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Abstract. In spite of the theoretical and algorithmic developments for
system synthesis in recent years, little effort has been dedicated to quan-
tifying the quality of the specifications used for synthesis. When deal-
ing with unrealizable specifications, finding the weakest environment as-
sumptions that would ensure realizability is typically a desirable prop-
erty; in such context the weakness of the assumptions is a major qual-
ity parameter. The question of whether one assumption is weaker than
another is commonly interpreted using implication or, equivalently, lan-
guage inclusion. However, this interpretation does not provide any fur-
ther insight into the weakness of assumptions when implication does not
hold. To our knowledge, the only measure that is capable of comparing
two formulae in this case is entropy, but even it fails to provide a suffi-
ciently refined notion of weakness in case of GR(1) formulae, a subset of
linear temporal logic formulae which is of particular interest in controller
synthesis. In this paper we propose a more refined measure of weakness
based on the Hausdorff dimension, a concept that captures the notion
of size of the omega-language satisfying a linear temporal logic formula.
We identify the conditions under which this measure is guaranteed to
distinguish between weaker and stronger GR(1) formulae. We evaluate
our proposed weakness measure in the context of computing GR(1) as-
sumptions refinements.

1 Introduction

Reactive synthesis is concerned with finding a system implementation that can
satisfy a given specification, under all possible environments [35]. When no such
implementation exists, a specification is said to be unrealizable [18]. Though
there may be many reasons for why a specification is unrealizable, a common
cause is an incomplete set of assumptions over the environment behaviour. Sev-
eral techniques [27,4,15,5] have been proposed in order to compute refinements
for incomplete assumptions so as to ensure the realizability of a specification.
These approaches consider specifications expressed in a subset of linear tem-
poral logic (LTL), namely generalized reactivity of rank 1 (GR(1)) [12,11,13],
for which tractable synthesis methods exist. Their aim is to find the “weakest”
assumptions amongst possible alternatives.

Weakness [37] is a feature intended to capture the degree of freedom (or per-
missiveness) an environment satisfying the assumptions has over its behaviours;
generally, weaker assumptions are preferred since they allow for more general



solutions to the synthesis problem [37,17]. Existing approaches formalize the
weakness relation between assumptions through logical implication [37,4], i.e., a
formula φ1 is weaker than a formula φ2 if φ2 → φ1 is valid. However, this notion
does not fully capture the weakness concept as permissiveness [14]. Consider
the simple example of a bus arbiter whose environment consists of three devices
that can request for bus access. Let ri be the binary signal meaning “device i
requests access”. An assumption like “device 1 requests access infinitely often”
(GFr1 in LTL) is intuitively less constraining than “device 2 and 3 request ac-
cess infinitely often” (GF(r2 ∧ r3)). However, since the two assumptions refer to
disjoint subsets of variables, no implication relation holds between the two.

To enable comparison between such environment assumptions, we propose
a quantitative measure for the weakness of GR(1) formulae—based on their
interpretation as an ω-language—and a procedure to compute it. The measure
builds upon the notion of Hausdorff dimension [39], a quantity providing an
indication of the size of an ω-language: the higher the dimension, the wider
the collection of distinct ω-words contained in the ω-language. We show that
a sufficient condition for assumptions expressed as invariants to be comparable
through our measure is the strong connectedness of the underlying ω-language.
To compare assumptions containing fairness conditions, we identify and measure
a language decomposition based on fairness complements. Though we focus on
comparing the weakness of assumptions refinements, the scope of its application
can be extended to other contexts, e.g., quantitative model checking, in the form
of a measure of the set of behaviors violating some given property (see [6] and
the Appendix E).

The paper is structured as follows. Related work is presented in Section 2.
Notation and background concepts are presented in Section 3. In Section4 we
define requirements on a weakness measure in an axiomatic form. In Section 5,
we define Hausdorff dimension and explore its relationship with weakness; hence
we introduce the proposed weakness measure first for simpler then for generic
GR(1) formulae, and provide sufficient conditions guaranteeing its consistency
with implication. We also present our refinement of Staiger’s algorithm to com-
pute the weakness measure in the GR(1) case. Section 6 presents several appli-
cations of our weakness measure to existing GR(1) benchmarks. Omitted details
of the experiments and the source code are also available online in [1]. Finally,
conclusions are drawn in Section 7. Some proofs are relegated to the appendix.

2 Related Work

The closest notion to our measure is the entropy of ω-languages applied by Asarin
et al. [6,7] to quantitative model checking. This quantity measures how diverse
the ω-words contained in the language of an LTL formula are. However, it is
not sufficiently fine-grained to distinguish between weaker and stronger fairness
conditions [6]. We will show that our metric based on Hausdorff dimension is
capable of making this distinction.

Quality of LTL formulae has also been defined in the context of model verifi-
cation. The work by Henzinger et al. [25,24] defines a similarity measure between



models of LTL formulae so as to render the model checking output quantitative:
instead of returning a true/false response, quantitative model checking computes
the distance (stability radius) of the model from the boundary of the satisfiabil-
ity region of an LTL property. The scope of our work is different: the measure
we propose can be interpreted as the extension of such a satisfiability region,
which is independent of a specific model to check against.

An alternative way to measure behaviour sets is via probabilities. Proba-
bilistic model checking [28,23] enhances the syntax and semantics of temporal
logics (usually CTL, computation tree logic) with probabilities. This allows for
the expressions of properties like “the probability of satisfying a temporal logic
formula φ by the modelled behaviours is at most p.” Further extensions of LTL
and/or automata with preference metrics alternative to probabilities have been
proposed in [9,16,17,3]. The difference between using probabilities/preference
metrics and our proposal is that while all of these measures are additional and
depend on arbitrary parameters that may not reflect the true weakness of a log-
ical formula, the measure we propose quantifies a concept of weakness intrinsic
to the LTL formula itself.

The problem of identifying weakest assumptions appears in the context of
assume-guarantee reasoning [34,30,19] for compositional model checking. In or-
der to perform model checking of large systems, those systems are generally
broken down to components that can be checked independently for correctness.
In this context, one of the challenges is to identify the most general (weakest)
assumptions over the environment in which each component operates, such that
when they are satisfied, the correctness of the entire system is guaranteed. As-
sumptions are formalized as transition systems (e.g., modal transition systems)
rather than declarative LTL specifications, which is the focus of our work.

3 Preliminaries

Languages and Automata. Let Σ be a finite set of symbols, which we call
alphabet. A word over Σ is a finite sequence of symbols in Σ. An ω-word is an
infinite sequence of such symbols. A set of words is called a language, while a set
of ω-words is called an ω-language. A word w is explicitly denoted as a sequence
of its symbols w1w2 . . . wn, or with a parenthesis notation (w1, w2, . . . , wn), with
the symbols separated by commas; the same notation is used for ω-words. The
notation wj denotes the suffix of w starting with wj .

