LTS) are built automatically
from KAOS goals expressed in Fluent Linear Temporal Logic (FLTL) [§].

* We acknowledge EPSRC EP/CS541133/1, ANPCyT PICT 11738, and the Leve-
hulme Trust for partially funding this work.

J. Fiadeiro and P. Inverardi (Eds.): FASE 2008, LNCS 4961, pp. 1 2008.
© Springer-Verlag Berlin Heidelberg 2008

2 D. Alrajeh, A. Russo, and S. Uchitel

The key technical difficulty in constructing behaviour model from goal mod-
els is that the latter are typically expressed in a synchronous, non-interleaving
semantic framework while the former have an asynchronous interleaving seman-
tics. This mismatch relates to the fact that it is convenient to make different
assumptions for modelling requirements and system goals than for modelling
communicating sequential processes. One of the practical consequences of this
mismatch is that the construction of behaviour models from a goal model may
introduce deadlocks and progress violations. More specifically, the resulting be-
haviour model may be zeno, i.e exhibit traces in which time never progresses.
Clearly these models do not adequately describe the intended system behaviour
and thus are not suitable basis for analysis.

A solution proposed in [I2] to the problem of zeno traces is to construct
behavior models from a fully operationalised goal model rather than from a set
of high-level goals. This involves identifying system operations and extracting
operational requirements in the form of pre- and trigger-conditions from the high-
level goals [13]. One disadvantage of this approach is that operationalisation is
a manual process for which only partial support is provided. Support comes in
the form of derivation patterns restricted to some common goal patterns [6].

This paper addresses the problem of non-zeno behaviour model construction
using a novel combination of model checking and machine learning. The approach
starts with a goal model and produces a non-zeno behaviour model that satisfies
all goals. Briefly, the proposed method first involves translating automatically
the goal model, formalised in Linear Temporal Logic (LTL), into a (potentially
zeno) labelled transition system. Then, in an iterative process, zeno traces in
the behaviour model are identified mechanically, elaborated into positive and
negative scenarios, and used to automatically learn preconditions that prevent
the traces from occurring. Identification of zeno traces is achieved by model
checking the behaviour model against a time progress property expressed in
LTL, while preconditions are learned using Inductive Logic Programming (ILP).

As a result of the proposed approach, not only a non-zeno behaviour model is
constructed, but also a set of precondition is produced. These preconditions, in
conjunction with the known goals, ensure the non-zeno behaviour of the system.
Consequently, the approach also supports the operationalisation process of goal
models described in [13].

The rest of the paper is organizes as follows: Section 2 provides background on
goal-models, LTSs and FLTL. Section 3 describes the problem of derivation of
non-zeno behaviour models and presents a formalisation of the problem resolved
in this paper. Section 4 presents the details of the proposed approach. Section 5
discusses the results and observations obtained from applying the approach.
Finally, Sections 6 and 7 conclude the paper by a comparison with related work
and discussion on future work.

2 Background

In this section we discuss goal and behaviour modelling. The examples we use
refer to a simplified version of the mine pump control system [10]. In this system,

Deriving Non-zeno Behavior Models from Goal Models Using ILP 3

a pump controller is used to prevent the water in a mine sump from passing some
threshold and flooding the mine. To avoid the risk of explosion, the pump may only
be on when the level of methane gas in the mine is not critical. The pump controller
monitors the water and methane levels by communicating with two sensors, and
controls the pump in order to guarantee the safety properties of the system.

2.1 Goal Models

Goals focus on the objectives of the system. They are state-based assertions
intended to be satisfied over time by the system. By structuring goals into re-
finement structures, GORE approaches aim to provide systematic methods that
support requirements engineering activities. Goals are expected to be refined
into sub-goals that can be assigned either to the software-to-be, to other com-
ponents or to the environment as domain assumptions. Goals assigned to the
software-to-be are used to derive operational requirements in the form of pre-,
post- and trigger-conditions for operations provided by the software.

In this paper, we define a goal model to be a collection of system goals and
operation descriptions. We specify goals informally using natural language and
formally using LTL [I6]. We follow the KAOS [5] approach assuming a discrete-
model of time in which consecutive states in a trace are always separated by a
single time unit. The time unit corresponds to some arbitrarily chosen small-
est possible time unit for the application domain. Hence, the goal PumpOf-
fWhenLowWater can be informally described as “when the water is below the
low level, the pump must be off within the next time unit” and formally specified
as O(—HighWater — (O—PumpOn), where [J is the temporal operator mean-
ing always, () is the next time point operator, and HighWater and PumpOn
are propositions meaning that “the water in the sump is above the low level
threshold” and “the pump is on”, respectively.

