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ABSTRACT

Goal-oriented requirements engineering approaches propose
capturing how a system should behave through the specifica-
tion of high-level goals, from which requirements can then
be systematically derived. Goals may however admit subtle
situations that make them diverge, i.e., not be satisfiable
as a whole under specific circumstances feasible within the
domain, called boundary conditions. While previous work al-
lows one to identify boundary conditions for conflicting goals
written in LTL, it does so through a pattern-based approach,
that supports a limited set of patterns, and only produces
pre-determined formulations of boundary conditions.

We present a novel automated approach to compute bound-
ary conditions for general classes of conflicting goals expressed
in LTL, using a tableaux-based LTL satisfiability procedure.
A tableau for an LTL formula is a finite representation of all
its satisfying models, which we process to produce boundary
conditions that violate the formula, indicating divergence
situations. We show that our technique can automatically
produce boundary conditions that are more general than
those obtainable through existing previous pattern-based
approaches, and can also generate boundary conditions for
goals that are not captured by these patterns.

CCS Concepts

eSoftware and its engineering — Requirements anal-
ysis; Risk management; eTheory of computation — Au-
tomated reasoning; Modal and temporal logics;
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1. INTRODUCTION

The derivation of correct software requirements specifica-
tions is essential to any reliable software development pro-
cess [1]. With the ever increasing complexity of software, the
importance of rigorous methods in supporting the attainment

of correct specifications prior to their implementation, also
increases. Much research over the last decades has demon-
strated the significant advantages that formal, goal-oriented
approaches bring to the generation of correct software re-
quirements specification. Goals are prescriptive statements
of how the system should behave. They reflect stakeholders’
understanding of what the envisioned system is intended
to do, and the criteria upon which it would be evaluated.
They are commonly used to: aid the elicitation and elab-
oration of requirements [43, 47]; guide the refinement and
organisation of requirements [4]; and support the derivation
of software operations [2, 8]. However, for such tasks to be
successfully achieved, the goals themselves must be correct,
which is not often the case. Goals are typically too ideal
to start with (wavering off the exceptional conditions that
may arise within its environment once implemented [43, 3]),
partial and imprecise. Ensuring their correctness within the
development cycle is of utmost importance.

One of the challenges in specifying correct goals is ensuring
their consistency. Inconsistency occurs when two or more
goals cannot be satisfied simultaneously, owing to their con-
tradictory nature, non-conformance to standards, or because
of restrictions imposed within certain domains, amongst
other reasons [20]. They are typically a result of overlapping
and conflicting expressions. Detecting and resolving inconsis-
tencies in goals (a process called inconsistency management)
early on not only helps in avoiding costly software repairs
but also supports systematic requirements’ elicitation and
verification activities [35, 44]. Several approaches have been
proposed in the literature for managing inconsistency in goals.
Much work has been done on the qualitative end, e.g., [33,
15], where the general focus has been on identifying contra-
dictory low-level requirements and computing the degree to
which goals are satisficed or denied by them. On the formal
side, inconsistency management has also been the focus of
several studies, e.g., [44, 18, 11, 34, 10].

A weaker notion of conflict (called divergence) in goals
expressed in Linear Temporal Logic (LTL) [37] has been
addressed in [44]. This latter type of inconsistency is con-
cerned with those goals which are not contradictory (can
be simultaneously satisfied), but become inconsistent when
certain conditions hold. Consider for instance the following
goals from the mine pump controller example [25]: “the pump
shall be on when the water level is above the high threshold”,
and “the pump shall be off when methane is detected in the
mine”. These goals are not logically inconsistent as they
are satisfiable in cases where the water level never reaches
a high level or methane is not detected in the mine. They



become logically inconsistent only in the case when the water
level is high and methane is present at the same time. Situa-
tions like the latter can be captured formally as assertions
called boundary conditions, i.e., declarative formulas that
characterise those particular circumstances that lead to in-
consistency. Existing model synthesis approaches would not
detect this type of inconsistency since there exists at least
one model that satisfies such goals, in which the boundary
condition never holds. So far, very limited work has been
done on automatically finding boundary conditions for goal
expressions, save for [44] which supposes goals expressed
according to fixed templates written in LTL.

In this paper, we present a novel approach to automatically
compute boundary conditions for conflicting goals expressed
in LTL, using a satisfiability procedure based on tableaux.
A tableau for an LTL formula is essentially a finite graph
representation of all its satisfying models; it is built by first de-
composing the formula whose satisfiability is being analysed,
according to decomposition rules that produce, for tempo-
ral operators, constraints on the current state and future
states, for their satisfaction. The resulting graph explores
the possible ways of making the initial formula satisfiable,
and in this process, contradictory portions are identified.
The second phase of the tableau method removes contra-
dictory portions, as well as parts of the graph that cannot
satisfy eventualities, leaving a subgraph, the tableau, that
captures all models of the formula (when it becomes empty,
the formula is unsatisfiable). Intuitively, the tableau indi-
rectly captures “conflicting situations”, since any condition
not included in the tableau necessarily prevents the formula
from being satisfiable. Our approach consists of computing
the tableau from a set G of goals, and then exploring it to
identify conditions that would “escape” the tableau, thus
violating the goals, to produce boundary conditions. Our
approach is general, in the sense that it can automatically
detect conflicts in goals expressed as any LTL formula (as
opposed to [44], where goals must comply with specific pat-
terns for conflict detection). In particular, our approach can
be applied to all patterns in [44]. In fact, as we will show,
our technique produces more general boundary conditions
than those of the pattern-based approach, while at the same
time it allows us to compute boundary conditions from goals
not captured by these patterns.

The rest of the paper is organised as follow. In Section 2 we
present the basic concepts that will be necessary throughout
the paper. In Section 3 we present an illustrating example,
together with some observations that motivate the approach.
The approach itself is described in detail, in Section 4. We
then perform a validation of our technique (Section 5), by
comparing it with the pattern-based mechanism for conflict
detection, and by applying our approach on various case
studies. Finally, we discuss related work in Section 6, and
draw some conclusions and further work in Section 7.

2. BACKGROUND
2.1 Goal-Oriented Modelling

Goal-Oriented Requirements Engineering [43] proposes cap-
turing how a system should behave through the specification
of a set of high-level goals, that will drive the requirements
engineering process. Goals are prescriptive statements that
the envisioned system is expected to achieve through the
cooperation of its agents (e.g., humans, devices and software)

within a given domain. Domain properties are descriptive
statements about the problem world (such as natural laws).
In this setting, a goal model is a decomposition of goals
through refinements, which essentially capture how a goal
can be achieved in terms of simpler ones. These goal re-
finements end when each leaf subgoal can be assigned to a
single agent. Agents provide operations, whose combined
behaviours must fulfill the goals. A requirement is a terminal
goal assigned to a software agent, while an assumption is a
goal assigned to an agent in the environment.