Given two words v and w, their concatenation is denoted as v · w or simply
vw. The same notation is used for the concatenation of a word v and an ω-word
w; the concatenation of an ω-word and a word is not defined. Given a set V
of finite-length words and a set W of finite-length words or ω-words over the
same alphabet Σ, the set V ·W is the set of words obtained by concatenating a
word in V with a word in W . Kleene’s star operator yields the set V ∗ of finite
words obtained by concatenating an arbitrary number of words in V . The omega
operator applied to V yields the set V ω of ω-words obtained by concatenating
a (countably) infinite number of words in V . Naturally, Σ∗ and Σω represent,



respectively, the set of all finite words and all ω-words over the alphabet Σ. The
star and omega operators can also be applied to single finite-length words, like
in w∗ and wω.

Given an ω-language L ⊆ Σω, we denote by An(L) the set of all w ∈ Σ∗ such
that w is a prefix of a word in L and |w| = n. We also define A(L) =

⋃
n∈NAn(L)

the set of all the prefixes of ω-words in L. It is possible to define a topology on
Σω. For more details, we refer the reader to [39]. In this context, we only need
the notions of closed ω-languages and of their closure. An ω-language L is closed
if and only if for any ω-word w such that A({w}) ⊆ A(L), w ∈ L. In other
words, L is closed if whenever a word w is arbitrarily close (up to a prefix of
arbitrary length) to some word in L, then w ∈ L. The closure of an ω-language
L, denoted by C(L), is the smallest closed ω-language that contains L.

The notion of regular ω-languages encompasses ω-languages that allow a
finite representation through automata. Formally, we define a regular ω-lan-
guage as an ω-language which is accepted by a deterministic Muller automaton.
A deterministic Muller automaton (DMA) is defined by the quintuple M =
〈Q,Σ, q0, δ, T 〉, where Q is a set of states, Σ is the alphabet of the ω-language,
q0 is the initial state, δ : Q × Σ → Q is the transition (partial) function and
T ⊆ 2Q is a set (a table) of accepting state sets. Given an ω-word w ∈ Σω, the
run induced by w onto M is a sequence of states M(w) = q0q1 . . . such that
q0 is the initial state and qi = δ(qi−1, wi) ∀i ∈ N. Let Inf(w) ⊆ Q be the set of
states occurring infinitely many times in M(w). Then an ω-word is said to be
accepted by M iff Inf(w) ∈ T . By extension, the ω-language accepted by M is
the set of ω-words accepted by M.

A deterministic Büchi automaton (DBA) B is defined in the same way as
a DMA except for the acceptance condition, which is replaced by a subset of
states F ⊆ Q. A word w is accepted by B iff Inf(w)∩F 6= ∅. Given a DBA it is
always possible to obtain an equivalent DMA by replacing the Büchi acceptance
condition with the table T = {Q′ ∈ 2Q | Q′ ∩ F 6= ∅}.
Linear Temporal Logic and GR(1). Linear temporal logic (LTL) [36] is
an extension of Boolean logic with temporal operators. It allows for expressing
properties of infinite sequences of assignments to a set V of Boolean variables.
Details of its syntax and semantics are given in Appendix A for completness.

In this paper, we deal with a specific subset of LTL, called Generalized Reac-
tivity (1) (GR(1)), which is largely employed in controller synthesis [12,10,27].
This subset makes use of the operators G (“always”), which states that its
operand formula must hold at each step of a valuation sequence, F (“eventu-
ally”), which requires its operand formula to hold at some point in the sequence,
and X (“next”), which states that the operand formula must hold in the state
following the one on which the formula is evaluated.

A GR(1) formula over a set of variables V has the form φ = φE → φS , where
φE and φS are conjunctions of the following units: (i) an initial condition, which
is a pure Boolean expression over variables in V, denoted by Binit(V); (ii) one
or more invariants, conditions of the form GBinv (V ∪XV), where Binv(V ∪XV)
denotes a pure Boolean expression over the set of variables in V and the set of



atoms obtained by prepending an X operator to each variable; and (iii) one or
more fairness conditions of the form GFBfair (V).

The semantics of GR(1), as of LTL, are formalized as ω-words over the alpha-
bet Σ = 2V . The set of ω-words that satisfy a formula φ is a regular ω-language
[40] denoted by L(φ).

4 Problem Statement

In this section, we present an axiomitazation of weakness of an LTL formula.
Hereafter, we denote the weakness measure of the LTL formula φ as d(φ): the
higher this measure, the weaker φ is, i.e., φ2 is weaker than φ1 if d(φ2) ≤ d(φ1).

In settings such as [37,4,2], an LTL formula φ2 is weaker than φ1 if and only if
φ1 → φ2 is valid (that is, it is true for any ω-word). Semantically, this translates
to language inclusion: namely, φ2 is weaker than φ1 iff L(φ1) ⊆ L(φ2). This gives
us the first axiom of weakness.

Axiom 1 Given two LTL formulae φ1 and φ2, if φ1 → φ2, then d(φ1) ≤ d(φ2).

Notice that this criterion defines a partial ordering of specifications: if none of
the two formulae implies the other, those are incomparable according to this
criterion. However, even for the incomparable case it may be useful to define a
preference criterion.

Consider the simple case of two invariants over V = {a, b, c}, φ1 = G(a∧b) and
φ2 = Gc. Even if the two formulae are incomparable according to implication,
i.e., neither one implies the other, it is clear that φ1 allows in some sense fewer
behaviors than φ2: at each time step, the former allows for 2 distinct valuations
of V while φ1 allows 4 of them.

Consider the formulae φ3 = G(a → Xb) and φ4 = G((a ∧ b) → Xc) instead.
Despite neither implying the other, we note that φ3 is more restrictive than
φ4 asymptotically: that is, for a large enough n, the number of finite prefixes
of length n that satisfy φ3 is less than the number of finite prefixes of length
n satisfying φ4 (#(L(φ3)) < #(L(φ4))). This can be easily understood if one
considers that φ3 poses a restriction to the next symbol in an ω-word whenever
a is true (which holds in 4 out of 8 possible valuations of V), while φ4 poses a
similar restriction when a ∧ b holds (in 2 out of the 8 valuations).

This means that weakness of a formula should be formalized, in addition to
Axiom 1, in terms of the number of finite prefixes it allows. Formally:

Axiom 2 Given two LTL formulae φ1 and φ2, φ1 is said to be weaker than φ2
if there exists some length n̄ such that, for every n > n̄, the set of prefixes of
length n in L(φ1) contains more elements than the set of prefixes of the same
length in L(φ2), i.e., if #(An(L(φ1))) ≤ #(An(L(φ2))), then d(φ1) ≤ d(φ2).

The last desirable property is that our weakness measure be at least as dis-
criminating as implication in case one formula strictly implies the other.

Axiom 3 Let φ1 and φ2 be such that φ1 → φ2 is valid and φ2 → φ1 is not.
Then d(φ1) < d(φ2).