LTL assertions are constructed using a set P of propositions that refer to
state-based properties, the classical connectives, -, A and —, and the temporal
operators (O (next), O (always), ¢ (eventually) and U (strong until). Other
classical and temporal operators can be defined as combinations of the above
operators (e.g. oV = (= A), and ¢Wep = (O¢) V (¢U)). The semantics
of LTL assertions is given in terms of traces (i.e. infinite sequences of states s1,
s2, ...). Each state defines the set of propositions true at that state. In addition,
each state is classified as an observable or a non-observable state.

LTL assertions are evaluated only on observable states. In the case of goal
models, an observable state corresponds to a time point where a time unit ends
and another one starts. A proposition p is said to be satisfied in a trace o at
position i, written o, |= p, if it is true at the i observable state in that trace.
Note this state is not necessarily the i'" state of the trace, as non-observable
states may appear between observable ones. The semantics of Boolean opera-
tors is defined in a standard way over each observable state in a sequence. The
semantics of the temporal operators is defined as follows:

—oiEQ¢iff o,i+1E¢
— 0,iE0¢iff Vj>i. o,j=¢

4 D. Alrajeh, A. Russo, and S. Uchitel

iU Fj i o and Vi <k < j. ok = &

Given the above semantics, a formula Op is satisfied at the i*" observable
state in o if p is true at the (i + 1)*" observable state in 0. An LTL assertion ¢ is
said to be satisfied in a trace o if and only if it is satisfied at the first observable
state in the trace. Similarly, a set I" of formulae is said to be satisfied in a trace
o if each formula 1 € I' is satisfied in the trace o; I" is said to be consistent if
there is a trace that satisfies it.

Goal models also include domain and required conditions of operations. An
operation causes the system to transit from one state to another. Conditions
over operations can be domain pre- and post-conditions and required pre- and
trigger-conditions. Domain pre- and post-conditions describe elementary state
transitions defined by operation applications in the domain. For instance, the
operation switchPumpOn has as domain pre- and post-condition the assertions
= PumpOn and PumpOn. Required pre- and trigger-conditions are prescriptive
conditions defining respectively the weakest necessary conditions and the suffi-
cient conditions for performing an operation. Conditions on operations are eval-
uated at the beginning/end of time units. For instance, if a required precondition
holds at the beginning of a time unit (i.e. at an observable state in a trace), then
the operation may occur within the time unit (i.e. before the next observable
state in that trace). It is expected that the required pre- and trigger-conditions
guarantee the satisfaction of system goals.

2.2 Behaviour Models

Behaviour models are event-based representations of system behaviors. Different
formalisms have been proposed for modelling and analyzing system behaviors
(e.g. [9]), among which LTS is a well known formalism for modelling systems as
a set of concurrent components. Each component is defined as a set of states and
possible transitions between these states [I5]. Transitions are labelled with events
denoting the interaction that the component has with its environment. The
global system behavior is captured by the parallel composition of the LTS model
of each component, by interleaving their behavior but forcing synchronization
on shared events.

LTSA [I7] is a tool that supports various types of automated analyses over
LTSs such as model checking and animation. The logic used by LTSA is the
asynchronous linear temporal logic of fluents (FLTL) [8]. This logic is an LTL
in which propositions in P are defined as fluents. Fluents represent time varying
properties of the world that are made true and false through the occurrence
of events. A fluent can be either state-based or event-based. We denote the
set of state fluents as Py whereas event fluents as P.. A fluent definition is
a pair of disjoint sets of events, referred to as the initiating and terminating
sets, and an initial truth value. Events of the initiating (resp. terminating) set
are those events that, when executed, cause the fluent to become true (resp.
false). For instance, the fluent definition for the state fluent PumpOn would be

Deriving Non-zeno Behavior Models from Goal Models Using ILP 5

PumpOn=({switchPumpOn} {switchPumpOff}), meaning that the event
switchPumpOn (resp. switchPumpOff) causes the fluent PumpOn to be true
(resp. false). Given an event e, the event fluent also denoted as e is always
defined as ({e}, L — {e}) where L is the universe of events.

Asynchronous FLTL assertions are evaluated over traces of states and events
(i-e. so N s3...). A position i in a trace o, for i > 0, denotes the ‘"
state in . The satisfiability of fluents over an LTS is defined with respect to
positions in a given traces. A fluent f is said to be true at position 7 in a trace
o if and only if either of the following conditions hold: (i) f is initially true
and no terminating event has occurred since; and (ii) some initiating event has
occurred before position ¢ and no terminating event has occurred since. As the
satisfiability depends on the fluent definition, we use 0,7 =p f to denote that f
is satisfied in o at ¢ with respect to a given set of fluent definitions D.

LTS models are untimed. To support the derivation of behavior models from
goal models, which are timed models, time must be represented explicitly in
the LTSs. We adopt the standard approach to discrete timed behaviour models
by introducing an event tick to model the global clock with which each timed-
process synchronizes [I5]. In the context of this paper, a tick signals the end of
a time unit (as assumed by the goal model) and the beginning of the next.

