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Abstract. Scenarios and use cases are popular means for supporting re-
quirements elicitation and elaboration. They provide examples of how the
system-to-be and its environment can interact. However, such descrip-
tions, when large, are cumbersome to reason about, particularly when
they include conditional features such as scenario triggers and use case
preconditions. One problem is that they are susceptible to being satisfied
vacuously: a system that does not exhibit a scenario’s trigger or a use
case’s precondition, need not provide the behaviour described by the sce-
nario or use case. Vacuously satisfiable scenarios often indicate that the
specification is partial and provide an opportunity for further elicitation.
They may also indicate conflicting boundary conditions. In this paper we
propose a systematic, semi-automated approach for detecting vacuously
satisfiable scenarios (using model checking) and computing the scenarios
needed to avoid vacuity (using machine learning).

1 Introduction

Scenarios, use cases and story boards are popular means for supporting require-
ments engineering activities. They illustrate examples of how the software-to-be
and its environment should and should not interact. They are commonly used as
an intuitive, semi-formal language for describing behaviour at a functional level.

A common form for providing examples of behaviour is through conditional
statements. Use cases [1] support existential conditional statements such as “once
an appropriate user ID and passwords has been obtained, a homeowner can ac-
cess the surveillance cameras placed throughout the house from any remote
location via the internet” [21]. Live Sequence Charts [14] support universal con-
ditional statements such as “the controller should probe the thermometer for a
temperature value every 100 milliseconds, and if the result is more that 60 de-
grees, it should deactivate the heater and send a warning to the console”. Some
languages support both existential and universal conditional scenarios [24].

Conditional scenarioswith differentmodalities are useful. They provide support
for “what-if” elaboration of requirements specifications [1], and the progressive
shift from existential statements, in the form of examples and use-cases, to uni-
versal statements in the form of declarative properties. Each conditional scenario
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constitutes only a partial description of the system’s intended behaviour. Hence,
typicallymany of themare used in conjunction alongwith other behaviour descrip-
tions such as system goals [10]. The emergent behaviour of such rich descriptions
can be complex to reason about, hindering validation, and resulting frequently in
specifications that are incomplete or contradictory.

One particular issue that conditional scenarios have is that they are liable to
being satisfied vacuously; a system can be constructed so that it satisfies the
conditional scenarios by never satisfying the condition. For instance, a system
in which the homeowner is never given a user password vacuously satisfies the
use case described above. This problem, commonly referred to as antecedent fail-
ure [8] in temporal specifications, is often an indication that the specification
is partial and hence provides an opportunity for elicitation; it is clear that the
stakeholder’s intention is that “the system should provide the user with an id
and password”, and if it does, then the user can access the installed surveillance
cameras. In addition, vacuously satisfiable specifications can have pernicious
effects, concealing conflicting behaviour which is important to explore. For ex-
ample, consider two scenarios extracted from the mine pump example in [16]:
“once the methane sensors detect that the methane level is critical, then the
pump controller must send a signal to the pump to be switched off” and “once
the water sensors detect that the water level is above the high-threshold, then
the pump controller must send a signal to the pump to be switched on”. These
scenarios are consistent as a system in which water sensors never detect high
water and methane levels vacuously satisfies both scenarios. However, if these
two levels were to occur, then the scenarios provide contradictory information
of what the controller must do.

In this paper we describe an approach that not only detects vacuously satisfi-
able conditional scenarios but also provides automated support for learning new
scenarios that ensure the conditions, i.e. triggers, are satisfied. More specifically,
the approach takes as input a set of scenarios formalised as triggered existential
and universal scenarios [24] and consists of two main phases. The first involves
(i) synthesising a Modal Transition System from the scenarios, representing all
possible implementations that satisfy them and (ii) performing a vacuity check,
using a model checker, against a scenario’s trigger. If the vacuity check is posi-
tive, the model checker produces examples of how the system-to-be could satisfy
the trigger, i.e. non-vacuity witnesses [13]. In the second phase, (iii) an engineer
classifies the examples as either positive or negative, i.e. ones that should be ac-
cepted or not in the final implementation, and then (iv), together with the given
scenarios, inputs them into an inductive logic programming learning tool to com-
pute new triggered scenarios which, if added to the existing scenarios, guarantee
that they are no longer vacuously satisfiable. This process is repeated for each
given triggered scenario, producing in the end a scenario-based specification that
is not vacuously satisfiable. Figure 1 outlines the proposed framework.