In this context, inconsistent goals may arise from con-
flicting expressions. In particular, a weak form of conflict,
called divergence, is of relevance in goal-oriented require-
ments engineering. A set of goals G1,...,G, is said to be
divergent [44, 43] with respect to a set Dom of domain prop-
erties iff there exists a boundary condition BC such that the
following conditions hold:

{Dom,BC, A G}k false
1<i<n

{Dom, BC, \ G;} {~ false, for each 1 < i < n (minimality)
J#i
BC#—(GiA...ANGy)

(logical inconsistency)

(non-triviality)

Intuitively, conditions 1 and 2 indicate that the boundary
condition captures a particular combination of circumstances
that makes the goals conflicting. Roughly speaking, the first
condition establishes that goals G1, ..., G, cannot simultane-
ously be satisfied in Dom under any circumstances when BC
holds. The second condition states that removing any of the
goals no longer results in a logical inconsistency. The third
condition prohibits a boundary condition to be simply the
negation of goals. Notice also that the minimality condition
forbids trivial boundary conditions (BC cannot be false nor
can it be the negation of one of the goals (= G;)), and requires
it to be consistent with the domain Dom.

2.2 Linear-Time Temporal Logic

Linear-Time Temporal Logic (LTL) is a formalism that
has been extensively employed to state properties of reactive
systems. LTL assumes a lineal topology of time, i.e., each
instant is followed by a unique future instant, and its formu-
las are evaluated over infinite traces that represent system
executions. Given a set AP of propositional variables, LTL
formulas are inductively defined using the standard logical
connectives and temporal operators O) and U, as follows: (i)
every p € AP is an LTL formula, and (i) if f1 and f2 are
LTL formulas, then so are —f1, f1 V fa, fi A f2, Of1 and
fild fa. We consider the usual definition for the operators
O (always), ¢ (eventually) and W in terms of O, U and
logical connectives. Temporal formulas are evaluated over
infinite traces of propositional valuations. Formulas with no
temporal operators are evaluated in the first valuation of a
trace. Given a trace o, O f is true in o iff f is true in o[1..]
(the trace obtained by removing the first valuation from o),
and fild f2 is true in o iff there exists a position ¢ such that
f2 holds in o[i..], and for all 0 < j < ¢, f1 holds in o[j..].

In this work we focus on safety properties, typically spec-
ified as Of, and a particular kind of liveness properties,
namely those captured by the reachability and response pat-
terns, specified as ¢ f and O(f1 — < f2), respectively. For
further details on LTL and temporal patterns, see [30].

2.3 The Tableau Method for LTL



The tableau method is a well-known logical satisfiability
approach, based on the decomposition of the formula being
assessed according to the semantics of its logical operators,
to search for satisfying valuations. In propositional logic, for-
mulas are decomposed according to the semantics of boolean
connectives: a model satisfies fi1 A fo iff it satisfies both con-
juncts at the same time; a model satisfies fi V fo iff it satisfies
at least one of the disjuncts; and so on. Notice that if we start
with the singleton containing the assessed formula and con-
nect sets of formulas according to decomposition rules (e.g.,
{f1 A fo} will be connected to {f1, fo}), then this tableau
process leads to a finite tree, the tableau. Branches originate
due to disjunction; finiteness is guaranteed because sets con-
taining contradictions are not further expanded, and atomic
formulas cannot be decomposed. In a propositional tableau
structure, leaves not containing contradictions characterise
sets of satisfying valuations: those obtained by assigning true
(resp., false) to atomic variables appearing positively (resp.,
negatively) in the branch, and assigning any truth value to
any other atomic proposition.

The tableau method for LTL extends propositional tableau
with rules to cope with temporal operators. Temporal opera-
tors will lead to requirements on the “current” state in a trace,
and on the rest of the trace. For instance, Of (globally f)
will hold in a trace iff f holds in the current state of the trace,
and Of holds in the rest of the trace (or equivalently, if OO f
holds in the current state). On the other hand, < f leads to
branching, as disjunction does: a trace satisfies < f iff the
current state satisfies f or the rest of the trace satisfies  f (or
equivalently, Q< f is satisfied in the current state). Notice
that these additional decomposition rules, if applied exhaus-
tively, may lead to infinite branches. To avoid decomposing
the same formula twice, decomposed formulas are marked,
and if a decomposition leads to a previously constructed set,
then the arc will lead to the already produced one (thus, LTL
tableaux are graphs, as opposed to propositional tableaux,
which are trees). Then, LTL tableaux will deal with sets of
formulas and marked formulas (subformulas of that being
assessed), connected according to decomposition rules. More
precisely, LTL tableau works as follows. Initially, the tableau
contains only one node, the root, consisting of the (unmarked)
formula being queried for satisfiability. Then, each node will
be decomposed according to the following rules:

finfa o afy o

fi fi

f2 O0f
fiVfa O f1 3 fild fa 3
Jil fe [ OOf Lol fin O U fo)

Notice that we do not have rules for negation; we assume the
original formula to be in negation normal form (NNF), where
negations are pushed to be applied to atomic propositions.
Rules labelled with o do not lead to branches, whereas those
labelled with 8 produce branches.

DEFINITION 2.1  (ELEMENTARY FORMULA). We call lit-
eral to a propositional variable or its negation. A formula
is elementary iff it is a literal, or a temporal formula whose
main operator is ).

Then, the above rules are applied iteratively, taking into
account marked vs unmarked formulas, and elementary for-
mulas, as follows:

1. If nis a node labelled with a set S of formulas containing
at least one unmarked non-elementary formula f, then:
(i) if f is a formula «, and a1, a2 are the formulas
resulting from decomposing f, then we create a node
n’ labelled with the set (S — {f}) U{a1, a2} U {f*},
and then we connect n with n’; (4) if f is a formula 3,
and f31, B2 are the formulas resulting from decomposing
f, then we create two nodes n; and ne, such that, ny
is labelled with the set (S —{f})U{f*}U{B:1} and no
is labelled with (S — {f}) U{f*} U{B2}, and finally we
connect n with n1 and ns.

2. If n is a node labelled with a set S that contains only
elementary and marked formulas, then we create a node
n’ labelled with the set S’, such that, ¢ € §" iff O ¢ €
S, and then we connect n with n’.

DEFINITION 2.2 (STATES AND PRE-STATES). The set of
nodes Sy C N that contain only elementary or marked for-
mulas are called states, whereas the set Py C N that contains
the initial root node and immediate successors of states are
called pre-states.

After constructing the tableau, to decide if ¢ is satisfiable,
the unsatisfiable nodes must be eliminated from the graph.
To do so, the following deletion rules are repeatedly applied:

1. If a node contains both a proposition p and its negation
—p, it is eliminated.

2. If all successors of a node have been eliminated, it is
eliminated.

3. If a node is a pre-state that contains some eventuality
Ofa or fi U fo that is not satisfiable, then it is elim-
inated. A formula O f2 or fi U f2 is satisfiable in a
pre-state iff there exists a path in the tableau leading
from that pre-state to a node that contains formula fo.