When modelling discrete-timed systems using LTS with tick events, it is im-
portant to check the system does not exhibit traces in which a finite number of
ticks occur. These traces, called zeno traces, represent executions in which time
does not progress. We refer to an LTS with zeno traces as a zeno model.

3 Problem Formulation

In this section we discuss and exemplify why the construction of behaviour mod-
els from goal models can result in models with zeno executions. We then describe
formally the problem that this paper addresses in Section [

3.1 From Goal Models to Behaviour Models

Let G4 be a consistent goal model as described in Section 2111 It is possible to
construct an LTS satisfying G by transforming G; into a semantically equivalent
set of asynchronous FLTL assertions GG, and then computing an LTS model using
an adaptation [I2] of the temporal logic to automata algorithms in [§].

The transformation of a goal model G into asynchronous FLTL assertions
G, requires (i) translating the LTL goals in G, to FLTL assertions using the
technique described in [12] and (ii) coding the operations descriptions in G into
asynchronous FLTL.

Goal assertions in G5 are translated into semantically equivalent asynchronous
FLTL using an event fluent tick to model observable states where LTL formulae
are evaluated. The translation Tr : LTL — FLTL,,,. is defined as follows
(where ¢ and v are LTL assertions):

Tr(0¢) = O(tick — Tr(¢)) Tr(pUy) = tick — Tr(¢)U(tick A Tr(v))
Tr(0¢) = O(tick AN Tr (o)) Tr(O¢) = O(—tickW(tick AN Tr()))

6 D. Alrajeh, A. Russo, and S. Uchitel

The translation of the synchronous (LTL) next operator (see Tr((¢)) exempli-
fies well the difference between synchronous and asynchronous semantics. The
synchronous formula ()¢ asserts that at the next time point ¢ is true. The
translation assumes that the formula Tr((O¢) will be evaluated at the start of
a time unit, in other words at the occurrence of a tick, and requires that no
ticks shall occur from that point onwards until the asynchronous translation of
¢ holds and tick occurs. Consider the synchronous goal PumpOff WhenLowWater
formalised in SectionZIl Its translation gives the asynchronous assertion O(tick
— (=HighWater — O (= tickW(tick A= PumpOn)))).

The operations defined in G correspond to events in the behaviour model
constructed, and the operation descriptions are expressed as FLTL assertions
using the associated event fluents. For instance, if DomPre is the domain pre-
condition for an operation e, then its asynchronous FLTL assertion is O((tick —
(mDomPre) — O-e W tick)) (intuitively, if DomPre is false at the start of
a time unit, then e may not occur until the next tick). The coding of required
preconditions ReqPre in G, is analogous to domain preconditions. The FLTL as-
sertion coding of required trigger-condition ReqTrig for an operation e is O(tick
— ((ReqTrig A DomPre)— (O —tickWe)). Finally, the domain postcondition
DomPost for an operation e in GG¢ is coded within the fluent definition asso-
ciated with it. If f is the fluent appearing positively (resp. negatively) in the
domain postcondition for e, then it is added to the fluent f’s initiating (resp.
terminating) set of events.

Computing an LTS model from the asynchronous FLTL representation of a
goal model requires using an adaptation [I2] of a temporal logic to automata
algorithm used in model checking of FLTL [8]. This adaptation consists of apply-
ing the technique, described in [§], to each FLTL assertion and then composing
in parallel the individual LTS models, which amounts to logical conjunction. We
shall see in the next subsection that this is not sufficient and that the resulting
LTS may exhibit problematic behaviour in the form of zeno executions.

3.2 The Problem with Zeno Models

The LTS models constructed from asynchronous FLTL goal assertions are not
good models of a system behavior, as they constrain the event tick which cannot
be controlled by the system and do not impose any constraints on the controllable
events. The latter are only introduced by conditions on operations (i.e. domain
and required conditions). If the goal model has insufficient conditions on opera-
tions then spurious executions may be exhibited by the goal model. For instance,
the LTS model for the goal PumpOffWhenLowWater includes the infinite trace
(tick, switchPumpOn, switchPumpOff, switchPumpOn, switchPumpOff,...) which
does not exhibit a second tick events, so violating the expectation that time
progresses (also referred as time progress property). Such trace occurs because
there is no restriction as to when the pump may be switched on or off (i.e.
preconditions for switchPumpOn or switchPumpOff is missing). In conclusion,
although the LTS model constructed automatically from an asynchronous FLTL

Deriving Non-zeno Behavior Models from Goal Models Using ILP 7

encoding of a goal model may satisfy all goals, it may contain zeno executions
due to missing conditions over operations.