Although the integrated use of model checking and ILP has been previ-
ously applied to other software engineering tasks, such as goal operationalisa-
tion [2] and zeno behaviour elimination [3], the current application introduces a



Learning from Vacuously Satisfiable Scenario-Based Specifications 379

Behaviour Model  
Synthesis 

Vacuity Check  

Triggered 

scenarios + 

fluent definitions 
(1) 

Witness traces to non-vacuity 

(2) 
Triggered scenarios  

+ve & -ve non-vacuity 
(3) 

New triggered  
scenarios 

(4) 
Learning  

Fig. 1. Overview of the proposed framework

number of new technical challenges not present previously: the need to model
and reason about partial behaviour, branching time and alphabet scoping of
learned expressions. We elaborate further on these issues in Section 6.

The rest of this paper is organised as follows. We describe a motivating exam-
ple in Section 2 and the necessary background in Section 3. Section 4 presents
the main approach. Section 5 illustrates the results obtained by applying the
approach to two case studies. We discuss related work in Section 6 and conclude
in Section 7.

2 Motivating Example

Consider a simplified version of the mobile phone system described in [17]. The
system is composed of six participants: a user, cover, display screen, speaker,
chip and the environment. A phone user can open and close the phone cover,
switch the phone on and off, answer and end calls and talk. The chip can detect
incoming calls from the environment and the cover opening and closing. It can
also initialise the phone settings and send requests to display the caller ID on
the screen and to the speaker to start and stop ringing.

Suppose the engineer elicits the two scenarios shown in Figure 2 using a
universal and existential triggered scenario notation, respectively. The univer-
sal scenario Receive informally states that “once an incoming call is detected
(incomeCall), the phone rings (startRing) and the caller id is displayed on the
screen (displayCaller and setDisplay) subsequently”. The existential scenario
Phone specifies the requirement “once an incoming call is detected (income-
Call) and the user opens the cover (open followed by coverOpened), the user
may talk (talk)”. Both scenarios are composed of two parts; a trigger (shown
in a hexagon) and a triggered sequence (shown in a box; solid in universal and
dashed in existential).

One problem with the specified scenarios is that although they describe what
the system must or can do when the system exhibits the triggers, they do not
state what it is required to do otherwise. For instance, they do not say when the
system can exhibit an incoming call nor what the system can do between the
occurrence of an incoming call and the user opening the phone cover. Because
this specification is only partial, any implementation of the system in which an
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incoming call is never allowed to occur is a valid implementation of the Receive
scenario (See Figure 2.a). We refer to triggered scenarios which may result in a
system that never exhibits the trigger as vacuously satisfiable scenarios.

SpeakerEnv Chip Display

¬Ringing¬Ringing

incomeCall

startRing

displayCaller

setDisplay

(a) CoverEnv User Chip

incomeCall

open

coverOpened

talk

(b)

close

Fig. 2. Mobile phone system scenarios for (a) Receive and (b) Phone

0 1 2 0 1 2 3 4

5

(b)

incomeCall startRing displayCaller setDisplay

stopRing

talk

endCall

(a)

answer talk

endCall

Fig. 3. Implementation that (a) vacuously satisfies Receive and Phone scenarios, and
(b) satisfies the Receive scenario non-vacuously but Phone vacuously

Feedback about vacuously satisfiable scenarios may help engineers in recog-
nising further behaviour which should be required or proscribed by any derived
implementation. By informing an engineer about possible implementations in
which an incoming call never occurs, the engineer could provide further exam-
ples of what the system behaviour may, must or cannot include. For instance, an
engineer could provide a trace showing that incoming calls occurs after the phone
is switched on and initialised, i.e. switchOn, initialise, incomeCall, or a negative
trace where an incoming call occurs after the phone starts ringing, i.e. startRing,
incomeCall. From such traces, it can be inferred that an incoming call may be
triggered when the phone is initialised, or not ringing as shown in Figure 4.

SpeakerEnv Chip Env Chip

¬Ringing¬Ringing
initialise

incomeCall incomeCall

Fig. 4. New triggered scenarios to avoid vacuously satisfying the Receive scenario
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In this paper, we show how model checking and inductive logic programming
provide automated support for detecting vacuously satisfiable scenarios and the
computing new scenarios that avoids vacuity, such as those shown in Figure 4.

3 Background

3.1 Triggered Scenarios

Triggered scenarios are sequence charts that represent interactions between the
system’s agents. Graphically, a triggered scenario comprises several vertical lines
labelled by names representing agents’ lifeline. Time is assumed to flow down-
ward. Annotated arrows between these lines correspond to synchronous messages
which represent instantaneous events on which both objects synchronise.