Intuitively, eventualities express “promises” that a property
will eventually be fulfilled, so one must guarantee that a
future state satisfies them, to consider these satisfiable.

The decision procedure ends when all unsatisfiable nodes
have been removed from the tableau. If the initial node has
been eliminated, the initial formula is unsatisfiable; if not, it
is satisfiable. The reader is referred to [46] for further details
and examples regarding the tableau construction for LTL.

As an example, consider the tableau in Figure 1, gener-
ated for the formula O O p A O—p. The 100t node contains
{00 p, 0—p} (we already decomposed the conjunction for
space reasons). All nodes whose identifiers are in boldface
(n2, n3, n5, n8 and n9) are states. Node n8 cannot be fur-
ther expanded since it contains a propositional inconsistency
(p and —p). Notice also that all nodes reachable from n3
contain p, and therefore they cannot fulfil the eventuality —p
associated to formula O—p. The parts of the tableau that
are eliminated according to the above rules are highlighted
in the figure. Since root belongs to the tableau after all
deletion rules have been applied, O O p A O—p is satisfiable;
the tableau also indicates the only way to make it satisfiable
is in a trace in which the eventuality —p is fulfilled in the
first state, while in the rest of the trace p is satisfied.

3. MOTIVATING EXAMPLE

To illustrate both the problem addressed and our proposed
solution, let us consider a simplified version of the Mine Pump
Controller (MPC) [25]. The MPC has a sensor that detects



root {0 O p, 0—p}

{ 0O p*, 0-p, }
Op.OHOP) J
{ 00 p*, 0w, } (/{ OO p*, 0-p*, }n;\/\
Op.OEOp),—» L1 Op.O@ O p), O(0-p)
N /
nd {p,0O p} \\ {p,0 Olp, O-p}_ne (
SR |
0o [ »00p, 0, \
o on o2 ndom 1) )

ns{ p,0Op", 0", } ,‘{ p, O, 0", }ns
Op, OB Op),—p L Op,O@EOPR). O(0p)

Figure 1: Tableau Example.

when the water level is high, and a sensor to detect the
presence of methane in the environment. The propositional
variables hw, m and po are employed to represent the facts
that a high water level is reached, that methane is present
in the environment, and that the pump is on, respectively.
In this context, the following goals are relevant:

Goal: Maintain[PumpOffWhenMethane]

InformalDef: The pump should be off when methane is
detected in the mine.

FormalDef: O(m — O(-po))

Goal: Maintain[PumpOnWhenHighWater]

InformalDef: The pump should be on when the water level
is above the high threshold.

FormalDef: O(hw — O(po))

While these goals can be simultaneously satisfied (e.g., when
the water level is never high or methane is never present in
the environment), they become logically inconsistent when, at

the same time, the water level is high and methane is present.

Such conflicting situations, in this case characterised by the
boundary condition &(hw A m), are not obvious to identify,
and are very important to detect. We propose automatically
detecting such boundary conditions by constructing and

processing a tableau from the goals’ temporal formalisations.

Let us provide some intuition on how the process works, in
the particular case of safety goals.

From the above safety goals (that we denote here as G1
and G for space reasons), the tableau method previously
introduced produces the tableau shown in Figure 2. The
root node is the only pre-state, and nodes n0, nl, n2 and
n3 are states. Also, since n3 contains both p and —p, it is
not further expanded (will be removed from the tableau).
The dashed lines in the figure indicate that target nodes are
reached through intermediate nodes (that are neither states
nor pre-states).

States in the tableau capture sets of valuations in particular
instants of a trace, through the literals they contain. For
instance, state n0 characterises valuations (or points during a
trace execution) in which there is no methane and water level
is not high (—m A —hw). Moreover, if the “consistent” states
in a tableau are identified (basically, the states of the tableau
that remain after the removal phase), since these characterise
all consistent situations, the negation of their disjunction
indirectly captures how the goals would be violated (would

{Gh G2} root

Gi, Gz, —m, ﬁhw } : G1, G5, —po, ~hw

m — —po*, O(G1) m — —po*, O(G1)
hw — po ,O(G2) hw — po*, O(G2)
n1

GL G;v —po, po
m — —po*, O(G1) m — —po*, O(G1)
hw — po*, O(G2) hw — po*, O(G2)

n2 n3 ><

Figure 2: Tableau for the Mine Pump Controller.

“fall” into the unsatisfiable part of the tableau). In our
particular example, this formula is =((=m A =hw) V (=m A
po) V (—po A —hw)), and reaching it leads to a violation of
the goals. Thus, O=((=mA —hw) V (-m A po) V (mpo A —~hw))
is a boundary condition (or equivalently ¢((=hw A m A po) V
(hwA (mV—po))), as our tool produces it after simplification),
evidencing a weak conflict between the goals. Actually, as
we will explain later on, this is in fact a potential boundary
condition, since it may not satisfy minimality (an additional
checking must be performed on our produced violations to
guarantee minimality).

It is worth noting that our computed boundary condition is
more general than that manually identified above (& (hwAm)).
By more general we mean that the formula & (hwAm) implies
the boundary condition computed by our approach. As
we will show in our experimental assessment, this tableau-
based approach produces more general conflicts than those
obtained using alternative pattern-based techniques. In the
next section, we describe in detail the approach, including
how other kinds of goals (besides safety) are handled.

G7, G5, —m, po

4. THE APPROACH

Our tableau-based approach to automatically detect goal
conflicts receives a goal-oriented requirements specification
composed of LTL formulas capturing the domain assumptions
Dom, as well as goals G = {G1,..., Gn}. The process may
determine that there are no conflicts, or that there exist
either strong or weak conflicts. The most relevant case, upon
which we concentrate in this work, is when weak conflicts
are detected. If this is the case, our process produces a
set BC'= {BCi,...,BCy} of boundary conditions capturing
different divergent situations between the goals in the domain.

Our approach is able to deal with safety goals and a particu-
lar kind of liveness goals, namely those that can be expressed
following the reachability or response (progress) patterns [30].
Reachability goals have the form < f, while response goals
have the form O(f; — < f2). Progress goals, on the other
hand, are expressed as OO fa, and are a particular case of
response goals (those where fi1 = true) [30].

The overall approach is summarised in the following steps.
(1) Tableau generation and refinement: A tableau struc-
ture T' for DomA G is automatically generated using the LTL
decision procedure presented in Section 2.3. As mentioned
before, structure T encodes all models of Dom A G. If after
the deletion rules are applied all the nodes are removed from



Algorithm 1 takes as input an LTL specification of the
domain Dom and of a set of goals G. The output indicates
if the goals have no conflict, or if they are strongly or weakly
conflicting. When goals are weakly conflicting, a set BC of
boundary conditions capturing divergences is produced.

1: function DETECTDIVERGENCES(Dom, G): BC

2 T = (N, R, root) < LTL-TableauMethod(Dom A G)

3t if N =0 then

4 > Dom A G is unsatisfiable.