3.3 Problem Formulation

The problem the remainder of this paper addresses is providing automated sup-
port to extending a goal model with conditions over its operations in order to
guarantee the construction of a non-zeno behaviour model. In other words, given
the asynchronous transformation G, of a synchronous goal model G, the aim is
to find a set of required preconditions Pre, referred to as the correct operational
extension of G, such that the LTS model constructed from G, U Pre satisfies
the time progress (TP) property .

4 The Approach

This section presents a novel approach for extending a goal model with the nec-
essary set of required preconditions for deriving a non-zeno behavior model that
satisfies a given goal model. The approach uses model checking to provide auto-
mated support for generating zeno traces and ILP to produce the preconditions.

4.1 Overview of the Approach

Figure [A1] depicts an overview of the approach. A goal model Gy is initially
transformed into an asynchronous model G, and a set of fluent definitions D. The
actual computation of the correct operational extension of G, is then iteratively
done in three phases: (i) the analysis phase in which the LTSA model checking
tool is used to construct an LTS model satisfying G, with respect to D and
then checks the LTS against the time progress property. If the property does not
hold, a counter example trace is generated, (ii) the scenario elaboration phase
in which the violation trace is elaborated into a set of positive and negative
scenarios and (iii) the learning phase which first transforms asynchronous goal
model, fluent definitions and scenarios into a logic program and then uses an
ILP system to find a set of required preconditions that cover the positive but
none of the negative scenarios. Once computed, these preconditions are added
to the initial goal model and the steps above repeated. The final output is an
extended goal model from which a non-zeno behavior model can be constructed.

4.2 Analysis Phase

This phase considers an asynchronous FLTL encoding of a goal model as input
and produces a zeno trace if the goal model does not guarantee time progress.

The LTSA model checker is used to build automatically the least constrained
LTS model from the asynchronous FLTL assertions [8]. LT'SA is then used to
verify that time progresses by checking the property (IQtick against the model.
The output of LTSA, in the case of a zeno model, is an infinite trace in which
from one position onwards, no tick event occurs.

8 D. Alrajeh, A. Russo, and S. Uchitel

Analysis Phase
Transform
Synchronous Synchronous Goal Construct LTS Perform Progress Non-Zeno
208 Mode Model into ™ from Asynchronous [check | Behavior
Asynchronous Model model
Iy
I |
|
Transform into Run ILP Transform into Logic
asynchronous [System [* Program
Model
Scenario
L Elaboration Phase

Fig. 1. Approach overview

The check is performed by assuming maximal progress of the system with
respect to the environment (a standard assumptions for reactive systems), and
weak fairness [I5]. Fairness ensures that the environment will eventually perform
tick instead of other environment controlled events (assuming the environment
itself is consistent with time progress).

In our running example, the full set G of initial goals includes, in addition to
the PumpOffWhenLowWater, the following LTL goal assertions: PumpOff When-
Methane=0(CriticalMethane — (O—PumpOn), and PumpOnWhenHighWater-
AndNoMethane=0(—CriticalMethane A HighWater — O PumpOn).

The application of the analysis phase to the asynchronous FLTL translation of
G and asynchronous preconditions O(tickA—High Water— (O—switchPumpOn)
and O(tick A HighWater A— CriticalMethane— O—switchPumpOff), gives the fol-
lowing output:

Violation of LTL property: AlwaysEventuallyTick
Trace to terminal set of states:

tick

signalCriticalMethane CRITICALMETHANE

signalHighWater HIGHWATER && CRITICALMETHANE

tick HIGHWATER && CRITICALMETHANE
switchPumpOn HIGHWATER && CRITICALMETHANE && PUMPON
switchPumpOff HIGHWATER && CRITICALMETHANE

Cycle in terminal set:

switchPumpOn

switchPumpOff

LTL Property Check in: 8ms

The output represents an infinite trace compactly displayed as a (finite)
trace with the prefix (tick,signalCriticalMethane,signalHighWater,tick,
switchPumpOn, switchPump0ff) followed by a cycle in which tick does not oc-
cur (switchPumpOn, switchPumpQff, switchPumpOn,...). The capitalized text on
the right column indicates the fluents that are true after the occurrence of each
event of the trace prefix on the left. The trace indicates that a precondition for at
least one of the system controlled events switchPumpOn and switchPumpOff is
missing or requires strengthening. Indeed, consider the second tick of the trace,
where HighWater and CriticalMethane are true. At this point the goals proscribe

Deriving Non-zeno Behavior Models from Goal Models Using ILP 9

tick from occurring while PumpOn is still true. Hence, the occurrence of switch-
PumpOff is desirable. However, as soon as switchPumpOff happens, there are no
preconditions preventing the pump being switched on again. Note that switching
the pump back on does not violate any goals as the requirement is that the pump
be off at the next tick and nothing is stated about the number of times the pump
may be switched on during the time unit. A reasonable outcome of this analysis
is to conclude that the precondition for switchPumpOn needs strengthening to
prevent the pump being switched on unnecessarily.