A triggered scenario consists of three parts; a trigger that is surrounded by a
dashed hexagon, a main chart that is surrounded by a rectangular frame and a
scope. The trigger is the condition that activates the main chart. It can include
event messages as well as properties (depicted in rounded boxes). A property
may be associated with one or more agent instances. It is a boolean combination
of propositional atoms and their negations, expressed in Fluents Linear Temporal
Logic (discussed later), that are expected to be true or false at that point in the
system. A main chart can only contain messages. Event messages and properties
are associated with ordered locations along the agents’ lifelines. A universal
Triggered Scenario (uTS) forces the occurrence of the main chart (depicted in
a solid rectangular frame) after every occurrence of the trigger. An existential
Triggered Scenario (eTS) asserts that it is possible to perform the main chart
after every occurrence of the trigger but not necessarily, i.e. alternative behaviour
after the trigger is allowed. The purpose of the scope is to restrict the occurrence
of certain messages. Events appearing in a triggered scenario are by default
within its scope. Further events can be included in the scope by adding them
to the restricts set depicted in a dotted frame below the scenario’s main chart.
We refer to events in the scope as observed events. Any non-observed event can
occur interleaved without restriction.

Triggered scenarios are interpreted over execution trees. An uTS (resp. eTS)
is satisfied in an execution tree if at any node of the tree where the trigger is
satisfied, every (resp. at least one) outgoing branch satisfies the main chart.

3.2 Fluent Linear Temporal Logic

Fluent Linear Temporal Logic (FLTL) is a linear temporal logic of fluents [12].
A fluent is a propositional atom defined by a set If of initiating events, a set
Tf of terminating events and an initial truth value either true (tt) or false (ff).
Given a set of event labels Act, we write f = 〈If , Tf , Init〉 as a shorthand for a
fluent definition, where If ⊆ Act, Tf ⊆ Act, If ∩ Tf = ∅ and Init∈ {tt,ff}. We
use ȧ as a shorthand for a fluent defined as 〈a,Act\{a},ff〉.

Returning to our running example, the fluents Opened, Ringing and Calling,
meaning the cover is open, the phone is ringing and there is an incoming call,
can be respectively defined in FLTL as follows.
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Opened =<coverOpened, coverClosed, ff>
Ringing =<startRing, stopRing, ff>
Calling =<incomeCall, endCall, ff>

Given a set of fluents F , FLTL formulae are constructed using standard boolean
connectives and temporal operators X (next), U (strong until), F (eventually) and
G (always). The satisfaction of FLTL formulae is defined with respect to traces,
i.e. sequences of events over a given alphabet Act. Given a trace σ = a1, a2, ...
over Act and fluent definitions D, a fluent is said to be true in σ at position i
with respect to D if and only if,

– f is defined initially true and ∀j ∈ N . ((0 < j ≤ i) → aj �∈ Tf);
– (∃j ∈ N . (j ≤ i) ∧ (aj ∈ If )) ∧ (∀k ∈ N .((j < k ≤ i) → ak �∈ Tf)).

In other words, a fluent f holds if and only if it is initially true or an initiating
event for f has occurred and no terminating event has occurred since.

3.3 Modal Transition Systems

A Modal Transition System (MTS) is used to formalise a partial model of
the system’s behaviour [19]. It extends Labelled Transition Systems (LTSs), a
widely used formalism for describing and reasoning about system behaviour, by
distinguishing between transitions that are required, proscribed and unknown,
i.e. transitions for which it is not possible, based on current available knowledge,
to guarantee that they will be admissible or prohibited.

Definition 1 (MTS and LTS). A Modal Transition System is a tuple M =
(Q,Act, Δr, Δp, q0) where Q is a finite set of states, Act is a set of event labels,
called the alphabet, Δr ⊆ Q × Act × Q is a required transition relation and
Δp ⊆ Q × Act × Q is a possible transition relation where Δr ⊆ Δp and q0 is
the initial state. A transition that is possible but not required is called a maybe
transition. An MTS where all possible transitions are required is called a Labelled
Transition System, written (Q,Act, Δ, q0).

An MTS M is said to have a required transition on a, denoted q
a−→r q′, if

(q, a, q′) ∈ Δr. Similarly, M is said to have a maybe transition on a, denoted

q
a−→m q′, if (q, a, q′) ∈ Δp−Δr. Figure 5 shows an example MTS for the mobile

phone system, with the alphabet Act= {open, close, incomeCall, coverOpened,
coverClosed, setDisplay, displayCaller, startRing, answer, talk}, where maybe
transitions are denoted with a question mark following the label. Figure 3 shows
two LTSs for the same system. Note that the numbered nodes are used for
reference and do not designate a particular state.

