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Abstract. This paper considers the problem of assumptions refinement
in the context of unrealizable specifications for reactive systems. We pro-
pose a new counterstrategy-guided synthesis approach for GR(1) speci-
fications based on Craig’s interpolants. Our interpolation-based method
identifies causes for unrealizability and computes assumptions that di-
rectly target unrealizable cores, without the need for user input. We de-
scribe properties of interpolants that yield helpful assumptions in GR(1)
and prove the soundness of the results. We demonstrate, through experi-
ments, that our approach converges more quickly than other techniques,
and yields weaker assumptions.
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1 Introduction

Constructing formal specifications that capture user requirements precisely and
from which implementations can be successfully derived is a difficult task [24].
Their imprecision often results from the conception of over-ideal systems, i.e.,
where the environment always behaves as expected [2,25]. Thus one of the chal-
lenges in building correct specifications is identifying sufficient assumptions over
the environment under which a system would always be able to guarantee their
satisfaction, in other words making a specification realizable.

This paper presents a new technique for automatically synthesizing assump-
tions over an adversarial environment for realizability assurance. More specifi-
cally, we develop a novel counterstrategy-guided synthesis procedure that itera-
tively generates assumption refinements, expressed in a fragment of Linear Tem-
poral Logic (LTL) called Generalized Reactivity (1) (GR(1) for short), based on
logical interpolation. Craig interpolants characterize automatically computable
explanations for the inconsistency between Boolean formulae, in their shared
alphabet. We exploit this feature to construct expressions that explain why a
counterstrategy, and hence the environment, violates a guarantee, and whose
negations form assumptions.

We demonstrate in our case study applications that our approach directly
targets unrealizable cores, in the sense that by adding the assumptions returned
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at each iteration, a specific subset of minimally unfulfillable guarantees [12] be-
comes realizable. Therefore each iteration takes a step closer to realizability. To
characterize the scope of our approach we introduce the notion of fully-separable
interpolants and prove the soundness of our computation when interpolants are
fully separable. We further provide a discussion about the complexity of the pro-
posed approach and its convergence, as well as the weakness of our refinements
in comparison with those computed by existing techniques [26,3,4].

2 Related Work

Recent years have seen the development of effective counterstrategy-guided ap-
proaches to GR(1) assumptions refinement, notably [26,3,4]. Nonetheless those
approaches depend significantly on users’ knowledge of the problem domain and
of the cause of unrealizability. The work in [26] requires users to specify a set
of temporal logic templates as formulae with placeholders to be replaced with
Boolean variables. Assumptions are then generated as instantiations of such tem-
plates that eliminate a given counterstrategy. This typically constrains the search
space to only a subset of GR(1) formulae, which do not necessarily address the
cause of unrealizability, and potentially eliminate viable solutions to the realiz-
ability problem. Similarly, the work in [3], although generating such templates
automatically, requires users to provide a subset of variables for template instan-
tiation. Unless the user knows the exact subset of variables that form the cause,
this may yield assumptions that do not target the true cause of unrealizability,
leading to refinements that needlessly over-constrain the environment. Our pro-
posed method instead directly targets counter-strategies and unrealizable cores,
and does not require users to provide variables for constructing refinements.

Other related work on assumption refinement includes those operating di-
rectly on game structures [11]. With regard to the parity game model used for
controller synthesis (such as in [31,32]), the paper defines the concept of safety
assumptions as sets of edges that have to be avoided by the environment, and
the concept of fairness assumptions as sets of edges that have to be traversed
by the environment infinitely often. The work devises an algorithm for finding
minimal edge sets in order to ensure that the controller has a winning strategy.
Our approach instead focuses on synthesizing general declarative temporal asser-
tions whose inclusion has the effect of removing edges from the game structure,
and directly targeting sources of unrealizability. The problem of synthesizing
environment constraints has been tackled in the context of assume-guarantee
reasoning for compositional model checking [30,14,20] to support compositional
verification. In these, assumptions are typically expressed as LTSs and learning
algorithms like L∗ [5] are used to incrementally refine the environment assump-
tions needed in order to verify the satisfaction of properties.

Craig interpolants have been deployed in the context of abstraction refine-
ment for verification in [18,17]. The differences with our work are in specification
language and overall objective: they seek additional assertions for static analysis
of programs, while we look for GR(1) refinements of systems specifications to en-



able their automated synthesis. The authors of [16] use interpolation to support
the extraction of pre- and trigger-conditions of operations within event-driven
systems to enable the ‘satisfaction’ of goals expressed within restricted fragment
of LTL. Though different in objective, approach and class of properties, our
technique can help in identifying specifications operationalizable by [16].

3 Background

Generalized Reactivity (1) Specifications. LTL [28] is a formalism widely
used for specifying reactive systems. The syntax of LTL is defined over a finite
non-empty set of propositional variables V, the logical constants true and false,
Boolean connectives, and operators X (next), G (always), F (eventually), U
(until). Given a set of states Q and a labelling function λ : Q → 2V , an LTL
formula φ is interpreted over an infinite sequence of states σ = q0q1... in the
standard way, and its language L(φ) is the set of (infinite) state valuation se-
quences w = λ(q0)λ(q1)... such that w |= φ). We assume that the set V consists
of two disjoint sets: input variables X and output variables Y. We will use the
expression B(V) for a boolean expression (i.e., a logical expression without tem-
poral operators) which uses variables in the set V. We will also denote by XV
the set of expressions obtained by prepending a “next” operator to the variables
in V: this is equivalent to the set of primed versions of such variables [9].