4.3 Scenario Elaboration Phase

This phase assumes the engineer will elaborate the violation trace generated by
the LTSA and produce a set of positive and negative scenarios. The engineer is
assumed to identify an event in the trace returned by the LTSA that should not
have occurred at a particular position in the trace. The prefix starting from the
initial state of that trace up to and including the undesirable event is identified
as a negative scenario. Hence, given a trace of the form (w1, e, ws), a negative
scenario is (wy, e). The intended meaning of (wy, e) is that if the system exhibits
w1 then e should not happen. The task of producing a negative scenario from
the trace returned by the LTSA is believed to be an intuitive task that can be
performed manually, in particular because the negative scenarios will always be
sub-traces of the trace produced by the LTSA.

The engineer is also assumed to provide a scenario which shows a positive
occurrence of e. This is a scenario that starts from the same initial state, is
consistent with the goal model and terminates with a tick (i,e, (x1, €, x2) where
tick is the last event in x2). Note that because scenarios are finite traces, posi-
tive scenarios are not meant to exemplify non-zeno traces. They merely capture
desirable system behavior which is consistent with the given model. Note that
the same model generated by LTSA can be walked through or animated by the
engineer to generate positive scenarios that are consistent with existing goals
and operation conditions.

Returning to the zeno trace described above, the engineer may identify the
first occurrence of switchPumpOn as incorrect. A negative scenario becomes (tick,
signalCriticalMethane, signalHighWater, tick, switchPumpOn) stating that the
pump should not have been switched on after high water and methane have
been signalled. In addition, a positive scenario exemplifying a correct occur-
rence of switchPumpOn must be provided. A positive scenario could be (tick,
signalHighWater, tick, switchPumpOn, tick). The completion of this phase is
noted by the identification of at least one positive and one negative scenario.

4.4 Learning Phase

This phase is concerned with the inductive learning computation of missing event
preconditions with respect to a given set of positive and negative scenarios. It
makes use of an ILP framework, called XHAIL [T9].

In general an inductive learning task is defined as the computation of an
hypothesis H that explains a given set F of examples with respect to a given

10 D. Alrajeh, A. Russo, and S. Uchitel

background knowledge B [20/I8]. Intuitively, within the context of learning pre-
conditions, the background knowledge is the fluent definitions D and the goal
model G,, currently considered by the analysis phase. The set of positive and
negative scenarios generated during the scenario elaboration phase form the ex-
amples. The learned (set of) asynchronous preconditions, Pre, is the hypothesis
that added to G, generates an LTS model that accepts the positive scenarios
but none of the negative ones. We refer to Pre as the correct extension of a goal
model with respect to scenarios.

To apply XHAIL to the task of learning preconditions, the asynchronous
FLTL goal model G,, with preconditions computed in previous iterations, flu-
ent definitions D, and the elaborated positive and negative scenarios Xp U
Xy are encoded into a, semantically equivalent, Event Calculus (EC)[I7] logic
program II.

Event Calculus Programs. Our EC programs include a sort A of events
(e1,e2,...), a sort F' of fluents (f1,f2,...), a sort S of scenarios (s1,s2,...), and
two sorts P = (p1,p2,..) and T" = (1,ts,..) both isomorphic to the set of non-
negative integers. The two sorts P and T denote, respectively, positions (of
(non-)observable states) and time units along a trace.

EC programs make use of the basic predicates happens, initiates, terminates,
holdsAt, impossible and attempt. The atom happens(e,p,t,s) indicates that
event e occurs at position p, within time unit t in scenario s, the atom initiates(
e,f,p,s) (resp. terminates(e,f,p,s)) means that if, in a scenario s, event e
were to occur at position p, it would cause fluent £ to be true (resp. false) im-
mediately afterwards. The predicate holdsAt (f,p,s) denotes, instead, that in a
scenario s, fluent £ is true at position p. The atoms impossible(e,p,t,s) and
attempt(e,p,t,s) are used, respectively, to state that in a scenario s, at position
p within a time unit t, the event e is impossible, and that an attempt has been
made to perform e. The first four predicates are standard, whereas the last two
are adapted from the EC extension presented in [17].

To relate positions and time units within a given scenario, our EC pro-
grams use the predicate posInTime(p,t,s). For example, the scenario (tick,
signalHighWater, tick, switchPumpOn, tick) isencoded using the ground atoms
happens(tick,0,0,s), happens(signalHighWater,1,0,s), happens(tick,2,1,s),...
for the event transitions, posInTime (0,0,s), posInTime(1,0,s), posInTime(2,1,s),
posInTime(3,1,s), posInTime(4,2,s), ... for the relation between position and
time units. Finally, to capture the notion of synchronous satisfiability in terms
of asynchronous semantics our programs make use of the predicates holdsAtTick
and notHoldsAtTick, which are defined as follows:

holdsAtTick(f,t,s):- attempt(tick,p,t,s),holdsAt(f,p,s),
posInTime(p,t,s)

(1)

notHoldsAtTick(f,t,s) :- attempt(tick,p,t,s), not holdsAt(f,p,s)
posInTime(p,t,s)

(2)

Deriving Non-zeno Behavior Models from Goal Models Using ILP 11

where p, t and s are respectively position, time unit and scenariod]. Axioms @
and () state that a fluent £ holds (resp. does not hold) at the beginning of a
time unit t in a scenario s if it holds (resp. does not hold) at the position p
where its starting tick is attempted.