5: return UNSAT. Goals and domain specifications are con-

tradictory.

6 else

7 > Dom A G is satisfiable. Look for weak conflicts.

8 > compute potential boundary conditions.

9: pBC «+ SAFETYBC(T) > safety case.
10: Glive < LivenessGoals( Q)

11: for all G; € Gy do > liveness case.
12: pBC <+ pBC U {LiveNessBC(T, G;)}

13: end for

14: > Check divergence conditions.

15: BC < FilterDivergences(Dom, G, pBC)

16: if BC # () then

17: return Weak conflict detected: BC.

18: else

19: return No conflict detected: 0.
20: end if
21: end if

22: end function

T, then goals and domain specifications are contradictory,
and we do not look at it any further; otherwise, we proceed
to look for weak conflicts.

(2) Potential BC identification: At this point, tableau
T produced in the previous phase is non-empty, and charac-
terises all the models for Dom A G, in the sense that every
sequence that satisfies Dom A G is a path in the tableau
T, and every finite path obtained from 7T is the prefix of
some model of Dom A G [31]. However, there may exist
some infinite paths in T' that leave some eventuality formula
unsatisfied, and thus, such paths do not satisfy Dom A G.

Taking these observations into account, from 7', there are
two potential sources of divergences that must be analysed.
On one hand, all the unsatisfiable nodes removed by the
application of the tableau deletion rules characterise a par-
ticular kind of violation to DomA G. A condition that would
force one to reach the inconsistent portion removed from 7T,
may represent a divergence for Dom and G. We call this the
safety case. On the other hand, given a liveness goal G; € G
whose eventuality is f (e.g., a reachability goal G; = ¢ f), an
(infinite) path in the tableau T that does not pass through a
state in which f holds, is a violation for GG; and a potential
source of divergence between the goals. We call this the live-
ness case. Why these cases are potential divergences and not
actual divergences is further discussed later on, and analysed
in the next phase. This current phase will produce a set of
LTL formulas characterising potential divergences for both
the safety and liveness cases.

This phase is achieved by extracting from tableau T a
set of path conditions that characterise the two kinds of
inconsistencies just described. A path condition is an LTL
formula characterising a path in the tableau (see Section 4.2).
To produce path conditions, T is traversed starting from the
root node, collecting the information provided by the states
to build LTL formulas that capture the following situations.
For the safety case, the produced LTL formula captures a
path that escapes from T, directing us into the unsatisfiable
nodes (those removed from the tableau during node deletion).
For the liveness case, the produced LTL formula characterises

a path in T' that avoids the states in which the eventuality
of some liveness goal is fulfilled.

Path conditions are used to produce the potential bound-

ary conditions pBC = {pBC},...,pBC, }, whose concrete
formulation depends on whether they are safety or liveness
cases. As previously mentioned, formulas in pBC are poten-
tial conflicts, because although they characterise violations
for Dom A G, they do not necessarily represent a divergence
case between the goals with respect to the domain. More
precisely, according to the divergence definition given in Sec-
tion 2.1, we have to check if the logical inconsistency and
minimality conditions are satisfied, to guarantee that these
are divergences.
(3) BC extraction: This final phase consists of removing
from pBC those conditions that do not satisfy the divergence
properties in Section 2.1. The remaining boundary conditions
BC = {BCh,...,BCy} capture weak conflicts between the
goals in G and the domain Dom.

Algorithm 1 describes how the above steps are combined.
We provide further details of each step below.

4.1 Generating and Refining the Tableau

LTL-TableauMethod (line 2 in Algorithm 1) implements
the LTL decision procedure introduced in Section 2.3. It
generates a tableau structure T' = (N, R, root), which encodes
all potential models for Dom A G. Recall that the formula
to which the tableau construction is applied (in our case
Dom A G) is satisfiable iff the root node is not removed
during the application of the deletion rules. Notice that in
Algorithm 1 we simply indicate that the goals and domain
constraints are contradictory, when the tableau is empty
(root node removed). When, on the other hand, 7' maintains
some nodes after the application of the deletion rules, then
Dom A G is satisfiable. In this case, the approach proceeds to
generate potential boundary conditions, as described below.

4.2 Generating Potential Boundary Conditions

After generating the tableau T, the approach proceeds to
extract from T a set of of LTL formulas that characterise
potential boundary conditions. More precisely, functions
SAFETYBC and LiVvENESSBC in Algorithm 1 generate these
LTL formulas for the safety and liveness cases, respectively.
In both cases, the LTL formulas are generated in two steps.
First, SAFETYBC computes a set of frontier path conditions
that escape from T directing us into the unsatisfiable nodes,
previously removed by the tableau method. Similarly, LIVE-
NESSBC first computes a set of path conditions in 7' that
avoid passing through the states in which the eventuality
of some liveness goal is fulfilled. Then, given these path
conditions, SAFETYBC and LIVENESSBC generate the set
of potential boundary conditions from these computed path
conditions. In the remainder of this subsection, we introduce
some terminology necessary to present the process for ex-
tracting potential boundary conditions from a tableau, and
then we further describe the above mentioned functions.

State Constraints, Successors and Path Conditions.
Let T = (N, R, root) be a tableau structure. The state
nodes of T' (see definition 2.2) contain literals that represent
the constraints that the states should satisfy to be part of a
model for the formula that was queried for satisfiability.

DEFINITION 4.1  (STATE CONSTRAINTS). Given a state
node s € Sy, the state constraints imposed by s, denoted by



CONS(s), are composed of the conjunction of literal formulas
that s contains. Given a set S C Sy of state nodes, CONS(S)
is defined as \J CONS(s).

seS

CONS(s) then returns a propositional formula that charac-
terises all states that satisfy the conditions imposed by state
s. For instance, if s = {O(pV —q)*, Or*,pV —¢*, -q, r}, then
CONS(s) = —q A r, characterising the states in which the
proposition g is false and 7 is true.

Notice that, according to definition 2.2, some nodes in N
are neither states nor pre-states. For the sake of simplicity,
let us ignore all these intermediate nodes, preserving the
transition relation between states and pre-states in R.

DEFINITION 4.2 (SUCCESSORS). Given two pre-state no-
des di,ds € Pn, succs(di,d2) = {s € Sn|(d1,8) € RA
(s,dz2) € R}, i.e., the set of state nodes that transit from dy to
da. We will use succs(d) to denote all state nodes that are suc-
cessors of pre-state d, i.e., succs(d) = {s € Sn|(d, s) € R}.

DEFINITION 4.3 (PATH). A path p = (do, So); (d1, S1);-
... (dk, Sk) in T is a sequence of pairs of a pre-state node
and a set of state nodes such that: 1. do = root; 2. ¥i:0 <
1 < k,S; C suces(di, div1), and S C suces(dr); 8. Vi : 0 <
i< k,S; #0.

A loop-free path is a path where d; # dj, for0 < i< j <k.