A trace σ = a1, a2, ..., where ai ∈ Act, is said to be required in an MTS
M if there exists in M a sequence of states such that q0

a1−→r q1
a2−→r q2....

It is said to be possible if there exists in M a sequence of states such that
q0

a1−→p q1
a2−→p q2..., with at least one transition relation that is in Δp −Δr .
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Fig. 5. An MTS synthesised from Receive scenario

Given two MTSs N and M , N is said to refine M if N preserves all of the
required and proscribed transitions of M [19]. An LTS that refines an MTS M ,
i.e. an implementation, is a complete description of the system up to the alphabet
ofM . For example, the LTS shown in Figure 3.b is an implementation of the MTS
given in Figure 5. Merging MTSs is the process of combining what is known from
each MTS. In other words, it is the construction of a new MTS that includes all
the required behaviour from each MTS but none of the prohibited ones. An MTS
can be synthesised automatically from a safety property φ expressed in FLTL [25]
and triggered scenarios TS [24] that characterises all implementations satisfying
φ under a 3-valued interpretation on FLTL and TS, respectively.

4 Approach

As illustrated in Figure 1, the approach comprises two main phases. The first
takes as input a set of fluent definitions and universal and existential triggered
scenarios and uses model checking to verify if any of the existing triggered sce-
narios are vacuously satisfiable by some system implementations. If this is the
case, the model checker provides non-vacuity witnesses. In the second phase,
after an engineer classifies the non-vacuity witnesses into positive and negative
examples, these are used to compute new triggered scenarios that ensure that
the existing scenario is satisfied non-vacuously.

4.1 Checking Vacuity of Triggered Scenarios

We first define the term vacuously satisfiable triggered scenario, and then discuss
the MTS construction, vacuity checks and witness generation.

Definition 2 (Vacuously Satisfiable Triggered Scenario). Let S be a trig-
gered scenario with trigger P , main chart C and scope Θ. Let M be an MTS
that characterises all LTSs that satisfy S. The scenario S is said to be vacuously
satisfiable in M , if there exists at least one LTS implementation I of M such
that for all traces in I, restricted to the scope Θ, the trigger P is never satisfied.
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For instance, the triggered scenarioReceive, shown in Figure 2.a, is vacuously sat-
isfiable since there exists at least one implementation (e.g. the LTS in
Figure 3.a) of the MTS synthesised from the scenario (shown in Figure 5) where
the trigger is never satisfied.

The first step in detecting vacuity involves automatically synthesising an MTS
that characterises all LTSs that satisfy the given set of triggered scenarios. The
synthesis is done on a per triggered scenario basis, following the technique de-
scribed in [24]. Once constructed, the generated MTSs are then merged. If the
merge is successful, then the resulting MTS describes all implementations that
satisfy all triggered scenarios. If it is unsuccessful then this indicates that the
scenarios are inconsistent and hence do not have an implementation.

The second step comprises performing a vacuity check on the MTS resulting
from the merge against a property that informally says: it is always the case
that a scenario’s trigger does not hold. The property can be expressed formally
in FLTL and automatically constructed from the scenario’s trigger. We refer to
this property as the negated trigger property of a triggered scenario. For instance,
the negated trigger property for the uTS Receive in Figure 2 is

G¬(¬Ringing ∧ ˙incomeCall) (1)

Model checking an MTS against a property is akin to checking the property
against every LTS implementation that it describes. The result can be one of
three values: all, none, and some, or more formally, true, false or undefined.

When checking for vacuity, if the result of model checking an MTS against
a negated trigger property is true, then every trace in every implementation of
the MTS satisfies the property, i.e. the trigger of the scenario under analysis
never occurs. This entails that any implementation that satisfies the available
specification vacuously satisfies the triggered scenario. This is an undesirable
situation as it is not possible to extend the specification to avoid vacuity, and
hence it must be revised. If the verification returns false, every implementation
of the MTS has a trace that violates the property, i.e. in which the trigger occurs.
Hence the triggered scenario is not vacuously satisfiable, so the specification need
not be augmented for this particular scenario.