Generalized Reactivity (1) specifications (written GR(1) for short) are a sub-
set of LTL of the form φE → φS where φE represents the assumptions of an
environment and φS the guarantees of a controller. The expression φθ, where
θ ∈ {E ,S}, is specified as conjunction of the following: (1) a Boolean formula ϕθinit
of the form B(X ) if θ = E and B(V) otherwise, representing initial conditions; (2)
a set of LTL formulae ϕθinv of the form GB(V ∪XX ) if θ = E and GB(V ∪XV)
when θ = S, representing invariants; and (3) a set of LTL formulae ϕθfair of
the form GFB(V) representing fairness conditions. We will sometimes indicate
GR(1) specifications as a tuple 〈φE , φS〉 with φθ = {ϕθinit} ∪ {ϕθinv} ∪ {ϕθfair}.

A finite-state Moore transducer is a tuple M = 〈Q, q0, I,O, ρ, δ〉 where Q
is a set of states, q0 ∈ Q is the initial state, ρ : Q × I → Q is the transi-
tion function, and δ : Q → O is the output function. Given an input sequence
w = i0i1..., a run of M is the sequence σ = q0q1... such that qk+1 = ρ(qk, ik)
for all k ≥ 0. A run σ on input sequence w ∈ Iω produces an infinite word
M(w) = (δ(q0), i0), (δ(q1), i1).... The language of a Moore transducer M is
L(M) = {M(w)|w ∈ Iω}, i.e., the infinite words generated by a sequence of
inputs and the corresponding outputs over runs of M . A Moore transducer M is
said to satisfy an LTL expression φ if L(M) ⊆ L(φ); in this case we also say that
M is a model of φ and we denote it as M |= φ. A GR(1) property φ is said to
be realizable if there exists an M (representing a controller) such that M |= φ.

Given a specification 〈φE , φS〉 that is unrealizable, we say that ϕS ⊆ φS

is minimally unfulfillable w.r.t. to φE iff the removal of any guarantee g ∈ ϕS
makes 〈φE , ϕS\{g}〉 realizable [12]. Furthermore, an assumption a ∈ φE is said
to be unhelpful w.r.t. φS if ∀ϕS ⊆ φS . 〈φE , ϕS〉 is realizable ↔ 〈φE\{a}, ϕS〉 is



realizable. It is said to be helpful otherwise. Given a set of minimally unfulfillable
guarantees ϕS w.r.t. φE , let ϕE ⊆ φE be a set of helpful assumptions for ϕS ; the
specification 〈ϕE , ϕS〉 is called an unrealizable core [12].

If a specification φ over V = X ∪ Y is unrealizable, an unrealizable core
〈ϕE , ϕS〉 and an environment strategy (called a counterstrategy) can be com-
puted [12,22]. A counterstrategy is defined as a Moore transducer (S, sinit, 2

Y′
, 2X ,

ρ, δ) that satisfies ϕE and violates ϕS [4]. It describes the inputs produced by
an admissible environment in response to the output configuration yielded by
the controller in order to force the violation of φ. The runs of a counterstrategy
are called plays. The terms ‘counterstrategy’ and ‘play’ come from the game-
theoretic algorithms used to reason about realizability [9,3,22]. The transition
function ρ depends only on a subset of the output variables Y ′ ⊆ Y [22]. We
define a labelling function λ′ : S → 2X∪Y

′
over states in the counterstrategy in

this way: a propositional variable is in λ′(s) if it is asserted in all the incoming
transitions of s, while λ′(s) is arbitrary for any s with no incoming transitions.

Interpolants. Craig interpolation was originally defined for first-order logic
[15] and later for propositional logic [23]. No interpolation theorems have been
proved for the general LTL. Extensions have been proposed recently for LTL
fragments [21,19]. However these do not include GR(1) formulae and therefore
are not applicable in our case. We use interpolation for propositional logic.

Formally, given an unsatisfiable conjunction of formulae α∧β, a Craig inter-
polant I is a formula that is implied by α, is unsatisfiable in conjunction with
β, and is defined on the common alphabet of α and β. We write Lφ to denote
the set of variables that occur in a formula φ (also called the alphabet of φ).

Definition 1 (Interpolant [23]). Let α and β be two logical formulae such
that their conjunction α ∧ β is unsatisfiable. Then there exists a third formula
I, called interpolant of α and β, such that, α→ I, I → ¬β and LI ⊆ Lα ∩ Lβ.

An interpolant can be considered as an over-approximation of α that is still
unsatisfiable in conjunction with β. As stated in Craig’s interpolation theorem,
although an interpolant always exists, it is not unique. Several efficient algo-
rithms have been proposed for interpolation in propositional logics. The result-
ing interpolant depends on the internal strategies of these algorithms (e.g., SAT
solvers, theorem provers). Our approach is based on McMillan’s interpolation
algorithm described in [29] and implemented in MathSAT [13]. In brief, the al-
gorithm considers a proof by resolution for the unsatisfiability of α ∧ β. (See
Appendix for details.)

4 Approach Overview

The general procedure is based on a sequence of realizability checks and coun-
terstrategy computations, in the spirit of [26,3]. A specification 〈φE , φS〉 is first
checked for realizability. If it is unrealizable, a counterstrategy C and an unreal-
izable core 〈ϕE , ϕS〉 are computed. The counterstrategy constitutes an example



of environment behaviours that force the violation of the guarantees of ϕS : there-
fore, the assumptions ϕE are refined by adding a GR(1) formula which is incon-
sistent with the counterstrategy. A set of such formulae Ψ is automatically com-
puted by interpolating (α) the description of an environment behaviour in the
counterstrategy, given by the assumptions and a sequence of state labellings in
the counterstrategy; and (β) the guarantees, and by negating the interpolant. A
formula ψi ∈ Ψ is added to the original set of assumptions φE and the procedure
repeats the above steps recursively until realizability is achieved. Algorithm 1
describes this procedure schematically.