DEFINITION 4.4  (PAaTH CONDITION). A path condition
[po, ..., pk] is a sequence of propositional formulas such that
there exists a path p = (do, So); (d1,S51);...; (dk, Sk) for a
given tableau T, where p; = CONS(S;), for all 0 <i < k.

Intuitively, a path and its corresponding path condition
characterise consistent ways of traversing the tableau 7.
Our approach will consider loop-free paths to compute path
conditions for producing potential boundary conditions. The
frontier path condition defined below is used for describing
the paths that “cross” the frontier of the consistent part of
the tableau, and lead to an inconsistent portion of it.

DEFINITION 4.5 (FRONTIER PATH CONDITION). A fron-
tier path condition [po, ..., ¢r—1,%] is a sequence of propo-
sitional formulas such that there exists in T a path condition
p=lpo,- .., ¢k, and b = —py.

4.2.1 Potential Safety Boundary Conditions

Function SAFETYBC given in Algorithm 2 receives as in-
put the tableau structure 7' = (N, R, root) and returns a
set of potential boundary conditions. First, it calls function
SAFETYFPCs (line 3) to compute a set of frontier path con-
ditions, capturing paths that “escape” from T reaching the
unsatisfiable nodes removed during the tableau construction.
SAFETYFPCs explores T starting from the root node (invoca-
tion in line 3), and traverses T' using the successors definition
given above (set S; in lines 19-21), recovering path conditions
(line 22) required to finally reach the inconsistent portion
of the tableau (set S, and formula v in lines 14-15). The
algorithm keeps track of the already visited pre-states nodes,
so loops are not considered (lines 11-13). Intuitively, SAFE-
TYFPCs computes all the shortest loop-free frontier path
conditions in T', that start in the root node and escape from T,
ending in the unsatisfiable portion removed previously from
T. Then, function SAFETYBC encodes each frontier path
condition as an LTL formula f, by nesting each condition in

the path using the next temporal operator O (line 5). The
resulting formula f is used to generate a potential boundary
condition ¢(f) (line 6). Intuitively, this formula indicates
that there might be a conflict in our model if condition f
is eventually reached, since it would lead to reaching the
inconsistent part of the tableau. Notice that by applying ¢
to f we are somehow “generalising” the inconsistency case f.
This is necessary because otherwise, and due to our analysis
being limited to loop-free paths, the obtained divergences
would be too strong (representing divergent cases of a fixed
length). This generalisation step may however make the
candidate boundary condition consistent with the goals and
domain, so we will have to later on check for inconsistency
with respect to these constraints (see Section 4.4).

Algorithm 2 Receives as input a tableau T' = (N, R, root)
and returns a set pBC of LTL formulas, characterising po-
tential boundary conditions.

function SAFETYBC(T'):pBC
pBC <+ 0
frontier PC's < SAFETYFPCs(T, 0, [ ], root)
for all [¢1,..., ¢k, Y] € frontierPCs do
F= o1 AO(p2 Ao . AO(pr AOY) - - )
pBC <« pBCU{O(f)}
end for
return pBC
end function

10: function SAFETYFPCS(T,V ,p,d,): FPC
11: if V = Py then return

12:  else

13: V' +—Vu{d,}

14: Sk < suces(d,)

15: 1 < = CONS(Sy)

16: currFPC « p + +[¢]

17: FPC+ {}

18: for alld € Py — V' do
19: if succs(d,,d) # 0 then
20: Si « suces(dy, d)

21: @ < CONS(S;)

22: P = p++le]

23: FPC « FPCUSAFETYFPCs(T, V', p’, d)
24 end if

25: end for

26: return FPCU {currFPC}
27:  end if

28: end function

4.2.2 Potential Liveness Boundary Conditions

Function LIVENESSBC in Algorithm 3 takes as input the
tableau T' and a liveness goal G; € Gy, and returns an
LTL formula that characterises different paths in 7" that
do not guarantee the eventuality corresponding to the goal
G;. This LTL formula represents a potential divergence
between goal G; and the other goals and domain constraints.
LiveNEssBC starts by identifying the nodes in 7" in which
the eventuality required by G; is fulfilled. That is, if G; is
a reachability goal ¢ f or a response goal O(g — < f), then
O f is the eventuality that G; should fulfil. Then, sentence
E «+ FEventualities(T, G;) in line 2 will store in F the set of
all nodes from T that contain formula f (i.e., each node in F
satisfies the eventuality demanded by goal G;). For instance,
if G; = ©p, then all nodes from T that contain proposition
p, will be in the set E.

After that, LIVENESSFPCs computes all the loop-free path
conditions in a way similar to that for the safety case. How-
ever, for the liveness case, the path conditions computed
avoid those paths that pass through the nodes in E. Then,



the main difference with the safety case is the composition of
the sets S; and S, in Algorithm 3. In particular, set S; only
considers state nodes that transition to the next pre-state
node, but that are not included in the set E (line 21). The
set Sk only contains the nodes that are in E (line 18), thus ¢
(i.e.,mCONS(Sk) AN CONS(suces(d,) — E)) characterises the
nodes that do not satisfy the eventuality (line 19).
LiveNESSFPCs then returns the shortest loop-free path
conditions that avoid reaching nodes in which the eventuality
required by G; holds. In line 6, a formula f characterising
each path condition, is generated. The disjunction of all
these formulas captures all the different ways of traversing
the tableau without hitting a state in which the eventuality
of goal G; is satisfied (line 7). If the goal is a reachability
one, of the form G; = ¢ f, and the computed path condition
is F'C, then O(FC) is the potential divergence (line 12). This
LTL formula indicates that there is a conflict if the condition
FC always holds, preventing the eventuality f required by
G; from being fulfilled. If, on the other hand, the goal
is a response one, of the form G; = O(fi — <f2), and
the computed path condition is F'C, then <(f1 A O(FC))
is the potential divergence (line 10). This LTL formula
indicates that there is a conflict if f; holds at some point,
but the eventuality f2 is never fulfilled. Notice that f2
may be satisfied before the condition fi holds, but it will
not be satisfied an infinite number of times. The case of
a progress goal OO fy is the same as for response, simply
taking f1 = true. Notice again that, in both cases, by putting
FC in the scope of O we are generalising the divergent case.
Intuitively, formula OFC tries to characterise the infinite
paths in the tableau that do not satisfy the G;’s eventuality.
Despite the fact that the generated LTL formulas capture
conflicts with Dom A G, these may be discarded in the follow-
ing phase because they may not meet all the requirements
to be considered divergences, e.g., the minimality condition.

Algorithm 3 Takes a tableau T' = (N, R, root) and a liveness
goal GG;, and returns a potential boundary condition pBC.