In the next section, we prove that our proposed weakness measure satisfies Ax-
ioms 1 and 2. We then show that, although our weakness measure is not guar-
anteed to satisfy Axiom 3 in general, we are able to guarantee so for a specific
class of formulae.

5 Weakness Measure of GR(1) Formulae

Hausdorff dimension and Hausdorff measure are basic concepts in fractal geom-
etry and represent a way to define measures of extension—that is, analogous con-
cepts to length, area, volume from classical geometry—for fractals [22]. Staiger
[39] pinpointed a homeomorphism between fractals and regular ω-languages and
proposed an analogous interpretation of the two quantities as extension measures
of ω-languages. Intuitively, given an ω-language L, its Hausdorff dimension quan-
tifies the growth rate of the number of distinct n-long prefixes of words in the
language, over the length n of those prefixes. This makes it a good candidate for
quantifying weakness: the less constrained the language is, the more prefixes of
a fixed length are contained in it, implying a higher Hausdorff dimension.

The formal definition of Hausdorff dimension is tightly related to the notion
of Hausdorff measure. The following definitions are given in [38].

Definition 1 (α-dimensional Hausdorff outer measure). Given a regular
ω-language L over an alphabet Σ with cardinality r, and a nonnegative real value
α, the α-dimensional Hausdorff outer measure of L is defined as

mα(L) = lim
n→∞

inf
V ∈Ln

∑
v∈V

r−α|v| (1)

where Ln = {V ⊆ Σ∗ | V ·Σω ⊇ L and |v| ≥ n for all v ∈ V } is the collection
of languages V containing finite words of length at least n and such that every
word in L has at least a prefix in V . ut

Definition 2 (Hausdorff dimension and measure). Given an ω-language
L, its Hausdorff dimension, denoted by dim (L), is the (unique) value ᾱ such
that

mα(L) =∞ α < ᾱ

mα(L) = 0 α > ᾱ

The value mdim(L)(L) is called the Hausdorff measure of L. ut

In other words, Hausdorff measure is the limit of a process of approximating
the ω-language L by a set V of finite prefixes with length at least n, and weighing
each prefix with a quantity r−α|v| that decreases as the prefix length increases.
This limit can be finite and positive for at most one value of the α parameter.
This value is called Hausdorff dimension.

A related concept appearing in the literature is entropy:

Definition 3 (Entropy [33]). Given an ω-language L ⊆ Σω over an alphabet
of size r, the entropy of L is H(L) = lim supn→∞

1
n logr #(An(L)) .



It has been proved [33] that the Hausdorff dimension has a close relationship
with the notion of entropy: Specifically, we have dim (L) ≤ H(L) in general, and
dim (L) = H(L) if L is a closed ω-language. Details on how entropy is computed
are given in Appendix B.

When L is not closed, the general algorithm presented in [38,39] provides
a more refined intuition of what is actually quantified by Hausdorff dimension,
which distinguishes it from entropy. The algorithm is based on computing a
Muller automatonML accepting L with set of accepting state sets TL. For each
accepting set S′ ∈ TL and for each state s ∈ S′, consider the ω-language CS′

consisting of all the infinite paths in ML starting from s and visiting no states
outside S′. It can be shown that this language is closed and its entropy H(CS′)
is independent of the choice of s [38]. The Hausdorff dimension of L is then

dim (L) = max
S′∈TL

H(CS′) . (2)

Hausdorff dimension provides an ordering consistent with the weakness no-
tion defined in Sec. 4. We can interpret it as a measure of the asymptotic degrees
of freedom of an ω-language: it quantifies how many different evolutions are al-
lowed to an ω-word once its run remains in an accepting subset of the Muller
automaton. The example below shows how it differs from entropy.

Example 1. Consider the LTL formula φ1 = FGa over the variable set V = {a}
whose Muller automaton is shown in Fig. 1. The collection of accepting sets
to which a state belongs is enclosed in curly braces. Notice that for any w ∈
L(φ1) both valuations of V are allowed until w reaches the accepting state, and
the satisfaction of Ga may be delayed arbitrarily. Therefore, for any finite n,
#(An(L)) = 2n, and thereby H(L(φ1)) = 1.

In this simple DMA, there is only one accepting singleton {s2}. Therefore,
there is only one CS′ = {{a}ω} which allows only the symbol {a} ∈ 2V . This
implies #(An(CS′)) = 1. The Hausdorff dimension is dim (L(φ1)) = H(CS′) = 0.
This example demonstrates that the Hausdorff dimension isolates the asymptotic
behaviour of L(φ1) as it depends only on the condition Ga that is eventually
satisfied by any ω-word in the ω-language. ut

s1
s2

{S′}

∅
{a}

{a}

∅

Fig. 1: DMA of L(φ1).

The following theorem shows that Hausdorff di-
mension is consistent with implication (hence satis-
fying Axiom 1).

Theorem 1. Given two LTL formulae φ1 and
φ2 such that φ1 → φ2 is valid, dim (L(φ1)) ≤
dim (L(φ2)).

Proof. This follows from the language inclusion L(φ1) ⊆ L(φ2) and the mono-
tonicity of Hausdorff dimension with respect to language inclusion [33].

Note that Theorem 1 does not exclude the situation where one formula
strictly implies another, but the two languages have the same Hausdorff di-
mension, thus violating Axiom 3. We investigate under which conditions this



can or cannot happen in the context of GR(1) formulae and provide a refined
weakness measure that bounds the number of cases in which it can happen.

To this end, in what follows, we introduce a new weakness measure for GR(1)
based on Hausdorff dimension. We first analyse the dimension of invariants. We
then show that under the condition of strong connectedness, it is possible to
distinguish between weaker and stronger invariants, in the implication sense
(Sec. 5.1). We show how, under the same condition, this measure fails to cap-
ture the impact of conjoining a fairness condition (Sec. 5.2). To overcome this,
we define a refined weakness measure for GR(1) formulae that comprises two
components: the Hausdorff dimension (i) of the whole formula and (ii) of the
difference language between the invariant and the fairness conditions (Sec. 5.3).

5.1 Dimension of Invariants

Consider the formula φinv = GB(V ∪ XV). The ω-language L(φinv) is closed.
Therefore, the Hausdorff dimension of L(φinv) coincides with its entropyH(L(φinv))
and can be computed as the maximum eigenvalue of the adjacency matrix of
its Büchi automaton (see Appendix B). From this equivalence and Definition
3, it is easy to see that in this case Hausdorff dimension satisfies Axiom 2.

s1

{stop}

s1 s2

∅

{stop}

{stop}

Fig. 2: DBAs of φinv
1 (top)

and φinv
2 (bottom)

In general, Theorem 1 may hold for invariants where
one is strictly weaker than the other and both have
equal dimensions as demonstrated in the following.

Example 2. Consider the variable set V = {stop}
and the formulae φinv1 = Gstop and φinv2 =
G(stop→ Xstop). Their Büchi automata are shown
in Fig. 2. Clearly φinv1 → φinv2 strictly, however the
two languages have the same Hausdorff dimension
dim

(
L(φinv1 )

)
= dim

(
L(φinv2 )

)
= 0.