If the result of the verification is undefined, this means that there are some
implementations that satisfy the concerned scenario vacuously and others that
satisfy it non-vacuously. The purpose of the second phase of this approach is to
automatically learn triggered scenarios that will prune out all implementations
of the MTS that vacuously satisfy the concerned triggered scenario. However,
for such learning to occur, examples of how the system-to-be may trigger the
scenario under analysis are needed. In cases where the result is either false or
undefined, a counterexample is given. In the former case, the counterexample is
a trace that violates the property and can be exhibited by all LTS implementa-
tions. In the latter case, the counterexample is a trace that violates the property
and can be exhibited by at least one LTS implementation. Our interest lies in
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the latter case where the model checker provides an example of how some imple-
mentations can achieve the scenario’s trigger. This trace, leading to the trigger,
is taken as a non-vacuity witness for that triggered scenario.

Returning to our running example, verifying the MTS generated from the
scenario Receive and Phone against the property (1) using the MTSA model
checker [11] gives the following violation:

Trace to property violation in Never Trigger Receive:

incomeCall Calling

No. MobilePhone+ does not satisfy Never Trigger Receive

The trace produced by the MTSA is the shortest trace in an implementation
of the MTS that violates the negated trigger property. In particular, the above
means that there exists some implementations of the mobile phone system in
which the phone is not ringing and there is an incoming call, i.e. where the
trigger of scenario Receive is reachable (e.g. Figure 3.b).

Once the model checker detects a non-vacuity witness, this is shown to the
engineer for validation. The engineer might indicate that the trace is positive,
i.e. should be required in all implementations, or negative, i.e. should be pro-
scribed in all implementation. In the former case, the trace is given to the learn-
ing phase. In the latter case, the engineer is expected to produce at least one
positive non-vacuity witness which satisfies the trigger. Positive witnesses can
be automatically generated from the model checker.

4.2 Learning Triggered Scenarios

The input to this phase is a set of triggered scenarios, fluent definitions and
positive and negative non-vacuity witnesses. The output is a set of triggered
scenarios, called a required, that ensure that a trigger is required by at least one
positive witness trace in every implementation of the system.

Definition 3 (Required Scenarios). Let TS be a set of triggered scenario,
D a set of fluent definitions and Σ+ ∪ Σ− a set of positive and negative traces
consistent with TS. Then a set of triggered scenarios S is said to be required
of TS with respect to traces in Σ+ ∪ Σ− if the MTS synthesised from TS ∪ S
requires each trace in Σ+ but none of the traces in Σ−.

To compute new triggered scenarios, we use an Inductive Logic Programming
(ILP) approach described in [22]. ILP is a machine learning technique for com-
puting a new solution H that explains a given set E of examples with respect
to a given (partial) background knowledge B [20]. Within the context of our
problem, the background comprises the given set of triggered scenarios and flu-
ent definitions whereas the positive and negative traces constitute the exam-
ples. A solution is a set of required scenarios requiring the positive non-vacuity
witnesses, but none of the negative ones.

To perform the learning task, the input is encoded into Prolog.We have defined
a sound translation (based on an extension of that given in [4]) that maps trig-
gered scenarios and fluent definitions into an Event Calculus (EC) [15] program.



386 D. Alrajeh et al.

The program makes use of new predicates such as required, maybe, reachable,
trigger satisfied. The encoding of a triggered scenario TS results in a number of
Prolog rules, one for each event appearing in the main chart of TS. Each rule
defines the predicate trigger satisfied(e,T m, S), where e is the event appearing
in the main chart, T m is the time variable associated with the location m at
which the trigger is satisfied, and S is a trace variable1. The body of this rule
contains happens(e, T l, S) atoms for each event e at location l <m in TS, and
a conjunction of literals (not) holds at(fi, T l, S) for each fluent (¬)fi that ap-
pears in a property (¬)f1 ∧ . . . ∧ (¬)fn at location l <m in TS 2. The order of
the time variables in EC respects the location ordering in TS. Constraints over
the type of triggering rule, i.e. existential or universal, are also defined according
to the semantics in [24]. The scope of any scenario to be learned is constrained
to be a subset of the events appearing in the positive non-vacuity witness. The
main charts are encoded to ensure the soundness of the resulting program and
consistency of learned hypotheses.

The solution search space is governed by a language bias which defines the
syntactic structure of plausible solutions. To learn triggered scenarios, we define
a language bias to capture rules with triggers as conditions and triggered events
as its consequents. The language bias is also set to compute sequences of events
leading to the main chart of the given scenarios so that all computed scenarios are
consistent with the existing ones. For every positive example, the learning tries to
construct a solution H which explains why a certain sequence of events must be
required either existentially or universally, within a given scope. It then performs
a generalisation step in which it tries to weaken the conditions to cover required
occurrences of the triggered sequence in other traces. This generalisation can be
controlled by providing several positive and negative non-vacuity witnesses.