1: function LivenessBC(T,G;):pBC
: E «+ Eventualities(T, G;)

FC « false
PC's <+ LiveNessFPCs(T, E, 0, [ ], root)

2
3
4
5:
gi F+= o1 ANO(p2 A ... AO(pr AOY)...)
8
9

for all [¢1,...,pk, Y] € frontierPCs do
FC+ FCVf
end for
o if G; =0 — Op) then

10: return (¢ A O(FQC)) > G; is a response goal.
11: else
12: return O(FC) > G, is a reachability goal.
13:  end if

14: end function

15: function LivenessFPCs(T,E,V,p,d,):PC

16: > same algorithm as SAFETYFPCS, except the computation of
sets S; and Sj.

18: Sk - suces(d,) N E
19: 1) <= 7"CONS(Sr) N CONS(succs(d,) — E)

21: Sl <— succs(d,,d) — E
22: ¢+ CONS(S;)

24: end function

4.3 Filtering Boundary Conditions

Continuing with Algorithm 1, after computing the set pBC
of potential boundary conditions for the safety and liveness

cases, function FilterDivergences(Dom, G, pBC) is concerned
with checking which ones represent actual divergences. The
previous phase produces potential boundary conditions pBC,
that may fail to be actual boundary conditions because of var-
ious reasons: (i) they might be consistent with the goals and
domain constraints; (%) they might not be minimal; or (%iz)
they might be the negation of a goal. Situation (i) can arise
because, despite the fact that we compute path conditions
that indeed contradict the goals and domain specification,
since such path conditions are loop-free we “generalise” them
(weaken them) by applying a temporal operator; such gen-
eralisation may make some potential boundary conditions
consistent with the goals and domain constraints. Situa-
tions (%) and (%) are more clear: these impose conditions
on our potential boundary conditions that the process to
generate them does not take into account, and thus they
must be checked afterwards. We then have to go through an
additional process, represented by function FilterDivergences
that for each LTL formula bc € pBC, checks whether be
meets the conditions described in Section 2.1, that define
divergences (i.e., inconsistency with goals and domain specifi-
cation, minimality with respect to the set G of goals, and that
bc is not a trivial boundary condition). FilterDivergences
checks inconsistency with goals and domain specification by
assessing the satisfiability of bc A G A Dom using an LTL
satisfiability procedure; minimality, i.e., that for each goal
G; € G, Dom N\ A\ Gj A be is satisfiable, is also checked us-

J#i
ing LTL satisfiability; finally, checking that bc # =G is just
a syntactical check. FilterDivergences discards those LTL
formulas in pBC that do not meet the above conditions, and
returns a set BC' C pBC of boundary conditions for the goals
G in the domain Dom.

FilterDivergences needs, for each potential boundary condi-
tion, to perform as many calls to the LTL decision procedure
as goals are in G (to check the minimality condition). To
efficiently perform all these checks, we use Aalta [27], an
efficient LTL satisfiability checker, recently developed. The
experimental evaluation in Section 5 shows that the time
required by FilterDivergences is small, compared to the time
required to build the tableau.

4.4 Correctness and (In)completeness

Let us discuss now termination, correctness and (in)com-
pleteness of our approach. Regarding termination, recall that
in Section 2.3 we explained that the tableau generation pro-
cess is guaranteed to terminate, and the structure generated
is a finite graph. So, the tableau contains a finite number
of pre-state and state nodes. Since the functions to com-
pute the path conditions, SAFETYFPCs and LIVENESSFPCs,
consider only loop-free paths over a finite graph, these are
finitely many, and thus SAFETYFPCSs and LIVENESSFPCs
terminate. All the checks performed in the last phase of the
approach, FilterDivergences, are made using the LTL satisfi-
ability checker Aalta [27] (that is guaranteed to terminate),
for a finite number of potential boundary conditions. Thus,
the whole process is guaranteed to terminate.

Regarding the correctness of the approach, i.e.; that if
the process produces a formula bc this is indeed a boundary
condition, notice that the last phase of our approach, Fil-
terDivergences, checks that bc satisfies all the conditions of
the definition of boundary condition (see Section 2.1), thus
guaranteeing correctness.



Regarding completeness, i.e., that if there exists a diver-
gence situation between the goals and the domain our process
is able to produce it, the situation is different. Unfortunately
our approach is not complete. Let us provide an example.
Consider again goals O () p and <$—p, used in Section 2.3
to illustrate a tableau. As we mentioned, these goals can
be satisfied only when the eventuality —p is fulfilled in the
first state, and in the rest of the trace p holds. So, if p holds
in the initial state, the goals diverge. In fact, p is indeed a
boundary condition, it meets the three properties defining
it in Section 2.1. However, our approach cannot compute it,
since we only produce formulas that contain at least one tem-
poral operator. In fact, our approach will produce formulas
Op, Op and &(—p A O—p) as potential boundary conditions,
none of which satisfy the boundary condition definition and
thus are removed by FilterDivergences.

S. EVALUATION

In this section we evaluate our proposal, addressing the
following research questions:

RQ1 Is our approach well suited to detect divergences in goal
specifications?

RQ2 Are the boundary conditions computed by our approach
more general than those derived by related techniques?

RQ3 Does our approach apply to specifications that cannot
be handled by related techniques?

To answer RQ1, we take various case studies from the lit-
erature on formal requirements specifications, that feature
both safety and liveness goals, and evaluate our technique
for computing divergences. Section 5.1 reports the results
of analysing two case studies: the Elevator Controller [9]
and the Rail Road Crossing System [5]. To answer RQ2, in
Section 5.2 we briefly introduce the pattern-based approach
to goal conflict detection from [44], and compare divergences
computed using our approach against those obtained using
the pattern-based one. To answer RQ3, in Section 5.3 we
study a simplified version of the TCP protocol, whose goals
do not correspond to any of the patterns of the previous
approach from [44], to assess how our approach deals with
them. Finally, in Section 5.4 we provide further examples,
and discuss about the scalability of our approach and the
succinctness of the computed boundary conditions.

These research questions are answered using a tool that we
developed, that implements our tableau based goal conflict
detection approach. The tableau generation and potential
boundary conditions computation is implemented in Haskell,
and employs a BDD library [6] to simplify expressions when
path conditions are collected, while computing boundary con-
ditions. Moreover, the tool integrates the LTL satisfiability
checker Aalta [27], to efficiently perform all the SAT checks
required by the FilterDivergences phase.

The tool, the specifications for all case studies, and a de-
scription of how to reproduce the experiments can be found
in http://dc.exa.unrc.edu.ar/staff/rdegiovanni/ase2016. All
the experiments were run on an Intel Core 15 4460 processor,
3.2Ghz, with 8Gb of RAM, running GNU/Linux (Ubuntu
15.04). For each case study we report the size of the con-
structed tableau (number of nodes and transitions), the num-
ber of computed potential boundary conditions, the number
of resulting divergences, and the analysis time required for
constructing the tableau and for the entire process. This
information is summarised in Section 5.4.

5.1 Case Studies

We evaluate two case studies taken from the literature,
the Elevator Controller introduced in [9], and a simplified
version of the Rail Road Crossing System taken from [5].