EC programs are equipped with a set of domain-independent core axioms suit-
able for reasoning about effects of events over fluents. A full definition of these
axioms is given in [21]. These include, in particular, an axiom for differentiating
the possibility of an event occurring from it actually occurring. This is defined
as follows: happens(e,p,t,s) :-attempt(e,p,t,s), not impossible(e,p,t,s).Itis
one of the key axioms in our learning process, as it relates the occurrence of an
event (happens(e,p,t,s)) with the notion of its preconditions, captured by rules
defining the predicate impossible.

From Goal Models to EC Programs. Given a goal model G, written in
asynchronous FLTL, and a set of fluent definitions D, a mapping 7 has been
defined that automatically generates from G, and D an EC program of the
type described above. In brief, the mapping assigns to each FLTL fluent def-
inition f = ({a;},{bi}) initially I the set of atomic literals comprising of
initially(£,8), for those fluents f where I is set to true, initiates(aj,f,P,S),
for each a; in the initiating set of f and terminates(b;,f,P,S), for each b; in
the terminating set of f. For example, the mapping function 7 would generate
from the fluent definition pumpOn = ({switchPumpOn}, {switchPumpOf f}),
the facts initiates(switchPumpOn, pumpOn,P,S) and terminates(switchPumpOff,
pumpOn,P,S).

Asynchronous FLTL goal assertions are, instead, encoded into integrity con-
straintsE7 using only holdsAtTick and notHoldsAtTick predicates. For instance,
applying the function 7 to the asynchronous formalisation of the goal PumpOf-
fWhenLowWater gives the EC integrity constraint

:- notHoldsAtTick(highWater,T,S) ,next(T2,T) ,holdsAtTick (pumpOn,T2,S)

where next (T2,T) means T2 is the next time point. Asynchronous FLTL precon-
ditions are encoded into rules for the predicate impossible. So a precondition
O(A <ij<n(—)fi) = O—e W tick) would be expressed by the EC rule:

impossible(e,P,T,S) :-(not)HoldsAtTick(£{,T,S), .., 3)
(not)HoldsAtTick(fn,T,S)

In [I] the authors have shown that the above translation function is sound with
respect to the stable model semantics [7].

Learning Preconditions. To learn event preconditions, positive and negative
scenarios generated during the scenario elaboration phase have to be translated
into our EC program. The translation depends on the event for which the pre-
condition axiom is to be learnt. Without loss of generality, we assume that

! The operators : — and , denote implication and conjunction operators respectively
in logic programming.
2 An integrity constraint (IC) is a disjunction of literals with no positive literal.

12 D. Alrajeh, A. Russo, and S. Uchitel

preconditions are to be learnt always for the last event of each negative scenario.
The encoding of negative and positive scenarios contribute to both the back-
ground knowledge and the examples of our learning task. For a positive scenario
op = (e1,e,...,ex), the facts attempt(e;j,i-1,t,op) and posInTime(i-1,t,0p)
are added to the background knowledge, and the facts happens(ej ,i-1,t,0p) are
added to the example. For each negative scenario of the form on = (e1, €2, ..., ;)
in Xy, the facts attempt(ej,j-1,t,0n) and posInTime(j-1,t,oy) are added to
the background knowledge, and the facts happens(ej ,j-1,t,0y) together with
the atom not happens(ej ,1-1,t,0y) are added to the examples.

The search space of all possible preconditions is defined by a language bias,
which specifies the predicates that can appear in the hypothesis. In our learning
task, the language bias defines the predicate impossible to appear in the head
of the H rule, and the predicates holdsAtTick and notHoldsAtTick to appear in
the body. For a detailed description of the XHAIL learning algorithm the reader
is refer to [20]. To describe an example of learned precondition, consider again
our example of the Mine Pump system, where the set of goals are as states in
Subsection L2 with associated fluent definitions, and the positive and negative
scenarios in Subsection The XHAIL is applied to the EC programs B and
E generated from these inputs. The system computes the ground rule:

impossible(switchPumpOn,4,2,0y) :- holdsAtTick(highWater,2, oy),
notHoldsAtTick(pumpOn,2,0y),
holdsAtTick(criticalMethane,2,0y),
posInTime(4,2,0y) .