There exists, however, a subclass of invariants
for which the dimension is strictly monotonic with
respect to implication. This subclass is characterized through the concept of
strong connectedness of an ω-language. Hereafter, given a word w ∈ A(L), we
denote by Sw(L) the ω-language formed by the ω-words v such that wv ∈ L
(that is, the suffixes allowed in L after reading w).

Definition 4 (Strongly connected ω-language [33]). An ω-language L is
strongly connected if for every prefix w ∈ A(L) there exists a finite word v ∈ Σ∗
such that Swv(L) = L.

In other words, an ω-language is strongly connected if and only if there exists
a strongly connected finite-state automaton which represents it [33], i.e., an
automaton such that given any pair of states, each of them is reachable from the
other. Using this notion, in the next theorem we provide a sufficient condition
over invariants for Axiom 3 to be satisfied (the proof is relegated to Appendix C):



Theorem 2. Let φinv1 = GB1 and φinv2 = GB2 be two non-empty invariants
such that φinv1 → φinv2 is valid, φinv2 → φinv1 is not valid and φinv2 is strongly
connected. Then dim

(
L(φinv1 )

)
< dim

(
L(φinv2 )

)
.

q1

B(V)

Fig. 3: DBA of a one-
state invariant.

An interesting kind of invariant that falls in this
class is the one-state invariant, one that does not use
the X operator: φinvs = GB(V) whose DBA is shown
in Fig. 3. (For succinctness, the set of valuations that
label a transition between the same states is denoted by
the Boolean expression characterizing it.) In this case,
the Hausdorff dimension has a closed form:

dim
(
φinvs

)
= logr #(B(V))

where r = 2#(V) is the number of valuations of V and #(B(V)) is the num-
ber of valuations that satisfy B(V). Invariants of this type are clearly strongly
connected and satisfy Theorem 2.

Remark 1. Typical examples of GR(1) specifications manually produced, like
those of device communication protocols, make use of strongly connected envi-
ronment assumptions. It is indeed natural to allow environments to be reset to
their initial state after some steps. However, when specifications contain “until”
operators or response patterns, the procedure to convert them into GR(1) [32]
may yield assumptions which are no longer strongly connected. In those cases,
a problem similar to that of Example 2 may arise. ut

5.2 Fairness and Fairness Complements

Consider the generic fairness condition φfair = GFB(V) whose DBA is shown
in Fig. 4. This language is not closed: take a symbol x ∈ Σ that does not
satisfy B(V) and the ω-word xω. It is clear that A({xω}) ⊆ A(L(φfair)), but
xω 6∈ L(φfair). We apply the algorithm in Sec. 5 (cf. equation 2) for non-closed
languages. A DMA for L(φfair) can be obtained from the top DBA in Fig. 4: the
accepting sets are S′1 = {q1, q2} and S′2 = {q2}. It is easy to see that H(CS′

1
) = 1

and H(CS′
2
) = logr #(B(V)) ≤ 1. Therefore, dim

(
L(φfair)

)
= 1, independently

of B(V). We conclude that fairness conditions are indistinguishable from the
true constant, which also has dimension 1.

q1 q2

¬B(V)

B(V)

B(V)

¬B(V)

q1
q2

{S′}

B(V)
¬B(V)

¬B(V)

B(V)

Fig. 4: DBA of L(φfair) (top)
and DMA of L(φcfair) (bot-
tom).

To allow for a distinction to be made, we char-
acterize the negation of such formula. We call an
LTL formula of the kind φcfair = FG¬B(V) a fair-
ness complement. The DMA of L(φcfair) is shown
in the bottom of Fig. 4. The only accepting set is
S′ = {q2}. (Notice that unlike the top one, this
automaton accepts only words that stay forever in
q2 from a certain step on.) The language CS′ (see
Sec. 5) has an entropy of logr #(¬B(V)). Hence

dim
(
L(φcfair)

)
= logr #(¬B(V))



where r = 2#(V). Notice that CS′ is the language of the formula G¬B(V),
which is an “asymptotic” condition of φcfair. As observed previously, Hausdorff
dimension is strictly monotonic for one-state invariants. Therefore, the weakness
of fairness complements can be ranked in terms of the Hausdorff dimension,
allowing to compare fairness conditions as follows:

Theorem 3. Let φfair1 and φfair2 be two fairness conditions such that φfair1 →
φfair2 is valid and φfair2 → φfair1 is not valid. Then dim

(
L(¬φfair1 )

)
> dim

(
L(¬φfair2 )

)
.

In other words, the stronger a fairness formula is, the weaker its complement
and thereby the higher its dimension.

5.3 Dimension Pairs for GR(1) Formulae

Consider a generic GR(1) formula φ = φinit∧φinv∧∧mi=1 φ
fair
i . We show through

an example that even when φinv is strongly connected, Hausdorff dimension may
not distinguish between weaker and stronger fairness conditions in the implica-
tion sense. This problem has been also pointed out in [6].

q1
{S′

2}
q2

{S′
1, S

′
2}

∅, {b}

{a}, {a, b}

{a, b}

{b}

q1
{S′

1, S
′
3,

S′
4, S

′
6}

q2
{S′

2, S
′
3,

S′
5, S

′
6}

q3
{S′

4, S
′
5,

S′
6}

{b}

∅

∅

{b}

{a}, {a, b}

{a, b}

{b}

{a}, {a, b}

Fig. 5: DMAs of φ1 (top) and
φ2 (bottom) of Example 3.

Example 3. Consider the two formulae over the
variables V = {a, b}: φ1 = G(a → Xb) ∧ GFa and
φ2 = G(a→ Xb)∧GFb. The same invariant appears
in both, and thereby have the same Hausdorff di-
mension, but the fairness condition in φ2 is always
satisfied when the fairness condition of φ1 is satis-
fied, by virtue of the invariant itself. However, the
ω-word {b}ω satisfies φ2 but not φ1. So, φ1 implies
φ2 but not vice versa.

The language of both formulae is not closed. The
Muller automata of φ1 and φ2 are shown at the
top and bottom, respectively, in Fig. 5. In both au-
tomata, there is an accepting set that covers the
entire state space (S′2 in L(φ1) and S′6 in L(φ2). It
is possible to show that the maximum H(CS′) of
equation (2) is achieved exactly for these accept-
ing sets [33,8]. The ω-languages CS′

2
in L(φ1) and

CS′
6

in L(φ2) both coincide with the language of the
invariant alone. Therefore,

dim (φ1) = dim (φ2) = dim (L(G(a→ Xb))) .ut

To distinguish between the two formulae, we exploit the fact that the com-
plement of a fairness condition is a formula of the kind FGB(V) which can be
compared through Hausdorff dimension. Therefore, we propose a weakness mea-
sure which consists of two components: one related to the whole formula and
one measuring the ω-language excluded from the invariant by the addition of
the fairness conditions.