Algorithm 1: CounterstrategyGuidedRefinement procedure

Data: φE , assumptions
Data: φS , guarantees
Result: {ψi}, set of alternative assumption refinements such that φE ∧ ψi → φS

is realizable for every i
1 if Satisfiable(φE → φS) & not Realizable(φE → φS) then
2 (ϕE , ϕS , C) := Counterstrategy(φE , φS);

3 Ψ := InterpolationBasedSynthesis(ϕE , ϕS , C);
4 foreach ψi ∈ Ψ do
5 foreach ψ′

j ∈ CounterstrategyGuidedRefinement(φE ∧ ψi, φ
S) do

6 refinements.add(ψi ∧ ψ′
j) ;

7 end

8 end
9 return refinements;

10 else if Satisfiable(φE → φS) & Realizable(φE → φS) then
11 return {true};

12 else
13 return {false};

The function InterpolationBasedSynthesis constitutes the core of our
proposal (see Algorithm 2). It takes as inputs an unrealizable core and a coun-
terstrategy and executes the computation of Ψ via interpolation. We give the
details in the following section.

5 Interpolation-Based Synthesis

Each execution of InterpolationBasedSynthesis involves extracting tempo-
ral formulae that are satisfied by a single play of a counterstrategy (henceforth
called counterplay), and obtaining refinements from its negation. It is sufficient
to exclude a single counterplay of a counterstrategy to eliminate the entire coun-
terstrategy from models of the assumption. Reasoning about counterplays has
also some advantages, which are discussed in Sect. 8. For the purpose of this
paper, we assume that the procedure ExtractCounterplay (line 1) extracts a
counterplay πC at random and consider metrics for selecting one in future work.
A counterplay representing the violation of an initial condition or an invariant



Algorithm 2: InterpolationBasedSynthesis(ϕE , ϕS , C)

Data: ϕE , environment assumptions (in an unrealizable core)
Data: ϕS , system guarantees (in an unrealizable core)
Data: C, counterstrategy
Result: Ψ , alternative assumptions eliminating the counterstrategy

1 πC := ExtractCounterplay(C);
2 u := 0;
3 πC,u := πC ;
4 Ψold := ∅;
5 stopping condition := true;
6 repeat
7 [[πC,u, ϕ

E
u]]:= TranslateCounterplayAssumptions(πC,u, ϕE);

8 [[ϕS
u ]] := TranslateGuarantees(πC,u,ϕS);

9 Iu := Interpolate([[πC,u, ϕ
E
u]], [[ϕS

u ]]);
10 if Iu == false or Iu is not fully-separable then
11 Ψ := false;
12 stopping condition := true;

13 else
14 T (Iu) := TranslateInterpolant(πC,u, Iu);
15 Ψ := ExtractDisjuncts(¬T (Iu));
16 if πC,u is looping then
17 if Ψ 6= Ψold then
18 Ψold := Ψ ;
19 u := u+ 1;
20 πC,u := UnrollCounterplay(πC ,u);
21 stopping condition:= false;

22 else
23 stopping condition := true;
24 end

25 end

26 end

27 until stopping condition;
28 return Ψ ;

guarantee is finite, while that of a fairness guarantee violation ends in a loop
[27]. We call the latter a looping counterplay, and the loop an ending loop.

We distinguish four types of states that may appear in πC : (a) the initial state
Sinit = {sinit}; (b) the failing state in a finite counterplay Sfail = {sfail} (c)

looping states that include the states in ending loop, Sloop = {sloop1 , . . . , slooph },
(d) transient states including all states between the initial state and the first
failing state or loop state (exclusive) Strans = {strans1 , . . . , stransk }. With this
classification, a finite counterplay has the form sinitstrans1 . . . stransk sfail; whilst

a looping counterplay has the form sinitstrans1 . . . stransk (sloop1 . . . slooph )ω. The for-
mulae in the next subsection also refer to a fifth set of states, called unrolled
states, which represent replicates of looping states, and to the unrolling degree



u. They are explored in Sect. 5.2. Each state in πC is labelled with variables
from the set X ∪Y ′ defined in Sect. 3. The value of u is initialized to 0, and thus
πC,u equates to πC (lines 2–3).

The extraction of the counterplay occurs at the start of every call of the
synthesis phase. The remaining steps described in this section are iteratively
executed when the extracted counterplay is looping, and only once otherwise. In
the former case, we will refer to the iteration as the inner-cycle, to distinguish
it from the counterstrategy-guided refinement cycle.

5.1 Candidate Assumptions Computation

Refinements of environment assumptions are computed in four steps: (i) produc-
tion of two inconsistent Boolean formulae from the counterplay and the unrealiz-
able core, (ii) interpolation between the two Boolean formulae, (iii) translation
of the interpolant into LTL, and (iv) negation of the translated interpolant.

Step (i) is executed by the functions TranslateCounterplayAssumptions
and TranslateGuarantees (lines 7-8). The procedure employs the translation
scheme in [7] for bounded model checking: it ensures that the obtained Boolean
formula is satisfiable if and only if the play taken into account satisfies the
LTL formula. The inclusion of assumptions in the counterplay translation is
important in yielding an interpolant in the shared alphabet of assumptions and
guarantees that explains why the assumptions violate the guarantees. Given a
GR(1) formula in ϕθ over V and a counterplay πC,u with state space Sπ ∈ S, its
translation is a Boolean formula over the domain V(Sπ) obtained by replicating
every variable p ∈ V for every state s ∈ Sπ; we denote by p(s) the replica of
p corresponding to state s, and by V(s) the subset of V(Sπ) containing all the
variables referring to state s. This step produces two formulae:

– [[πC,u, ϕ
E
u]], which is a conjunction between the assumptions translation

[[ϕEu]] over πC,u and a formula representing the valuation of every s ∈ Sπ in
πC,u; the latter is a conjunctive formula containing a literal p(s) (resp. ¬p(s))
for every p ∈ X ∪ Y ′ that is true (resp. false) in λ′(s) (see end of Sect. 3);

– [[ϕSu ]] which is the guarantees translation over πC,u.