The learning succeeds in computing a solution if there is at least one event
occurrence in a positive non-vacuity witness that is not required by an existing
triggered scenario. If several possible required scenarios exists, these will be
given as output and it is the engineer’s task to select the appropriate ones from
those available. The number of triggered scenarios learned can be influenced by
a number of factors including the number of events in the scope of the scenario
to be learned, their occurrences in the example traces and the number of given
negative traces. All produced scenarios are guaranteed to be consistent with the
existing specification and the traces provided, as stated in Theorem 1 below.

Theorem 1. [Soundness of Learning] Let TS be a set of triggered scenarios,
D a set of fluent definitions and Σ+ ∪ Σ− a set of positive and negative traces
consistent with TS. Let Π = B∪E be the EC encoding of TS, D and Σ+∪Σ− into
background knowledge B and examples E. If H is a solution to E with respect
to B, then the set of learned triggered scenarios T , where T is the triggered
scenarios corresponding to H, are required of TS w.r.t. traces in Σ+ ∪Σ−.

1 In Prolog, variables (resp. constants) start with a capital (resp. lowercase) letter.
2 The notation (¬)φ is a shorthand for φ or ¬φ. A similar interpretation is used for
(not)φ.
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The proof is by contradiction. In brief, it assumes that a trace σ+ = e1, . . . , en
is not required in the MTS synthesised from TS∪T. Then it goes to show that
this results in a program Π that does not contain any rule that requires the
occurrence of some event ei in the trace σ+. Given that this leads to a con-
tradiction as H is a set of rules that requires the occurrence of each event in
σ+, then σ+ = e1, . . . , en is shown to be a required trace. The proof for σ− is
done in a similar fashion. As a corollary of the above theorem, when the traces
are examples of positive and negative non-vacuity traces to triggers in TS, the
learned triggered scenarios will guarantee that each positive non-vacuity trace is
required in every implementation but none of the negative non-vacuity traces.

The choice of which learned scenarios to include may have an impact on later
iterations. For instance, selecting a universal scenario over an existential one
might imply that an incoming call is the only observed event when there is
no incoming call detected and the phone is not ringing, for a given scope. It
is obvious that selecting such an interpretation would prevent the occurrence of
any behaviour other than that which is depicted in the main chart of the learned
scenario within that scope. Therefore, we found that it is often preferable to select
existential scenarios over universal at early stages of the elaboration process.

In our running example, the ILP tool computed two alternative required ex-
tensions as solutions; an existential and a universal. The learned existential trig-
gered scenario (shown in Figure 6) states that whenever the user is not engaged
in a call and the phone is not ringing then it is possible to accept an incoming
call. The scope is restricted to the event appearing in the scenario. The universal
contained the same trigger, main chart and scope.

SpeakerEnv Chip

¬Calling ∧ ¬Ringing¬Calling ∧ ¬Ringing

incomeCall

Fig. 6. A learned existential triggered scenario IncomingCalls

Once the engineer has made a selection, the learned scenario is added to
the initial set. Then the newly synthesised MTS (which is a refinement of the
original) is verified against the negated trigger property of another triggered
scenario. If the model checker returns false for all negated trigger properties of
the available scenario then this marks the end of the elaboration task with respect
to the concerned trigger. If however, the model checkers returns undefined, then
the process is repeated again with respect to the new non-vacuity witness trace.
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Note that the encoding of the specification and the computation are hidden
from the engineer. In fact, the engineer only needs to provide the learning sys-
tem with the triggered scenarios, witnesses and fluent definitions and it will
automatically propose a set of required scenarios with respect to the witnesses.

5 Case Studies

We report on the results obtained from two case studies, the Philips television
set configuration from [23] and the air traffic control system in [9]. These were
chosen because they have been used as case studies in much of the literature for
which an elaborated scenario specification exists.

For the Philips configuration set, the specification contained existential trig-
gered scenario from [23]. For the air traffic control system, it included a set of
universal live sequence charts from [9]. All available scenarios were produced
by third parties. We extracted a subset of the scenarios that constituted the
main behaviour requirements provided, i.e. sunny day, normal behaviour. The
aim of the case studies was (i) to investigate the capability of the approach in
identifying the partiality of the given specification (ii) to verify that the learned
triggered scenarios resulted in implementations that non-vacuously satisfied the
given scenarios and finally (iii) to ensure that the learned scenarios were rele-
vant to the domain at hand. The latter was achieved by comparing the learned
scenarios with the available specification.