5.1.1 Elevator Controller

The Elevator Controller [9] has one sensor call to detect
when a user has called the elevator, and one sensor atfloor
that is set to true when the elevator reaches the floor where
the user is waiting. In addition, the controller sends an open
signal indicating the door must open. For simplification, we
assume there is only one user that may call the lift at a time.
The following goal and domain properties are elicited:

Goal: Achieve][OpenWhenCall]
FormalDef: O(call - <(open))

Domain: Maintain[DoorOpens WhenAtFloor]
FormalDef: O(O(open) — atfloor)

The goal OpenWhenCall indicates that the controller should
respond to the user’s calling by opening the door. The do-
main property DoorOpens WhenAtFloor captures the door’s
behaviour, indicating the door opens only when the elevator
reaches the floor where the user is waiting. Our approach
computes the following 2 potential boundary conditions:

1. O(eall A —at floor A —open A O(open))
2. O(call A O(—open V (call A —at floor A —open A O(—open))))

Condition 1 is computed for the safety case, while condition 2
is for the liveness goal. Only condition 2 meets the definition
of divergence (condition 1 is inconsistent with the domain
because the door will open in the next state, but the elevator
is not at the floor where the user called it). This formula
captures the scenarios in which the elevator has been called
but the elevator will not be at the floor where it was called,
and it will never open the door. The whole process to
compute this boundary condition takes 0.80 seconds.

5.1.2  The Rail Road Crossing System

Consider now a simplified Rail Road Crossing System [5].
In this model, a train can approach and enter a crossing,
captured by ta and tc, respectively. A car may also approach
and enter the crossing, captured by ca and cc, respectively.
The crossing gate may be opened (go) or closed (—go). The
following goals and domain properties are elicited:

Goal: Avoid[Collision]
FormalDef: O=(tc A cc)

Goal: Maintain[ClosedGate WhenTrainApproaching|
FormalDef: O(ta — —go)

Domain property: TrainsNotStop
FormalDef: O(Q(tc) <> ta)

Domain property: CarsCrossWhenGatelsOpened
FormalDef: O(O(cc) — ca A go)

Our tool computes 5 potential boundary conditions, with
only one being a divergence, in 0.5 seconds. The identified
divergence is the following:

1. O((mee AgoAta) V (ce A (mgo AteV go A (taV te))))

This boundary condition reveals a few dangerous situations.
A conflict arises if the gate is open when the train is ap-
proaching, and the car has not crossed yet. Other similar
conflicting situation arise when the car is crossing at the
same time as the train is approaching or crossing.



5.2 Comparison with Divergence Patterns

We now compare our technique with the only previous
formal approach to derive boundary conditions, presented in
[44]. This previous approach requires matching goals against
a set of pre-defined divergence patterns, for which divergence
expressions are provided. To answer RQ2, we compare these
divergences with those computed by our approach, when fed
with the pre-defined patterns from [44]. Figure 3 summarises
the three divergence patterns presented in [44], in which the
goals and domain are specified in LTL.

[OP=0Q)] [BR-0-5] [0@=9)]
"—“"_A_c—h;eve-Avoid
&)(P/\R)

(0P=09 ] [0@=P)]

Retraction1
O(P A (-Q U O-P))

[OP—=@WS) ]| [0@Q@—=R)]

Retraction2

7
CO((PARA=S)U(PA-RA-S) >

Figure 3: Divergence Patterns from [44].

In the case of the Achieve-Avoid pattern, the following
potential boundary conditions are produced, resulting all in
divergences:

1. O(-PA(-QARASVQA(RV-S))
VPA(RQARVQA(RV-S)))
2. O(-PA-QARA-SAOPVQVS))
3. O(PA=QA-RAO(QARVQA(RV-S)))
4. OQ(PAO((PA-QA-R)V
(=P A=QA (mRV=S))V
(P A-QA-RA O(ﬁQ N ‘!R))V
(=PA=QARA=SAQHRPA-QA=S))))
The entire process for computing and filtering the boundary
conditions takes 0.43 seconds. Boundary conditions 1-3 are
computed for the safety case, while the last condition is
for the liveness goal. When we compare the pattern-based
derived boundary condition O(P A R) with those computed
with our technique, we observe that the former implies our
boundary condition 1 (but not vice versa). That is, bound-
ary condition 1 is more general than that derived by the
pattern. The mentioned implication has been verified using
a simple LTL satisfiability check (f; implies fo iff fi A = f2
is unsatisfiable). From the point of view of succinctness,
clearly our boundary conditions, computed from loop-free
path conditions in the tableau, are more complex and less
readable than that derived by the pattern.

When applying our technique to the Retractionl pattern,
the approach computes the following potential boundary
conditions, where 1 and 2 correspond to the safety case, and
3 to the liveness case:

1. O(=P A Q) 2. O(PA-QAQOHPAQ))
8. O(PAD((=PV=Q)V (PA=QANO(=PV-Q))))

The first two are discarded because they do not satisfy the
minimality condition, while formula 3 is identified as a di-
vergence. The whole boundary condition computation takes
just 0.28 seconds. Again, our computed boundary condition
is not as succinct as the pattern-based one. And also as in

the previous pattern, our computed boundary condition is
more general than the pattern-based derived one (the pattern
based boundary condition implies formula 3).

When applying our technique to the Retraction2 pattern,
the tool computes the following potential boundary condition,
which is a divergence:

1. O((=PAQA=R)V (P A (=QA =SV QA —R)))

The whole divergence computation takes 0.48 seconds. Since

this pattern does not consider liveness goals, the boundary
conditions were computed for the safety case only. As with
the previous patterns, formula 1 is implied by that derived
by the Retraction2 pattern, and consequently, our approach
is again more general.

Notice that for the Achieve-Avoid pattern our approach is
able to produce boundary conditions that are not identified
by the pattern. Thus, these characterise additional divergent
cases, that can be very useful to engineers when analysing
conflicting situations in goal specifications.

5.3 An example not captured by patterns

Consider the TCP network protocol, which provides reli-
able in-order delivery of packets in packet based data trans-
mission. For simplification, let us assume that the protocol
can send one packet at a time, i.e., it waits for an acknowl-
edgement (ack) before sending the next packet. Briefly, the
following liveness goals are elicited for this protocol:

Goals: Achieve[Delivered WhenSent]
FormalDef: O(send — (—ack U delivered))

Goals: Achieve| WaitACKBeforeSendAgain]
FormalDef: O(delivered — (—send U ack))

Notice that this example cannot be matched to any of the
above patterns. Our technique is able to analyse this specifi-
cation, and computes, in 1.31 seconds, the following diver-
gences:

1. O(send A O((—ack A (—delivered V send) V ack A —delivered)
V(—ack A —delivered A send A OQ(—ack A (—delivered V send)
V(ack A —delivered)))))
2. O(delivered A O(—ack V (—delivered A send)
V(—ack A —delivered A send A O(—ack V —~delivered))))

The first boundary condition evidences a divergence if, from
a certain point onwards, after sending a packet, either the
ack signal is never received, or it is received before the packet
has been delivered. The second boundary condition indicates
that the goals are divergent when a packet was delivered,
but its corresponding ack is never received, or a new packet
is sent before receiving the ack.