(The translations [[ϕEu]] and [[ϕSu ]] are given in the Appendix.) Since by defi-
nition a counterplay πC satisfies the assumptions and violates the guarantees,
the formula [[πC,u, ϕ

E
u]]∧ [[ϕSu ]] is unsatisfiable by construction. Therefore, there

exists an interpolant for [[πC,u, ϕ
E
u]] and [[ϕSu ]].

Step (ii) consists of the function Interpolate (line 9). The returned inter-
polant Iu is an over-approximation of [[πC,u, ϕ

E
u]] which by definition implies

the negation of [[ϕSu ]]: it can be interpreted as a cause of the guarantees not
being satisfied by the counterplay, and as such a characterization of a set of
counterplays not satisfying the guarantees.

From such interpolant the procedure aims at extracting a set of refinements
that fit the GR(1) format. In order to do this, the Boolean to temporal transla-
tion requires the interpolant to adhere a specific structure. This is embodied in



the notion of full-separability. To formally define full-separability, we need first
to define state-separability and I/O-separability.

Definition 2 (State-separable interpolant). An interpolant Iu is said to be
state-separable iff it can be expressed as∧

s∈Su

Bs(V(s)) (1)

where Bs(V(s)) is a Boolean formula either equal to true or expressed over vari-
ables in V(s) only.

We will refer to each Bs(V(s)) as a state component of the interpolant. In par-
ticular, a state component is equal to true if Iu does not use any variables from
s. State-separability intuitively means that the subformulae of the interpolant
involving a single state are linked by conjunctions. This means that in any model
of the interpolant each state component must be itself true.

Definition 3 (I/O-separable Boolean expression). A Boolean expression
Bs(V(s)) is said to be I/O-separable if it can be written as a conjunction of two
subformulae containing only input and output variables respectively:

Bs(V(s)) = Bs,X (X (s)) ∧Bs,Y(Y(s)) (2)

We call Bs,X (X (s)) and Bs,Y(Y(s)) the projections of Bs(V(s)) onto X and
Y respectively. Any model of an I/O-separable Boolean expression satisfies the
projections separately. We can now define full-separability of an interpolant.

Definition 4 (Fully-separable interpolant). An interpolant is called fully-
separable if it is state-separable and each of its state components is I/O-separable.

An example of a fully-separable interpolant over X = {a, b},Y = {c, d}
and states S = {s0, s1} is (a(s0) ∨ b(s0)) ∧ c(s0) ∧ ¬b(s1); a non-fully-separable
interpolant, instead, is a(s0)∨a(s1), since literals referring to different states are
linked via a disjunction.

Remark 1. A particular class of fully-separable interpolants is that of fully con-
junctive interpolants, where no disjunctions appear. Whether or not the result-
ing interpolant is conjunctive depends on the order in which the interpolation
algorithm [29] chooses the root clauses for building the unsatisfiability proof.
A sufficient condition for obtaining a fully-conjunctive interpolant is that such
root clauses be single literals from [[πC,u, ϕ

E
u]], and that the pivot variable in

each resolution step belong to the shared alphabet of [[πC,u, ϕ
E
u]] and [[ϕSu ]]. (see

Appendix for details on the interpolation algorithm used).

Step (iii) consists of the function TranslateInterpolant (line 14). It con-
verts a fully-separable interpolant Iu =

∧
s∈Su

Bs(V(s)) into the LTL formula

T (Iu) =BinitX (X ) ∧
∧
s∈Su

F
(
Bs(V) ∧Bsucc (s),X (XX )

)
∧

FG

|Sloop|∨
j=1

(
Bloopj (V) ∧

u∧
r=1

Bunrj,r (V)

) (3)



where the expression BinitX (X ) is a shorthand for Bsinit,X (X ), Bloopj (V) for

B
sloopj

(V) and Bunrj,r (V) for Bsunr
j,r

(V). Formula (3) is formed from the single state

components of Iu by replacing the variables in V(s) with the corresponding vari-
ables in V and by projecting the components onto the input variables where
required by the GR(1) template. The translation consists of three units: a sub-
formula describing the initial state, a conjunction of F formulae each containing
two consecutive state components, and an FG formula; this unit consists of a
disjunction over all the looping states, where each disjunct j groups the state
components of all the replicas of state sloopj .

Formula (3) is guaranteed to hold in the counterplay πC . Intuitively, since
Iu is fully-separable by construction, [[πC,u, ϕ

E
u]] implies each state component

and its projections onto X and Y ′. A state component Bs(V(s)) corresponds
to a formula Bs(V) satisfied by state s of the counterplay. Therefore, since the
initial state satisfies Binit(V), πC satisfies BinitX (X ); since there are two consecu-
tive states s and succ (s) that satisfy Bs(V(s)) and Bs(V(succ (s))) respectively,

πC satisfies F
(
Bs(V) ∧Bsucc (s),X (XX )

)
. Finally, for the FG subformula, it is

sufficient to observe that the looping state j satisfies the formula obtained from
the state components referring to sloopj and sunrj,r : since the counterplay remains
indefinitely in the looping state, there is a suffix of it where such formula is
true for at least one j. Based on these considerations, we prove the following
soundness property.

Theorem 1. Let πC be a counterplay and ϕE a set of assumptions satisfied in
πC , such that their Boolean translation [[πC,u, ϕ

E
u]] implies Iu, and let Iu be a

fully-separable interpolant. Then πC |= T (Iu).