5.1 Philips Television Set Configuration

This case study is on a protocol used in a product family of Philips television
sets. It include multiple tuners and video output devices that can be configured
by a user. The protocol is concerned with controlling the signal path to avoid
visual artefacts appearing on video outputs when a tuner is changing frequency.

VideoTuner Switch VideoTuner Switch

Active t1 ∧ Tuning∧
(WaitingAck t1 ∨ Dropped t1)

Active t1 ∧ ¬Tuning

t1 tune

t1 newValue

t1 dropReq

s dropReq

s dropAck t1

t1 restore

s restore

(a)

Active t1 ∧ Tuning∧
(WaitingAck t1 ∨ Dropped t1)

t1 tune

t1 newValue

t1 dropReq, s dropReq, s dropAck t1,
t1 restore, s restore

(b)

Fig. 7. Triggered scenarios: (a) Tuning t1 Active t1 (b) NestedTuning t1 Active t1

We discuss here the results obtained by applying our approach to two exis-
tential triggered scenarios; Tuning t1 Active t1 and NestedTuning t1 Active t1
shown in Figure 7. The fluents appearing in the triggers are defined as follows.
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Active t1 =<set Active t1, set Active t2, tt>
Tuning t1 =<t1 tune, {s restore, set Active t1, set Active t2}, ff>
WaitingAck t1 =<t1 dropReq, s dropAck t1, ff>
Dropped t1=<s dropAck t1, t1 restore, ff>

A vacuity check was performed for the scenario Tuning t1 Active t1 first by
checking the system MTS resulting from the merge of the scenarios’ MTSs
against the following negated trigger property.

G¬((Active t1 ∧ ¬Tuning t1) ∧ ( X ˙t1 tune)) (2)

The model checker produced the shortest non-vacuity witness, i.e. t1 tune. Based
on the description given in [23], we provided the system with a negative non-
vacuity trace where a t1 tune events occurs when tuner 2 is active instead.
From these traces, the learning produced two plausible triggered scenarios for
the event t1 tune, one existential and one universal, requiring t1 tune event to
happen when tuner 1 is active and not tuning. Choosing the universal scenario
implies that a t1 tune must be observed every time the trigger is satisfied. We
selected an existential interpretation to allow exploration of other behaviour (see
Figure 8.a). The approach was also used to check for the vacuous satisfiability
of NestedTuning t1 Active t1 (Figure 7.b). Our application resulted in a single
existential triggered scenario shown in Figure 8.b. The learned scenarios were
added to the initial specification. Verifying the new MTS against the negated
trigger properties showed that both triggered scenarios Tuning t1 Active t1 and
NestedTuning t1 Active t1 were non-vacuously satisfied in all implementations.

VideoTuner Switch Tuner Switch Video

(Active t1 ∧ ¬Tuning) (WaitingAck t1)(Active t1 ∧ ¬Tuning)

t1 tune

t1 dropReq, t1 newValue, s dropReq,
s dropAck t1,t1 restore, s restore

(a)

(WaitingAck t1)

t1 tune

t1 dropReq, t1 newValue, s dropReq,
s dropAck t1,t1 restore, s restore

(b)

Fig. 8. Learned existential triggered scenarios (a) TuneAllowed t1 Active NotTuning
(b) TuneAllowed WaitingAck t1

During the analysis phase, the approach also helped in detecting negative
non-vacuity witnesses. For example, the analysis showed that the specification
permitted behaviour in which the tuner sent a request to drop the signal without
the user requesting a tune signal, and another in which a nested tune occurred
outside the ‘storing regions’, i.e. when Waiting Ack t1 and Dropped t1 are both
false. With the identification of positive non-vacuity traces the learning ensured
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that the learned scenarios did not require the occurrence of such events under
such conditions. The final set of scenarios produced using our proposed method
were validated against those generated by running the existing protocol in [23].

5.2 Air Traffic Control System

The Center-TRACON Automation System (CTAS) is a system for controlling
and managing air traffic flow at major terminal areas to reduce travel delays and
improve safety. The communication between the CTAS components is managed
by the Communication Manager (CM) component which stores all interactions
in a database and sends any required information to the requesting components.
Among the CTAS requirements is that every client using weather data should be
notified of any weather update. The scenarios in Figure 9 are universal triggered
scenarios reproduced from [9] regarding the successful and failed update of new
weather information.