And then generalizes it into the hypothesis: impossible (switchPumpOn,X,Y,Z2) :-

holdsAtTick(criticalMethane,Y,Z). This output is then translated back into the

FLTL assertion O(tick A criticalMethane — O—switchPumpOn W tick).

4.5 The Cycle

At the end of each iteration, the learned preconditions are translated back into
asynchronous FLTL and added to the goal model. The LTS resulting from the
extended goal model is guaranteed not to exhibit the zeno trace detected by
the LTSA in that iteration and captured by the elaborated negative scenario.
In addition, the LTS is guaranteed to accept the positive scenarios identified
by the engineer and, of course, all previously elicited goals and operational re-
quirements. The property is formally captured by the following theorem and
constitutes the main invariant of the approach.

Theorem 1. Let G, be an asynchronous goal model, D a set of fluent defi-
nitions, and Xp U XN a set of positive and negative scenarios. Let (B, E) =
T(Ga, D, Xp, XN) be the EC programs generated by the translation function 7.
Let H be the set of preconditions computed by the XHAIL system as inductive
solution for the programs (B, E) such that BU H |= E. Then the corresponding
set Pre of asynchronous FLTL preconditions, such that 7(Pre) = H, is a correct
extension of G, with respect to Xp U Xy.

This process is expected to be repeated until all the preconditions necessary to
guarantee, together with the initial goal model, the construction of a non-zeno

Deriving Non-zeno Behavior Models from Goal Models Using ILP 13

LTS model. Although the convergence of this process has not yet been studied
fully, experiments have shown so far that to avoid the derivation of a zeno-model,
one only needs to learn a sufficient set of preconditions, i.e. triggering conditions
are not necessary to avoid non-zeno traces.

5 Validation of the Approach

We validated our approach with two case studies, the Mine Pump Controller [10],
parts of which have been used as a running example in this paper, and the Injec-
tion System [2]. The methodology used was to start with goal models formalised
in the KAOS goal oriented approach (the mine pump [I3] and the safety in-
jection [12] systems), to apply the approach iteratively using informal existing
documentation on the case studies to inform the elaboration of zeno traces into
positive and negative scenarios and to compare the preconditions learned against
the manually operationalised models of the provided goal models.

In the mine pump case study, it was necessary to learn three preconditions
where as the safety injection system required only two. Moreover, in the safety
injection system the set of preconditions needed for the process to converge, and
reach a goal model from which a non-zeno behaviour model can be derived, was
a subset of the preconditions of the fully operationalised goal model[I2]. This in-
dicates that the operationalisation process presented in [I3] and required in [12]
to build non-zeno models introduces unnecessary (and labour intensive) work.
This also indicates that the process of resolving time progress violation in be-
havior models synthesized from goal models is a first step towards an automated
procedure to produce a complete operationalisation of goal models.

6 Related Work

Automated reasoning techniques are increasingly being used in requirements
engineering [I1I3J4]. Among these, the work most related to our approach is [I1],
where an ad-hoc inductive inference process is used to derive high-level goals,
expressed as temporal formulae, from manually attuned scenarios provided by
stake-holders. Each scenario is used to infer a set of goal assertions that explains
it. Then each goal is added to the initial goal model, which is then analyzed using
state-based analysis techniques (i.e. goal decomposition, conflict management
and obstacle detection). The inductive inference procedure used in [I1] is mainly
based on pure generalization of the given scenarios and does not take into account
the given (partial) goal model. It is therefore a potentially unsound inference
process by the fact that the generated goals may well be inconsistent with the
given (partial) goal model. In our approach learned requirements are guaranteed
to be consistent with the given goals.

The work in [3] also proposes the use of inductive inference to generate be-
havior models. It provides an automated technique for constructing LTSs from a
set of user-defined scenarios. The synthesis procedure uses a grammar induction
to derive an LTS that covers all positive scenarios but none of the negative ones.

14 D. Alrajeh, A. Russo, and S. Uchitel

The generated LTS can then be used for formal event-based analysis techniques
(e.g. check against the goals expressed as safety properties). Our approach, on
the other hand, uses the LTSA to generate the LTS models directly from goal
models, so our LTS models are always guaranteed to satisfy the given goals.

The technique in [T12] describes the steps for transforming a given KAOS goal
and operational model into an FLTL theory that is used later by the LTSA
to construct an LTS. Deadlock analysis reveals inconsistency problems in the
KAOS model. However, the technique assumes these are resolved by manually
reconstructing the operational model. Our approach builds on the goal to LTS
transformation of [12] but does not require a fully operationalised model. Rather
it provides automated support for completing an operational model with respect
to the given goals.