The proof is in the Appendix. In the case a fully-separable interpolant is not
generated from which T (Iu) can be constructed, the algorithm returns false as its
candidate assumption. Otherwise, the approach proceeds to step (iv) (function
ExtractDisjuncts, line 15) producing the candidate refinements by negating
(3) and extracting the disjuncts in the resulting formula:

¬BinitX (X ) ∨
∨
s∈Su

G¬
(
Bs(V) ∧Bsucc (s),X (XX )

)
∨

GF

|Sloop|∧
j=1

¬
(
Bloopj (V) ∧

u∧
r=1

Bunrj,r (V)

) (4)

Each disjunct above is a GR(1) candidate assumption which, by Theorem 1,
ensures the exclusion of the counterplay πC from the models of the assumptions.

5.2 Equivalence Checking and Unrolling

The equivalence checking of the produced candidates and the unrolling of the
counterplay (lines 17-24) are only executed in case of a looping counterplay.
Thus in each iteration of the inner-cycle, our procedure checks whether the



synthesized assumptions are equivalent to the assumptions ψold computed in
the previous iteration. If not, the looping part of the counterplay is unrolled
once (UnrollCounterplay, line 20) and the steps in Sect. 5.1–5.2 are repeated.
If the equivalence condition is met, the synthesis procedure returns the last set
of computed candidates as output.

Counterplay unrolling consists in making the first traversals of looping states
explicit. It is achieved by augmenting a counterplay with replicates of the loop-
ing states. The number of unrollings is referred to as the unrolling degree u.
Each unrolling yields a new set of states Sunr = {sunr1,1 , . . . , s

unr
h,1 , . . . , s

unr
1,u ,

. . . , sunrh,u }. An unrolled looping counterplay has the form sinitstrans1 . . . stransk

sunr1,1 . . . sunrh,1 . . . s
unr
1,u . . . s

unr
h,u (sloop1 . . . sloopk )ω. Unrolling has two possible effects

on the computed interpolant: on one hand, it can introduce new state compo-
nents in the interpolant, which yield new invariant refinements according to (4);
on the other hand, the interpolant can express a more specific characterization of
looping states, which corresponds to a weaker fairness refinement in (4). These
effects are both observed in our evaluation (see Sect. 7).

6 Convergence

Our procedure is guaranteed to terminate after a finite number of recursive calls.
We discuss below the case of all computed interpolants being fully-separable. If
not, the procedure terminates with a trivial assumption refinement false.

Theorem 2. Given a satisfiable but unrealizable specification 〈φE , φS〉 Algo-
rithm 1 terminates with a realizable specification 〈φE′ , φS〉.

To prove this, it is sufficient to show that both the recursion in Algorithm 1
and the iteration over unrollings in Algorithm 2 reach the respective termination
conditions. In the following arguments, we will refer to the recursion tree of Al-
gorithm 1. Each node is associated with the candidate assumption tested in one
specific call of CounterstrategyGuidedRefinements. The root corresponds
to the initial assumption; every internal node symbolizes an unrealizable assump-
tions refinement; the children of an internal node correspond to the alternative
refinements that rule out the relevant counterstrategy. The leaves represent al-
ternative realizable assumption refinements returned by the algorithm. We will
show that this tree has finite depth and breadth.

Let us consider the number of children nC of an internal node (the subscript
C indicates the counterstrategy computed in that internal node). It consists of
the maximum number of refinements that are generated from a single counter-
strategy. Assuming that the maximum unrolling degree is finite (we will see that
later in this section), denoted uC,MAX , the maximum number of refinements
generated from C can be computed by counting the maximum number of dis-
juncts in (4). Suppose |SuC,MAX

| denotes the number of distinct states in the
unrolled counterplay, then nC ≤ |SuC,MAX

| + 2: we count one initial condition,
one fairness condition and |SuC,MAX

| invariants. Given that every node has a
finite number of children, the breadth of each level in the tree is also finite.



We now consider the depth. The algorithm keeps refining a computed as-
sumption until the property becomes realizable (in case the returned refinement
is false, then the property is realizable, and therefore the algorithm reaches a
true leaf). Given the soundness property, at each step every refinement excludes
the latest computed counterstrategy; since this counterstrategy satisfies all the
previously computed refinements by definition, the new refinement cannot be
equivalent to any of the previous refinements along the same branch.

For the above reason, the depth d of the recursion tree is limited by the max-
imum number of existing GR(1) refinements modulo logical equivalence. The

maximum number of initial conditions is dinit,MAX = 22
|X|

, that is the num-
ber of all distinct Boolean expressions over the input variables. The maximum

number of invariants is dinv,MAX = 22
|V|+2|X|

; this corresponds to the maxi-
mum number of distinct Bs that can be present in the expression (4) times the
number of distinct Bsucc (s),X . Finally, the maximum number of distinct fairness

assumptions is dfair,MAX = 22
|V|

Therefore, the total depth d is bounded by the
sum of these three quantities: d ≤ dMAX = dinit,MAX + dinv,MAX + dfair,MAX .

Given the above, we conclude that the recursion tree is finite. This gives us
a worst-case upper bound on the depth d of the recursion, which has a doubly
exponential growth over |V| — a general observation of counterstrategy-guided
assumptions refinement strategies. It remains to show that the inner-cycle ter-
minates in finite time. As mentioned in Sect. 5.2, each iteration can provide
additional or weaker refinements with respect to the previous iteration. The
termination condition holds when the current iteration does not yield new re-
finements with respect to the previous one. This is reached in the worst case
after all distinct GR(1) refinements are generated. The computation is the same
as the one for d: uC,MAX = dMAX .