Definition 5 (Weakness). The weakness of a GR(1) formula φ = (φinit ∧
φinv

∧m
i=1 φ

fair
i ) is a pair of numbers d(φ) = (d1(φ), d2(φ)) such that d1(φ) is the

Hausdorff dimension of L(φ); and d2(φ) is the Hausdorff dimension of L(φc) =

L(φinit∧φinv∧∨mi=1 φ
cfair
i ), where φcfairi = ¬φfairi . The following partial ordering

is defined based on the weakness measure: If di = (di1, d
i
2), with i ∈ 1, 2 are

weakness measures for two GR(1) formulae, then d1 < d2 if d11 < d21 or d11 = d21
and d12 > d22.

q1
{S′

1}
q2

∅, {b}

{a}, {a, b}
{a, b}

{b}

q1
q2

{S′
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∅

∅

{b}

{a, b}

{a, b}
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Fig. 6: DMAs of φc
1 (top) and φc

2

(bottom) of Example 4.

We apply below this weakness measure to the
formulae in Example 3.

Example 4. To compute d2, let us define φc1 =
G(a → Xb) ∧ FG¬a and φc2 = G(a → Xb) ∧
FG¬b. The DMAs of the resulting languages are
shown respectively in Fig. 6. Each of them has
just one accepting singleton, so the computation
of the Hausdorff dimension is straightforward:
dim (φc1) = 1

2 and dim (φc2) = 0. In summary,
since φ1 is more restrictive than φ2, the Haus-
dorff dimension of the ω-language cut out by
GFa is higher than the Hausdorff dimension of
the behaviours excluded by GFb. ut

The following theorem justifies the use of this
dimension pair for weakness quantification when
the formulae have the same invariant.

Theorem 4. Let φ1 = φinv ∧ ∧mi=1 φ
fair
1,i and

φ2 = φinv ∧ ∧lj=1 φ
fair
2,j , such that φ1 → φ2. Then d1(φ1) = d1(φ2) and

d2(φ1) ≥ d2(φ2).

Proof. Since φ1 → φ2, L(φ1) ⊆ L(φ2). Furthermore, for i = 1, 2, L(φi) =

L(φinv)∩L(
∧m
j=1 φ

fair
i,j ). Therefore, L(φinv)\L(

∧m
j=1 φ

fair
1,j ) ⊇ L(φinv)\L(

∧l
j=1 φ

fair
2,j ),

i.e., L(φc1) ⊇ L(φc2). Then, by Theorem 1, dim(φc2) ≤ dim(φc1), finishing the proof.
ut

Therefore, given two formulae with the same invariant, we deem the formula
with lower d2 weaker.

Regarding formulae with the same d1 and different invariants, we justify
heuristically the same order relation. We first note that the Hausdorff dimension
of a countable union of ω-languages, as noted in [39], is

dim

(⋃
i

Li

)
= sup

i
dim (Li) .

This property is known as the countable stability of Hausdorff dimension. This
implies that for any formula φ, if d2(φ) ≤ d1(φ) then

dim
(
L(φinv)

)
= dim (L(φ) ∪ L(φc)) = dim (L(φ)) .



So, if for two formulae, φ1 and φ2, we have d1(φ1) = d1(φ2) > d2(φ1) > d2(φ1),
this can be interpreted as the two invariants having the same dimension and the
fairness condition of φ1 removing more behaviours than the fairness condition
of φ2. In this sense, φ2 is weaker than φ1. This justifies intuitively our weakness
definition and the associated partial ordering. In Sec. 6, we illustrate applications
of this order relation for comparing GR(1) assumptions.

The computation of d2(φ) for a generic φ with m fairness conditions can
be reduced to the case of a single fairness condition. Based on the countable
stability of Hausdorff dimension, we have

d2(φ) = sup
i=1,...,m

d2(φinit ∧ φinv ∧ φcfairi ) .

Furthermore, the case of a single fairness condition can be further reduced
to computing the Hausdorff dimension of an invariant by the following theorem.

Theorem 5. Given a formula φc = GBinv(V ∪ XV) ∧ FG¬Bfair(V) we have

dim (L(φc)) = dim
(
L(G(Binv ∧ ¬Bfair))

)
.

Proof sketch (full proof is presented in Appendix D). Since L(φc) is not closed,
the Hausdorff dimension must be computed from a DMA. The proof (given in
Appendix D) consists in showing that the DMA’s accepting subsets correspond
to the automaton of an ω-language where both Binv and Bfair are satisfied at
every step. This property is a generalization of the observation made in Sec. 5.2
about the Hausdorff dimension of fairness complements. ut

5.4 Initial Conditions

Consider φinit = B(V). An expression of this form constrains only the first
symbol of the ω-words in L(φinit). For the same reason as φfair in Sec. 5.2,
L(φinit) is closed, and therefore its dimension can be computed via its entropy.
By applying the definition of entropy, it is easy to see that, similarly to the
unconstrained language L(true),

dim
(
L(φinit)

)
= 1 .

Consider now a formula φ = φinit∧φinv. A DBA B for L(φ) can be computed
from a DBA Binv of L(φinv) by removing all transitions starting from its initial
state whose labels do not satisfy B(V). The resulting automaton may leave out
parts of Binv that are no longer reachable from the initial state. This does not
happen if L(φinv) is strongly connected, as in that case any non-initial state in
Binv is reachable from any other state. In this case

dim (φ) = dim
(
φinv

)
.

This implies that the initial conditions do not affect the Hausdorff dimension
and hence cannot be always ordered by our weakness measure. This is accept-
able since typically, in applications like assumptions refinement, the focus is in
assessing invariants or fairness conditions rather than initial conditions [29].



6 Evaluation

We evaluate here the weakness measure through applications to benchmarks
within the assumptions refinement domain, demonstrating its usefulness in dis-
tinguishing weakness of different formulae, and discussing the computation time
bottlenecks. (In Appendix E, we report on our evaluation within another appli-
cation domain, namely quantitative model checking.)

To this aim, we implemented the weakness measure computation for GR(1)
specifications in Python 2.7 and made it publicly available in [1]. Our imple-
mentation makes use of the Spot tool [20] for LTL-to-automata conversion.
We integrated the weakness computation algorithm within two state-of-the-
art counterstrategy-guided assumptions refinement approaches [15,4] (the im-
plementations are available in [1].) Both approaches are based on an iterative
procedure of realizability checking and specification refinement: in each itera-
tion, the procedure checks if the current assumptions are sufficient to ensure
realizability. If not, a counterstrategy is generated from which a new refinement
(i.e., an initial condition, an invariant or a fairness condition that excludes the
counterstrategy) is computed and added to the set of available assumptions.