7 Conclusion and Future Work

The paper presents an approach for deriving non-zeno behavior model from goal
models. It deploys established model checking and learning techniques for the
computation of precondition from scenarios. These preconditions can incremen-
tally be added to the initial goal model so to generate at the end of the cycle
a non-zeno behavior model. The precondition learned at each iteration has the
effect of removing zeno traces identified by the LTS model at the beginning of
that iteration. The cycle terminates when no more zeno traces are generated
from the LTSA on the current (extended) goal model. A formal characterization
of termination of the cycle is currently under investigation. But our experiments
and case study results have so far confirmed the convergence of our process.
Furthermore, the approach assumes, in the second phase, that the engineer will
manually elaborate the violation trace into a set of scenarios. The possibility of
automating the elaboration process by using other forms of learning techniques
(e.g. abduction) is being considered. Future work includes learning other forms
of requirements such as trigger conditions, learning preconditions with bounded
temporal operators that refer to the past such as B and S in [I3], and to inte-
grate the approach within a framework for generating a set of required pre- and
trigger-conditions that is complete [I3] with respect to a given goal model.

References

1. Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Extracting requirements from scenarios
with ILP. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006.
LNCS (LNAI), vol. 4455, pp. 64-78. Springer, Heidelberg (2007)

2. Courtois, P.J., Parnas, D.L.: Documentation for safety critical software. In: Proc.
15th Int. Conf. on software engineering (1993)

3. Damas, C., Dupont, P., Lambeau, B., van Lamsweerde, A.: Generating annotated
behavior models from end-user scenarios. IEEE Transactions on Software Engi-
neering 31(12), 1056-1073 (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Deriving Non-zeno Behavior Models from Goal Models Using ILP 15

Damas, C., Lambeau, B., van Lamsweerde, A.: Scenarios, goals, and state ma-
chines: a win-win partnership for model synthesis. In: Proc. of the Intl. ACM
Symp. on the Foundations of Software Engineering (2006)

Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Science of Computer Programming 20 (1), 3-50 (1993)

. Darimont, R., van Lamsweerde, A.: Formal refinement patterns for goal-driven

requirements elaboration. In: Proc. of the 4th ACM Symp. on the Foundations of
Software Engineering (1996)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K. (eds.) Proc. of the 5th Intl. Conf. on Logic Program-
ming, MIT Press, Cambridge (1988)

Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: Proc. 11th ACM SIGSOFT Symp. on Foundations Software Engineering (2003)
Heitmeyer, C., Bull, A., Gasarch, C., Labaw, B.: Scr*: A toolset for specifying and
analyzing requirements. In: Proc. of the 10th Annual Conf. on Computer Assurance
(1995)

Kramer, J., Magee, J., Sloman, M.: Conic: An integrated approach to distributed
computer control systems. In: IEE Proc., Part E, vol. 130 (January 1983)

Van Lamsweerde, A., Willemet, L.: Inferring declarative requirements specifications
from operational scenarios. IEEE Transactions on Software Engineering 24(12),
1089-1114 (1998)

Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transitions sys-
tems from goal-oriented requirements models. Technical Report 02/2006, Imperial
College London (2006)

Letier, E., Van Lamsweerde, A.: Deriving operational software specifications from
system goals. In: Proc. 10th ACM SIGSOFT Symp. on Foundations of Software
Engineering (2002)

Letier, E., van Lamsweerde, A.: Agent-based tactics for goal-oriented requirements
elaboration. In: Proc. of the 24th Intl. Conf. on Software Engineering (2002)
Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley
and Sons, Chichester (1999)

Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, Heidelberg (1992)

Miller, R., Shanahan, M.: Some alternative formulation of event calculus. In: Com-
puter Science; Computational Logic; Logic programming and Beyond, vol. 2408
(2002)

Muggleton, S.H.: Inverse Entailment and Progol. New Generation Computing, Spe-
cial issue on Inductive Logic Programming 13(3-4), 245-286 (1995)

Ray, O.: Using abduction for induction of normal logic programs. In: Proc. ECAI
2006 Workshop on Abduction and Induction in AT and Scientific Modelling (2006)
Ray, O., Broda, K., Russo, A.: A hybrid abductive inductive proof procedure. Logic
Journal of the IGPL 12(5), 371-397 (2004)

Shanahan, M.P.: Solving the Frame Problem. MIT Press, Cambridge (1997)
Uchitel, S., Brunet, G., Chechik, M.: Behaviour model synthesis from properties
and scenarios. In: Proc. of the 29th IEEE/ACM Intl. Conf. on Software Engineering
(2007)

	Deriving Non-zeno Behavior Models from Goal Models Using ILP
	Introduction
	Background
	Goal Models
	Behaviour Models

	Problem Formulation
	From Goal Models to Behaviour Models
	The Problem with Zeno Models
	Problem Formulation

	The Approach
	Overview of the Approach
	Analysis Phase
	Scenario Elaboration Phase
	Learning Phase
	The Cycle

	Validation of the Approach
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