7 Evaluation

We apply our approach to two benchmarks presented in [3,9,22]: a lift controller
and ARM’s AMBA-AHB protocol. The requirements analysis tool RATSY [8]
is used to check unrealizability and compute counterstrategies. The SAT solver
MathSAT [13,10] is used to compute interpolants. We implemented a translation
module for GR(1) specifications and randomly extracted plays into a proposi-
tional logic format executable by MathSAT. For each case study, we report the
maximum depth and breadth of the recursion tree, and an interpretation of some
interesting refinements that are computed. Details are available at [1].

Table 1 provides a summary of both case studies. The columns In and Out
contain the number of input and output variables in the specification alphabet
respectively; A and G contain the number of assumptions and guarantees re-
spectively; MaxPlay contains the maximum number of states in a counterplay
among all the counterplays used in the refinement process; MaxUnr reports the
maximum unrolling degree reached in any step of the approach before reaching
the termination condition; TreeDepth corresponds to the depth of the recursion
tree; MaxAltRef is the maximum number of alternative refinements computed



to rule out any single counterstrategy (it corresponds to the maximum number
of children of an internal node in the recursion tree); #Ref shows the total
number of refinement sets computed that make the property realizable.

Table 1. Summary of refinement results on benchmarks

Specification In Out A G MaxPlay MaxUnr TreeDepth MaxAltRef #Ref

Lift 3 3 7 12 2 2 1 3 3

AMBA02 7 16 10 66 4 2 3 6 17

AMBA04 11 23 16 97 7 1 2 2 8

AMBA08 19 36 28 157 18 1 7 2 80

7.1 Lift Controller

This case study (also used for controller synthesis problems [9,3]) involves the
specification of a system comprising a lift controller. The lift moves between three
floors. The environment consists of three buttons, whose states can be pressed or
unpressed ; the corresponding state is represented by three binary input variables
{b1, b2, b3}. The controller’s state consists of three output variables {f1, f2, f3}
which indicate at which floor the lift is. The assumptions are:

1. ϕeinit = ¬b1 ∧ ¬b2 ∧ ¬b3
2. ϕe1,i = G(bi ∧ fi → X¬bi)
3. ϕe2,i = G(bi ∧ ¬fi → Xbi)

for i ∈ {1, 2, 3}. They state that the buttons are not pressed in the initial state
(1); a pressed button transits to a non-pressed state when the lift arrives at the
corresponding floor (2); and the button remains in the pressed state until the
lift arrives at that floor (3). The guarantees are:

1. ϕsinit = f1 ∧ ¬f2 ∧ ¬f3
2. ϕs1 = G(¬(f1 ∧ f2) ∧ ¬(f2 ∧ f3) ∧ ¬(f1 ∧ f3))
3. ϕs2,1 = G(f1 → (Xf1 ∨Xf2))
4. ϕs2,2 = G(f2 → (Xf1 ∨Xf2 ∨Xf3))
5. ϕs2,3 = G(f3 → (Xf2 ∨Xf3))
6. ϕs3 = G(((f1 ∧Xf2)∨ (f2 ∧Xf3)∨ (f2 ∧Xf1)∨ (f3 ∧Xf2))→ (b1 ∨ b2 ∨ b3))
7. ϕs4,i = GF(bi → fi)
8. ϕs5,i = GFfi

for i ∈ {1, 2, 3}. They state that the lift starts from floor 1 (1); it can never be
in two floors at the same time (2); it can move only between consecutive states
(3-5), and moves only when at least a button is pressed (6); plays in which the
environment keeps a button bi pressed infinitely and the lift never reaches the
corresponding fi are forbidden (7); and that the lift is required to visit all the
floors infinitely often (8). Given this specification, the fairness guarantee can be
satisfied if the environment sets one of its bi to 1 at least once.



The specification is unrealizable, since when the buttons (environment) stay
indefinitely unpressed, the lift (controller) cannot move and therefore ϕs5,2 and
ϕs5,3 are violated. The unrealizable core consists of the whole set of assumptions
and the guarantees ϕsinit, ϕ

s
2,1, ϕs3 and ϕs5,2. From this core, RATSY computes the

counterstrategy πC in Fig. 1, which consists of a unique play. After translating
the unrealizable core over the counterplay, the interpolant is I0 = ¬b1(s0) ∧
¬b2(s0) ∧ ¬b3(s0), which corresponds to the GR(1) refinement ¬b1 ∧ ¬b2 ∧ ¬b3.
The first unrolling is performed yielding the interpolant I1 = ¬b1(s0)∧¬b2(s0)∧
¬b3(s0) ∧ ¬b1(sunr1,1 ) ∧ ¬b2(sunr1,1 ) ∧ ¬b3(sunr1,1 ). By translating and negating this
interpolant, we obtain the alternative refinements

1. b1 ∨ b2 ∨ b3
2. G(¬b1 ∧ ¬b2 ∧ ¬b3 → X(b1 ∨ b2 ∨ b3))
3. GF(b1 ∨ b2 ∨ b3)

Notice that unrolling results in an interpolant containing an additional state
component, thus allowing for more alternative refinements (see Sect. 5.2). More-
over, the new state component refers to an unrolled state, from which a new
fairness refinement that is not inferable from I0 is synthesized. The second un-
rolling produces equivalent refinements, and thereby the inner-cycle terminates.

s0
b1 = 0
b2 = 0
b3 = 0

start

s1
b1 = 0
b2 = 0
b3 = 0

∅ ∅

Fig. 1. Lift counterstrategy produced by RATSY. The labelling λ′ is shown in each
state. In this case the lift position plays no role in the environment’s choice of next
state, therefore Y ′ = ∅.

Every candidate refinement computed by our approach is helpful. Moreover,
each one solves the unrealizability problem for the original specification. Refine-
ment (1) does this in a trivial way, since it contradicts the initial assumption
contained in the specification. Notice that all the computed refinements force at
least one of the buttons to be pressed at some point in any play of the environ-
ment. This corresponds to the refinement produced by the approach in [3].