We conducted experiments on two benchmarks for GR(1) assumptions re-
finement, namely the specifications of a lift controller and of the AMBA-AHB
protocol for device communications in its versions for two, four and eight master
devices [12,4,29]. The lift controller example specifies a controller for a lift with
three floors: the Boolean variable bi denote the state of the button on floor i; the
Boolean variable fi is true iff the lift is at floor i. For more details on the initial
assumptions φE see [4]. The AMBA-AHB protocol provides signals for request-
ing access to a bus (hbusreqi), for granting access (hgranti), for signalling the
termination of a communication (hready), and for identifying the current owner
of the bus (hmaster). Other signals are detailed in [12]. To our knowledge, the
AMBA08 specification is one of the biggest benchmarks available in this field,
with 55 binary variables, 28 initial assumptions and 157 guarantees.

Owing to space limitations, we focus below only on our application to [15],
and discuss three cases highlighting features of our weakness measure: (i) in the
first example, we demonstrate the relationship between weakness and implica-
tion; (ii) second, we consider cases when two formulae are not comparable by
implication but can be ranked with our measure; and (iii) we discuss the case
of formulae equally constraining the environment, which have equal ranking ac-
cording to our measure. We refer the reader to [1] for the complete results.

Relation between weakness and implication. Consider the lift controller
example. Two refinements computed by the automated approach in [15] are:
φ1 = G((¬b1 ∧ ¬b2 ∧ ¬b3) → X(b1 ∨ b2 ∨ b3)); and φ2 = GF(b1 ∨ b2 ∨ b3).
The first forces one of the buttons to be pressed at least every second step
in a behaviour. The second forces one of the buttons to be pressed infinitely
often in a behaviour. It clear that φ1 implies φ2. We compare the assumptions
obtained by refining the original assumptions with the first one and with the
second one: d(φE ∧ φ1) = (0.7746, 0) and d(φE ∧ φ2) = (0.7925, 0.5). Notice that



d1(φE ∧φ1) < d1(φE ∧φ2) and this is consistent with the fact that φ1 is stronger
than φ2. Consider now the two fairness refinements: φ2 = GF(b1 ∨ b2 ∨ b3); and
φ3 = GFb1. We have d(φE ∧φ2) = (0.7925, 0.5) and d(φE ∧φ3) = (0.7925, 0.695).
Here, d1 is equal for both formulae and d2(φE ∧ φ2) < d2(φE ∧ φ3); this is
consistent with the fact that φ2 is weaker than φ3.

Formulae incomparable via implication. Consider φ3 above and φ4 =
GF(b2∨b3). Neither implies the other. However, it is reasonable to argue that φ4
is less restrictive than φ3: while φ3 constrains exactly one button to be pressed in-
finitely often, φ4 allows the extra choice of which one (out of two) . This intuition
is indeed reflected by our computed weakness metric: d(φE∧φ3) = (0.7925, 0.695)
and d(φE ∧ φ4) = (0.7925, 0.5975). This expresses the notion that φ4 removes
less behaviours from φE than φ3.

Our weakness measure can help spotting asymmetries between assumptions
that are syntactically equal but constrain semantically different variables. Con-
sider an extended version of the lift controller example including the input vari-
able alarm and the output variable stop: whenever alarm is set to high, the lift
enters a stop state where it does not move from the floor it is at. The specification
of this system is given in the Appendix F. Computing the weakness of the two re-
finements φ5 = G¬b1 and φ6 = G¬alarm yields d(φE∧φS∧φ5) = (0.3694, 0.3207)
and d(φE ∧φS ∧φ6) = (0.3746, 0.3346). This is consistent with the intuition that
the former assumption excludes a part of the desirable system behaviors (all
the ones that allow it to reach floor 1), while the latter excludes only the error
traces ending in the stop state, being then a weaker restriction on the combined
behaviors of the controller and the environment.

The following two assumptions refinements are computed for the AMBA-
AHB case study with two masters: ψ1 = G(¬hbusreq1 ∨X(hready ∨ ¬hbusreq1));
and ψ2 = G((¬hgrant1 ∧ hready ∧ hbusreq1) → X(¬hready ∨ ¬hbusreq1)). As in
the case of the lift example, neither formula implies the other. The weakness of
the resulting assumptions is: d(ψE ∧ ψ1) = (0.9503, 0.9068) and d(ψE ∧ ψ2) =
(0.9607, 0.9172). The refinement ψ2 is weaker than ψ1. Such insight into their
weakness could be used to guide the refinement approach (e.g., [4,15]) in choosing
to only refine those assumptions that may lead to weaker specifications, for
instance further refining ψ2 rather than ψ1.

Consistency between equally constraining formulae. Consider the AMBA-
AHB protocol with eight masters and the two alternative refinements: θ1 =
GF(hmaster0 ∨¬hbusreq1); and θ2 = GF(hmaster1 ∨¬hbusreq2). Clearly the two
alternatives express the same kind of constraint on different masters. Since the
two masters do not have priorities over each other, expectedly the two refine-
ments have the same weakness: d(θE ∧ θ1) = d(θE ∧ θ2) = (0.9396, 0.9214).

Performance. The time taken to compute the weakness measure for each re-
finement (computed via the approach in [15]) was consistently less than 1 minute
for the lift controller, AMBA02, and AMBA04 case studies. The time needed
on a representative subset of refinements from the AMBA08 example is shown
in Fig. 7 as a function of the number of GR(1) conjuncts in the assumptions.



The subset comprises a path from the root of the refinement tree (initial as-
sumptions) to one of the 128 leaves. We observed that 126 of the 128 leaves
showed similar performance as the one reported in figure; two of them, in-
stead, took around 6700s. Notice that over 99% of the time is spent on DMA
computation, and the remaining time is employed on eigenvalue computation.

Fig. 7: Execution time of weakness computa-
tion for AMBA08

When using implication to check
whether a formula φ1 implies an-
other formula φ2, it is necessary
to produce two automata, one for
L(φ1)∩L(¬φ2) and one for L(φ2)∩
L(¬φ1), and then run an emptiness
check on each of them. When com-
paring k formulae, this operation
must be repeated for O(k2) pairs of
formulae. On the other hand, for a
set of formulae containing at most
m fairness conditions, our weak-
ness measure requires m+ 1 DMA
computations, yielding O(mk) au-
tomata needed for comparing k formulae. In this respect, the advantage of our
weakness measure resides in the reduced number of DMA computations with
respect to implication. The price to pay is that some pairs of formulae distin-
guishable via implication may produce the same weakness value, as noted above.

7 Conclusion

In this paper we proposed a new measure for assessing the weakness of GR(1) for-
mulae quantitatively and demonstrated its application in the context of weakest
assumptions refinement for GR(1) controller synthesis. We showed that strong
connectedness of invariants is a sufficient requirement to guarantee that our
measure distinguishes between stronger and weaker formulae in the implication
sense. We introduced a component to the measure which allows one to com-
pare formulae with the same dimension based on the weakness of their fairness
conditions. The major limitation of the approach is the need for deterministic
automata to be produced, which induces high computation time because of the
determinization process [21].