5.4 Discussion

Let us briefly discuss about the scalability of our approach
and the readability of our computed boundary conditions.
Table 1 summarises for each case study the size of the con-
structed tableau (number of nodes and transitions), the
number of computed potential boundary conditions (pBCs)
and the resulting divergences (BCs), the analysis time re-
quired for constructing the tableau and for the entire process
(in seconds). Moreover, to assess the readability of the BCs
computed, we evaluate the succinctness of the boundary con-
dition computed for each case study (we choose the biggest
one, when multiple pBCs are computed). We measure the
number of literals (Lit.), and the number of logical and tem-
poral operators involved in the formula (L.Op. and T.Op.,



resp.). We also consider additional, more complex, specifi-
cations, namely, the ATM [42], Telephone [13], and London
Ambulance Service (LAS) [14] (3, 5 and 5 formulas, resp.).

Table 1: Scalability and Succinctness Summary

Case Tableau pBCs BC Succinctness Tableau | Total
Study nodes/trans | /BCs | Lit. [ L.Op. [ T.Op. Time | Time
Elevator 24 /48 2/1 6 8 3 0.64 0.80
RRCS 53 / 120 5/1] 9 10 1 0.31 0.50
TCP 34 / 86 2/2 14 20 3 0.92 1.31
ATM 72 / 206 4/3] 13 16 3 2.08 2.71
Telephone 163 / 508 4/1 13 19 2 8.84 11.43
LAS 93 / 184 1/1 ] 42 58 1 11.58 11.68
Achieve-Avoid 34 / 86 4/4 017 28 4 0.27 0.43
Retractionl 12 /24 3/1 7 11 3 0.02 0.20
Reatraction2 30 / 66 1/1] 8 12 1 0.45 0.48

Table 1 shows that almost all the analysis time is spent
in constructing the tableau. We observe that this is more
evident in the specifications that contain more liveness goals,
as the TCP, ATM and Telephone case studies. This is
due to the fact that removing the nodes that do not satisfy
eventualities requires multiple visits to the tableau. Although
we need to perform a more thorough scalability evaluation,
the efficiency of our approach is promising, at least when
analysing specifications that involve only safety goals, or a
restricted number of liveness goals.

Table 1 also shows that the computed boundary conditions
involve a considerable number of literals, logical and temporal
operators, hindering their readability. This is, evidently, one
of the most important issues we need to overcome to help
the engineer in understanding the divergences computed and
resolving the goal models.

6. RELATED WORK

Various informal and semi-formal approaches have been
proposed for detecting conflicts in requirements models [19,
23, 24]. In addition, formal methods for detecting inconsis-
tency have also been proposed in [41, 21, 18, 11, 34, 10].
These approaches focus on logical inconsistencies only, or
ontology mismatch. Other techniques for reasoning about
inconsistencies based on abduction such as [36] consider gen-
erating explanations (in the form of conjunctions of ground
literals) for strong inconsistencies in requirements expressed
in quasi-classical logic. Our approach focuses on detecting
weak inconsistencies and automatically generating general
LTL expressions that characterise situations in which in-
consistencies may arise. Techniques such as [18], perform
consistency checks for requirements expressed as conditional
scenarios as a precursor for model synthesis. These con-
sistency checks would identify inconsistency between two
enabled charts. Our work on the other hand focuses on find-
ing a characterisation for enabling conditions that could lead
to an inconsistency. Conflicts in non-functional requirements
have also been considered in [28, 29, 22]. For instance, [29]
proposes a catalogue of conflicts, categorising these (pairwise)
according to the frequency in which they occur together.

In [13], an approach for detecting conflicts between feature
descriptions expressible in LTL is presented. It focuses on
strong conflicts (i.e., mutually inconsistent features), applies
to features of the form p — ¢ U (r V d), and uses a model
checker for the conflict check. Our approach focuses on
identifying weak conflicts, characterising them by boundary
conditions, and is applicable to a wider class of LTL formulas.

The technique presented in [3] combines model checking
and machine learning to automatically generate a set of
obstacle conditions with respect to goals and domain prop-
erties expressed in LTL. It supposes however that each goal
is satisfiable within its domain, and focuses on identifying
the conditions under which the goal and domain may be
inconsistent. It does not handle situations that arise because
the goals themselves are inconsistent with one another.

The resolution of conflicts has been the subject of recent
work, e.g., [12, 32]. The technique proposed in [32] makes use
of argumentation patterns to elicit, compose and relate stake-
holders beliefs. The technique assumes conflicts have already
been elicited, and calculates an inconsistency score between
beliefs and goals (described informally). These scores are
then used as a guide for engineers as to which goals to re-
solve. Approaches like [40] propose methods that generate
consistency specifications by construction, eliminating the
need for detection. The problem of detecting inconsistency
in specifications is related to that of vacuity detection [26,
17]. The latter may be a result of the former though incon-
sistency detection cannot be reduced to a vacuity check. It
is also somewhat related to that of detecting overconstrained
specifications. For instance, [39] proposes an algorithm for
extracting a core set of assertions that cause an inconsistency
in an Alloy model. The method assumes that inconsistency
is already known to exist. Our method however attempts to
find the assertion (i.e., BC') that would lead to the inconsis-
tency. It also relates to that of realisability of specifications,
e.g., [38, 7], in that conflicting goals may lead to unrealisable
requirements.

7. CONCLUSION AND FUTURE WORK

Detecting inconsistencies early on in the requirements en-
gineering process helps avoiding costly software repairs, and
also supports systematic requirements’ elicitation and verifi-
cation activities. This paper presents a novel approach for
detecting divergences in goal specifications, and generating
boundary conditions that characterise the cases under which
a strong inconsistency could potentially arise. To the best
of our knowledge, our approach is the first fully automated
technique for computing goal conflicts that applies both to
safety and to a wide range of liveness goals, specified in LTL.
Our tableau-based method is guaranteed to produce correct
results and to terminate. Our approach computes more gen-
eral formulas than previous, related techniques. However, as
our boundary conditions are automatically produced from
tableau paths that lead to inconsistencies, they are often
longer and less comprehensible in some cases than the more
compact ones derived from patterns.

The presented work opens various lines for future work. For
instance, a source of incompleteness of our approach is related
to the way we interpret divergent tableau paths, applying a
kind of generalisation through the application of temporal
operators. We are studying alternative, stronger ways of
dealing with these divergent paths, to be able to identify
more boundary conditions. We are also considering the use
of inductive learning techniques to support the inference of
more generalised expressions.

Our approach relies on a tableaux construction; we plan to
study more efficient tableau procedures, e.g., [16], to increase
our technique’s efficiency. We also plan to exploit tableaux
structures for other problems related to requirements specifi-
cations, such as obstacle condition identification [45].
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