7.2 AMBA-AHB Protocol

The Advanced High-performance Bus (AHB) is part of the Advanced Microcon-
troller Bus Architecture (AMBA) specification. It is an open-source communica-
tion protocol for on-chip devices through a shared bus. Devices are divided into
masters, which initiate a communication, and slaves, which respond to requests.
Multiple masters can request the bus simultaneously, but only one at a time can
communicate through it. Masters and slaves constitute the environment, while
the system is the bus arbiter implementing the protocol. The specification of the
AHB protocol is provided with RATSY. It is a GR(1) description of the protocol
in [6], and formalized in [9]. We consider specifications for two, four and eight



masters (AMBA02, AMBA04, AMBA08 respectively) which are realizable. To
evaluate our approach, we remove the assumption GFhready as done in [3,26].

In all the variants, our approach was able to produce refinements that were
semantically related to the removed assumption. In the AMBA02 case, one of
the refinements is the invariant G(hready∨Xhready), which forces hready to be
true at least every two steps. The other refinements in all the AMBA0x variants
involve the variable hmaster, which indicates the master that currently owns the
bus. These refinements force hmaster to change infinitely often. This corresponds
to having hready equal to true infinitely often, since hready must be true at any
ownership switch according to the protocol [9].

The approach was further tested by extracting different counterplays from the
same counterstrategy in the AMBA02 case. Every refinement produced within
each synthesis call was helpful. We compared our results to those obtainable
through [3,26] when the set of shared alphabet is provided as input. The refine-
ments GF(¬hburst1) and GFhlock0 (which are possible outputs of [3,26] if the
user chooses the corresponding templates/variables) remove the first counter-
strategy and refer to variables not in our interpolant. However neither is helpful.

8 Discussion

Targeting unrealizable cores The evaluation shows that our approach auto-
matically selects variables that need to be constrained in order to reach realiz-
ability. In particular, all the intermediate refinements eliminate precisely a cause
of unrealizability, consisting of the set of minimally unfulfillable guarantees from
which a counterstrategy has been computed. We note that the returned variables
in the AMBA02 example (hready and hbusreq1) are a subset of the variables that
the authors in [3] suggest to use in order to instantiate the refinement templates.

Helpfulness of intermediate refinements is a desirable condition for reducing
the convergence rate of the algorithm. When this holds, then the expected tree
depth d (see Sect. 6) is reduced to O(ng), where ng is the number of minimally
unfulfillable subsets of guarantees. The application of our approach on the case
studies consistently supports the attainment of this condition.

Number of unrollings We further define an upper bound to the number of
unrollings needed to reach the termination condition as of Sect. 5.2. Every un-
rolling iteration produces an interpolant which is either the same as the previous
iteration, or contains the description of one more state in the counterplay. In the
worst case, without unrolling the interpolant describes just the initial state; af-
ter the first unrolling it contains a state component for the first transient state
strans1 ; it is iteratively strengthened by one more state component until it de-
scribes all the transient states and the first replica of the unrolled states sunrj,1 for
each j. In the following unrolling step, the interpolant contains the component
of sunr1,2 , which is such that λ′(sunr1,2 ) = λ′(sunr1,1 ): interpolation produces an equiv-
alent refinement to the previous step, and therefore the procedure terminates.



The maximum number of unrollings before reaching the termination condition
is: uC,MAX = |S| where |S| is the number of states in πC .

Comparison with existing approaches Our approach extracts weaker re-
finements that those of [3]. The reason is that [3] uses templates that are true
over all paths of a counterstrategy, while our approach requires them to be true
in a single counterplay. More specifically, an invariant template used in [3] has

the form G¬q∨X
(∧

q′∈Next(q) ¬q′
)

, where q and q′ indicate states in a counter-

strategy and Next(q) is the set of successor states of q; our approach extracts
invariants of the form G¬q ∨ ¬q′ for a q′ ∈ Next(q), which is implied by the
former one, provided that they use the same variables set for q and q′.

We notice that in principle our approach may generate assumptions con-
taining only output variables. This happens if some state component in the
interpolant contains only output variables. Those are valid GR(1) formulae ac-
cording to the definition, although hardly interpretable as constraints on the
environment. Existing approaches circumvent the problem by allowing only in-
put variables in their refinements [3,4]: however, in this way valid assumptions
are also excluded. In our AMBA04 case study, one of the computed assump-
tions was G((¬hmaster0 ∧ hbusreq1) → X(¬hbusreq1)), where hmaster0 ∈ Y
and hbusreq1 ∈ X . This assumption would not have been computed with that
restriction.

9 Conclusions

We presented an interpolation-based approach for synthesizing weak environ-
ment assumptions for GR(1) specifications. Our approach exploits the informa-
tion in counterstrategies and unrealizable cores to compute assumptions that di-
rectly target the cause of unrealizability. Compared to closely related approaches
[3,26], our algorithm does not require the user to provide the set of variables upon
which the assumptions are constructed. The case study applications show that
our approach implicitly performs a variable selection that targets an unrealizable
core, allowing for a quicker convergence to a realizable specification.