As part of our future work, we plan to explore the possibility of refining the
weakness relation by including Hausdorff measure in the definition, since Haus-
dorff measure can distinguish between stronger and weaker ω-languages in case
they are not strongly connected [33]. We also intend to investigate algorithms for
computing—or approximating at a controlled accuracy—Hausdorff dimension on
nondeterministic automata.
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Compositional Verification. In: Tools and Algorithms for the Construction and
Analysis of Systems. pp. 331–346 (2003)

https://gitlab.doc.ic.ac.uk/dgc14/WeakestAssumptions


20. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Automated
Technology for Verification and Analysis. vol. 9938, pp. 122–129. Springer (2016)
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Appendix

A LTL Syntax and Semantics

The syntax of LTL is defined by the following grammar:

φ ::= true | false | p | ¬φ | φ ∧ φ | Xφ | Fφ | Gφ | φUφ

where p ∈ V.
The following statements describe LTL semantics, that is when an ω-word is

said to satisfy an LTL formula. Hereafter, φ and ψ are LTL formulae.

w |= true always

w |= false never

w |= p iff p ∈ w1

w |= ¬φ iff w 6|= φ

w |= φ ∧ ψ iff w |= φ and w |= ψ

w |= Xφ iff w2 |= φ

w |= Fφ iff ∃j ∈ N s. t. wj |= φ

w |= Gφ iff ∀j ∈ N wj |= φ

w |= φUψ iff ∃j ∈ N s. t. wj |= ψ and ∀i < j wi |= φ

In other words, F can be read as “eventually”, G as “always”, X as “next” and
U as “until”.

B Entropy, Automata and Adjacency Matrices

The entropy of a closed language can be computed on its Büchi automaton B if
all states are accepting [33]. This is interpreted as a labelled graph G = (Q,E),
where the set of nodes Q is the set of states in B, E ⊆ Q × N × Q is a set of
edges such that (qi, n, qj) ∈ E if and only if there exist exactly n symbols σ ∈ Σ
such that δ(qi, σ) = qj .

Given a subset Q′ ⊆ Q, the subgraph induced by Q′ on G is the graph
G′ = (Q′, E′) such that (qi, n, qj) ∈ E′ iff (qi, n, qj) ∈ E and qi, qj ∈ Q′.

A graph is strongly connected if for any two states qi, qj ∈ Q there exists a
path (a sequence of consecutive edges) from qi to qj and vice versa. If a graph G is
not strongly connected, it can admit one or more strongly connected components
(SCCs), which are maximal strongly connected subgraphs of G

A graph can be represented through its adjacency matrix A, defined as
the square matrix of size #(Q) whose element in position (i, j) is Aij = n
iff (qi, n, qj) ∈ E and Aij = 0 if there is no edge connecting qi and qj .

The algorithm in [33] to compute entropy is as follows. Given a Büchi au-
tomaton with all states accepting and its interpretation as a graph G



1. Compute all SCCs and their adjacency matrices Ai;
2. For every Ai compute the maximum eigenvalue ρ(Ai) (also called spectral

radius of Ai);
3. Return the maximum ρ(Ai).

C Proof of Theorem 2

Invariants are special cases of safety formulae according to the classification in
[31], and therefore can be represented by Büchi automata where every state is
accepting. First, we will construct an automaton accepting L(φinv2 ) where each
state keeps memory of the last symbol read. The outgoing transitions from each
state are labelled only with the valuations that satisfy the invariant. Then we
will show that a Büchi automaton of the same form can be obtained for L(φinv1 )
by removing transitions and possibly states from the automaton of L(φinv2 ). This
yields an adjacency matrix for L(φinv1 ) with a strictly lower spectral radius (max-
imum eigenvalue), which corresponds to Hausdorff dimension in our context.

As promised, first we construct the Büchi automata for φinv1 and φinv2 . The
construction of B for L(φinv) uses a set of states Q which are labelled by a
one-to-one function λ : Q\{q0} → Σ. The transition function is built such that:

1. δ(q, σ) is defined if and only if every ω-word in λ(q)σ·Σω satisfies B2(V∪XV);
2. in case δ(q, σ) is defined, λ(δ(q, σ)) = σ.

The initial state q0 satisfies the following property:

1. for every σ ∈ Σ, there exists δ(q0, σ) if and only if there exists τ ∈ Σ such
that στ ·Σω |= B;

2. for every q ∈ Q{q0}, if q = δ(q0, σ) then λ(q) = σ.

An example is pictured in Figure 8.

∅ {b} {a, b}

{a}

∅

{b} {a, b}
{b}

{a, b}{a} {b}{a}

∅

{a, b}
{b}

{a, b}

Fig. 8: Büchi automaton of G(a → Xb). The state labels λ(q) are shown inside the
nodes. The initial state (not shown) has transitions towards all the states in the figure,
since the first symbol is unconstrained.



We show that an ω-word w satisfies φinv iff it corresponds to an infinite path
on B. Suppose w |= φinv. Then for every i ∈ N, wi |= B(V ∪ XV). Since this
formula constrains the first two symbols of w only, any ω-word in wiwi+1 · Σω

satisfies B2. By construction, the automaton B has a transition δ(qi, wi+1) = qi+1

such that λ(qi) = wi and λ(qi+1) = wi+1. Therefore, if there exists a path from
q0 to qi induced by the prefix w1 . . . wi, there exists a path from q0 to qi+1. As
a base case of the induction, consider that w1w2 ·Σω |= B, and therefore there
exists a path from q0 to q1 in B.

Conversely, suppose that w is an infinite sequence of transition labels such
that B(w) = q0q1 . . . . Then δ(qi, wi+1) exists for every i ∈ N ∪ {0} and λ(qi) =
wi for all i ∈ N. By the construction of B this means that for every i ∈ N
wiwi+1 ·Σω |= B, that implies wi |= φinv. Then we can conclude w |= φinv. This
allows us to say that B is a Büchi automaton of the formula φinv.

If L(φ) is strongly connected, the B is also strongly connected, except for
the initial state. Let qn = δ(q0, w) = δ(δ(δ(. . . δ(q0, w1), . . . ), wn−1), wn) the
state reached by B after reading the prefix w ∈ An(L(φ)), and qm = δ(q0, v)
for v ∈ Am(L(φ)). By construction, λ(qn) = wn and λ(qm) = vm. Since L(φ)
is strongly connected, there exist v′ ∈ Σ∗ such that Svv′ = L(φ). Therefore
vv′w ∈ A(L(φ)) and λ(q0, vv

′w) = wn, so δ(q0, vv
′w) = qn. So, there exists a

path in B from qm to qn. Symmetrically, there exists a path from qn to qm.
We have proved that for any pair of states reachable from q0 there is a path
between them in both directions, that is the graph induced by non-initial states
is strongly connected.