ClientCM

¬Updating¬Updating

set upd

get new weather

yes 1

set postupd 1

set postupd

ClientCM

¬Updating¬Updating

set upd

get new weather

no 1

set prerevert 1

setprerevert

Fig. 9. Successful and failed update universal triggered scenarios

An application of our approach to this problem resulted in a total of six uni-
versal triggered scenarios and a single existential one. The set of uTSs computed
were in fact the same triggered scenarios given in [9]. An excerpt is shown in
Figure 10. Our approach also computed the existential scenario depicted in
Figure 10 for setting the weather cycle status to “pre-updating” which was not
present in the specification but is necessary to start the update process.

ClientCM CM Client ClientCM

¬PreUpd ∧ ¬Updating
set preupd

set upd

get new weather 1yes 1

set upd

get new weather 1

set preupd, set upd 1

¬PreUpd ∧ ¬Updating

set preupd

set upd, set upd 1

Fig. 10. CTAS learned universal and existential triggered scenarios
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6 Discussion and Related Work

Although this paper discusses learning from vacuously satisfiable scenarios, the
approach can be generalised for other forms of conditional scenarios (e.g. LSCs)
and conditional statements (e.g. goals and requirements [10]). The exact defini-
tion of the learning task could be customised to the specific problem at hand.

There has been much research on providing automated support for elaborating
scenario-based specifications [1,26]. However, much of the existing work is either
informal, deals with message sequence charts or does not address the problem
of vacuity introduced by conditional scenarios.

To the best of our knowledge, there is no prior work on applying learning algo-
rithms to compute triggered scenarios. However, using model checking to detect
vacuously satisfiable specifications has been the subject of several research efforts
e.g. [7,18,13]. The work in [13] for instance presents a technique for detecting
vacuity in temporal properties expressed in XCTL. They use a multi-valued
model checking algorithm to determine which subformulas in a given expression
are vacuously satisfied in a model. Our approach is similar in that we use model
checking algorithms to detect non-vacuity, and to produce a non-vacuity witness.
However, in addition to the type of specifications used, our work differs in that
it computes possible ways to avoid non-vacuity.

In our previous work, we combined the use of model checking and ILP to
provide automated support for different software engineering tasks. In [2], a
complete set of operational requirements in the form of preconditions and trigger
conditions are iteratively learned from goal models. In [3], model checking and
ILP are used to infer the missing conditions required to guarantee that a discrete
time goal-based specification only admits non-zeno behaviours. Although we use
here the same techniques, i.e. model checking and ILP, as in [2,3] to solve different
software engineering tasks, their application to the problem of detecting vacuity
and learning new triggered scenarios has posed three new main challenges: partial
behaviour models, branching time and scoping of learned expressions. These
points are elaborated below.

The problem addressed in this paper requires the ability to reason about uni-
versal and existential statements (both [2] and [3] deals only with universal
statements). This means that traditional 2-valued semantic domains for these
specifications are inadequate and a partial behaviour formalism such as MTS is
required. As a consequence, the logic programming language is extended with
new predicates (e.g. required and maybe). In addition, the use of triggered exis-
tential scenarios introduces statements that have a branching time semantics (in
both [2,3] learning is only defined over properties with linear time). For this, the
logic programming language has been extended to formalise hypothetical paths
that branch from particular positions in a trace. The scenario language used in
this paper supports scoping each scenario with an alphabet. (both [2,3] consider
statements to have the same scope). This entails that the learning procedure
must not only consider the scope of given scenarios (i.e. axioms for ensuring
that the satisfiability notion with respect to a given scope are required) but also
learned scenarios must include the scope for which they are intended. In [4] we
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have presented preliminary work on the application of ILP in the context of
MTS models. The focus there is on learning safety properties to requires some
possible transitions from given traces. In this paper we build on the formalisa-
tion of MTSs in the logic programs and extend it to represent statements with
a branching semantics and scoping which are not considered in [4]. Finally, note
the work in [6] addresses the problem of learning operational requirements as in
[2,5] but without the use of model checking.

7 Conclusion and Future Work

This paper presents a novel tool-supported approach for the elaboration of par-
tial, conditional scenario-based specifications. In particular, we show how model
checking can be used for identifying vacuously satisfiable triggered scenarios and
how inductive logic programming can support the computation of new triggered
scenarios needed to avoid such vacuity.

As part of this work and future work, we intend to investigate alternative
methods for learning scopes of triggered scenarios. We also aim to extend the
approach to resolve inconsistencies in the specification by providing support
for detecting which parts of the specifications are the cause of inconsistency
(building upon results in [13]) and learning possible revisions to the triggered
scenarios necessary to resolve inconsistencies.
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