The final set of refinements is influenced by the choice of counterplay. We are
investigating in our current work the effect of and criteria over the counterplay
selection particularly on the full-separability of interpolants. Furthermore, since
interpolants are over-approximations of the counterplays, the final specification
is an under-approximation. In future work, we will explore the use of witnesses
(winning strategies for the system) to counteract this effect. Finally, the appli-
cability of our approach depends on the separability properties of the computed
interpolants: further investigation is needed to characterize the conditions under
which an interpolation algorithm returns fully-separable interpolants.
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23. Kraj́ıček, J.: Interpolation theorems, lower bounds for proof systems, and inde-
pendence results for bounded arithmetic. The Journal of Symbolic Logic 62(02),
457–486 (1997)

24. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley (2009)

25. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Trans. Software Eng. 26(10), 978–1005 (2000)

26. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In:
ACM/IEEE 9th International Conference on Formal Methods and Models for
Codesign. pp. 43–50 (2011)

27. Li, W., Sadigh, D., Sastry, S.S., Seshia, S.A.: Synthesis for human-in-the-loop con-
trol systems. In: 20th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. pp. 470–484 (2014)

28. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer (1992)

29. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: 15th Interna-
tional Conference on Computer Aided Verification. pp. 1–13 (2003)
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Appendix

Translation of GR(1) formulae into Boolean logic

Let φ = φE → φS be a GR(1) property, expressed over a set V of propositional
variables. Given a counterplay with states defined as in Section 5, the transla-
tion of φθ into Boolean logic is a Boolean (non-temporal) formula [[φθ]] in the
variables of the set V(S) defined in Section 5.1. The three components of φθ are
translated separately:

– An initial state condition ϕθinit = B(V) is translated to B(V(sinit)) by re-
placing each occurrence of p ∈ V with p(sinit) ∈ V(sinit).

– An invariant ϕθinv = GB(V ∪XV) is translated as the conjunction over all
states in S

∧
s∈S B(V(s) ∪ V(succ (s))).

– Finally, a fairness condition ϕθfair = B(V) is translated as
∨
s∈Sloop B(V(s)).

Proof of soundness [Theorem 1]

Proof. Since we are assuming that Iu is state-separable, and since by definition
the counterplay translation implies Iu, each state component (which is a conjunct
in Iu) is implied by [[πC,u, ϕ

E
u]]:

[[πC,u, ϕ
E
u]]→ Iu → Bs(V(s)) (5)

for every s. By construction, a state component holds true iff it is satisfied by
the corresponding state in the counterplay:

[[πC,u, ϕ
E
u]]→ Bs(V(s))⇔ 〈πC , s〉 |= Bs(V) (6)

Now let us consider sinit. By (6) and I/O-separability:

[[πC,u, ϕ
E
u]]→ Binit(V (sinit))⇒〈πC , sinit〉 |= Binit(V )

⇒〈πC , sinit〉 |= BinitX (X ) ∧BinitY (Y)

⇒πC |= BinitX (X )

(7)

So, πC satisfies the part of the translation that refers to the initial state.
The next step is to consider pairs of consecutive states s and succ (s).
Since Iu is I/O-separable, we have

Bsucc(s)(V(succ(s)))→ Bsucc(s),X (X (succ(s)))

By (6) and LTL satisfaction definition for X:

[[πC,u, ϕ
E
u]]→ Bsucc(s),X (X (succ(s)))⇒〈πC , succ(s)〉 |= Bsucc(s),X (X )

⇒〈πC , s〉 |= XBsucc(s),X (X )

⇒〈πC , s〉 |= Bsucc(s),X (XX )

(8)



From the conjunction of (6) and (8), and from the LTL interpretation of the
operator F we finally get

[[πC,u, ϕ
E
u]]→Bs(V(s)) ∧Bsucc(s)(V(succ(s)))

⇒〈πC , s〉 |= Bs(V) ∧Bsucc(s),X (XX )

⇒πC |= F
(
Bs(V) ∧Bsucc (s),X (XX )

) (9)

Therefore πC satisfies the “eventually” subformulae in the translation.
Finally, let us consider the looping and unrolled states. In general, a path

ending with a loop among states q1, . . . , q|Qloop| satisfies the formula

FG

|Qloop|∨
j=1

Bqj (V) (10)

where Bqj is any Boolean expression that holds in qj . The reason is that there
is a suffix of the path that contains only states from Qloop; therefore, this suffix
always satisfies any of the looping states’ valuations.

Now, by construction, unrolled states are replicates of looping states; there-
fore any Boolean formula that is true in an unrolled state is also true in the
looping state of which it is a replicate:

〈πC , sloopj 〉 |= Bunrj,r (V)⇔ 〈πC , sunrj,r 〉 |= Bunrj,r (V) (11)

Hence we have:

〈πC , sloopj 〉 |=
(
Bloopj (V) ∧

u∧
r=1

Bunrj,r (V)

)
(12)

This can be replaced to the formula in (10) and we obtain:

πC |= FG

|Sloop|∨
j=1

(
Bloopj (V) ∧

u∧
r=1

Bunrj,r (V)

)
(13)

Therefore πC satisfies also the conjuncts of T (Iu) that refer to looping states.
Since πC satisfies each of the conjuncts in (3), then πC |= T (Iu).

McMillan’s Interpolation

Definition 5 (Unsatisfiability Proof [29]). A proof of unsatisfiability for a
set of clauses C is a directed acyclic graph (V,E), where the vertices V is a set
of clauses, such that for every vertex c ∈ V , either

– c ∈ C, and c is a root, or
– c has exactly two predecessors, c1 and c2, and c is their resolvent,

and the empty clause is the unique leaf.



Definition 6 (Interpolation Algorithm [29]).
Let φ1 and φ2 be a pair of clause sets and let Π = (V,E) be a proof of

unsatisfiability of φ1 ∧φ2 , with leaf vertex false. For all vertices c ∈ V , let p(c)
be a Boolean formula, such that

– if c is a root, then
• if c ∈ φ1 then p(c) = g(c),
• otherwise p(c) is the constant true.

– else, considering c1 and c2 are the predecessors of c, v their pivot variable,
• if v is in the language Lφ1\Lφ2 , then p(c) = p(c1) ∨ p(c2),
• otherwise p(c) = p(c1) ∧ p(c2).
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