Now consider the automata B1 and B2 of L(φinv1 ) and L(φinv2 ) respectively.
Since the two formulae are pure invariants, φinv1 → φinv2 if and only if B1(V ∪
XV)→ B2(V ∪ XV). So, given the hypothesis that φinv1 is strictly stronger than
φinv2 there must exist a pair of valuations σ, τ such that στ · Σω |= φinv2 but
στ · Σω 6|= φinv1 . By construction this corresponds to at least one transition
δ(q, τ) that exists in B2 and does not in B1. Consequently, we can conclude that
B1 is a proper subgraph of B2.

The next step is to construct the adjacency matrices corresponding to B1 and
B2 excluding the respective initial states. Let Q1\{q0,1} and Q2\{q0,2} be the
set of non-initial states of B1 and B2, respectively, and δ1 and δ2 their respec-
tive transition functions. Let A and B be the adjacency matrices of the graphs
(Q1\{q0}, δ1) and (Q2\{q0}, δ2). Consider that by construction all transitions
between two states are labelled by exactly one valuation: so, each element of
these two matrices is either a 0 or a 1.

Since the transitions of δ2 are a proper subset of the transitions of δ1, we
have for each element (i, j) Aij ≤ Bij , and Akh < Bkh for some (k, h), that is to
say Akh = 0, Bkh = 1. Since φinv2 is strongly connected, its adjacency matrix B is
irreducible (for more details on the correspondence between strongly connected
digraphs and irreducible matrices see Chapter 6 of [26]). Moreover, A + B is
also irreducible, since it is the sum of two nonnegative matrices one of which is
irreducible. We can therefore apply the property stated in Chapter 2, Corollary
1.5 of [8], which guarantees that under the given conditions ρ(A) < ρ(B).



Taking the logarithm on both sides, we get dim
(
φinv1

)
< dim

(
φinv2

)
, finishing

the proof. ut

D Proof of Theorem 5

The language of φc = GBinv (V ∪ XV) ∧ FG¬Bfair (V) is not closed. We will
therefore build a Muller automatonM for this language and show that applying
the algorithm of Section 4 is equivalent to computing the Hausdorff dimension of
the ω-language L(G(Binv (V∪XV)∧¬Bfair (V))). We are supposing that Binv (V∪
XV) and ¬Bfair (V) are consistent.

Let us first construct a Büchi automaton for φinv = GBinv (V) as in Ap-
pendix C. We have shown that any infinite path on this automaton satisfies
φinv. We now replace the Büchi winning condition F with a Muller condition T
that accounts for satisfying φcfair = FG¬Bfair (V). Let us denote by Qcfair the
set of states q such that λ(q) satisfies ¬Bfair (). The accepting table T is then
T := 2Qcfair .

It is clear that an ω-word w satisfies φc if and only if w is accepted by M.
Suppose w is accepted byM. Then for some S′ ∈ T , Inf(w) = S′. Since for each
q ∈ S′ λ(q) satisfies ¬Bfair (V), by construction the valuations wi leading to q
satisfies ¬Bfair (V). Therefore we conclude that there exists an infinite suffix of
w that satisfies G¬Bfair (V), that is w |= φcfair. Moreover, w induces an infinite
path on the automaton M, and therefore by construction w |= φinv. Therefore,
w |= φ.

Conversely, suppose w satisfies φ. Then it satisfies φinv, and thereby induces
an infinite path over M. Moreover, it satisfies φcfair, and therefore there exists
a suffix of w that satisfies G¬Bfair (V). So, by construction Inf(w) ⊆ Qcfair, that
is Inf(w) ∈ T .

The algorithm in Section 4 requires to compute the Hausdorff dimension
of every language CS′ for S′ ∈ T . The Hausdorff dimension of L(φc) is the
maximum of such Hausdorff dimensions. The Büchi automaton of the (closed)
language CS′ corresponds to the subgraph induced by the states in S′ onto
M, with any state being accepting [38]. The maximum Hausdorff dimension is
attained for S′ = Qcfair.

By construction, λ(q) satisfies ¬Bfair (V) for every q ∈ Qcfair, and for every
pair of consecutive states (q, q′) we have λ(q)λ(q′) ·Σω |= Binv (V ∪XV). There-
fore, the subgraph induced by Qcfair corresponds to the Büchi automaton of the
closed language L(G(Binv (V ∪ XV) ∧ ¬Bfair (V))).

In conclusion,

d2(φ) = dim (L(φc)) = L(G(Binv (V ∪ XV) ∧ ¬Bfair (V))),

finishing the proof. ut

E Quantitative Model Checking

In this section we provide an application of computing Hausdorff dimension on
fairness complements in a quantitative model checking example from [6].



Applied to the model checking problem, our weakness measure extends the
quantitative approach in [6] to fairness properties. Consider the Dining Philoso-
phers problem with three philosophers. Let φDP be the GR(1) formula describ-
ing all the philosophers’ behaviors that do not reach the deadlock state. The
goal is to assign a measure to the subset of these behaviors such that none
of the philosophers starve. This condition is expressed by the fairness formula
φDP
fair = GF(state1 = EAT) ∧ GF(state2 = EAT) ∧ GF(state2 = EAT). The

assigned measure is meant to characterize the degree of satisfaction of this for-
mula by a model of the Dining Philosophers problem. When using entropy only,
H(L(φDP)) = H(L(φDP ∧ φDP

fair)) = 0.0718. When using our two-component
measure function, the degree of satisfaction of a fairness formula is measured
indirectly through the subset of behaviors excluded by the formula itself. The
result is d(φDP) = (0.0718, 0), d(φDP ∧ φDP

fair) = (0.0718, 0.0479). Therefore, con-
trary to the work in [6], our measure is able to capture the difference in the
restrictiveness of the two formulae.

F Specification of the extended lift example

Assumptions:

1. ¬b1 ∧ ¬b2 ∧ ¬b3 ∧ ¬alarm
2. G((b1 ∧ f1)→ X¬b1)
3. G((b2 ∧ f2)→ X¬b2)
4. G((b3 ∧ f3)→ X¬b3)
5. G((b1 ∧ ¬f1)→ Xb1)
6. G((b2 ∧ ¬f2)→ Xb2)
7. G((b3 ∧ ¬f3)→ Xb3)

Guarantees:

1. f1 ∧ ¬f2 ∧ ¬f3 ∧ ¬stop
2. G(¬(f1 ∧ f2) ∧ ¬(f2 ∧ f3) ∧ ¬(f1 ∧ f3))
3. G((¬stop ∧ f3)→ X(f2 ∨ f3))
4. G((¬stop ∧ f1)→ X(f1 ∨ f2))
5. G(((f1 ∧ Xf2) ∨ (f2 ∧ Xf3) ∨ (f3 ∧ Xf2) ∨ (f2 ∧ Xf1))→ (b1 ∨ b2 ∨ b3))
6. GF((¬stop ∧ b1)→ f1)
7. GF((¬stop ∧ b2)→ f2)
8. GF((¬stop ∧ b3)→ f3)
9. G(stop→ ((f1 → Xf1) ∧ (f2 → Xf2) ∧ (f3 → Xf3)))

10. G(alarm→ Xstop)
11. GFf1
12. GFf2
13. GFf3
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