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Abstract

Recently, optimal combinatorial algorithms have been presented for the energy
minimization multiprocessor speed-scaling problem with migrations [Albers et
al., SPAA 2011], [Angel et al., Euro-Par 2012]. These algorithms use repeated
maximum-flow computations that allow the partition of the set of jobs into
subsets in which all the jobs are executed at the same speed. The optimality
of these algorithms is based on a series of technical lemmas showing that this
partition and the corresponding speeds lead to the minimization of the energy
consumption. In this paper, we show that both the algorithms and their analysis
can be greatly simplified. In order to do this, we formulate the problem as a
convex cost flow problem in an appropriate flow network. Furthermore, we show
that our approach is useful to solve other problems in the dynamic speed-scaling
setting. As an example, we consider the preemptive open-shop speed-scaling
problem and we propose a polynomial-time algorithm for finding an optimal
solution based on the computation of convex cost flows. We also propose a
polynomial-time algorithm for minimizing a linear combination of the sum of
the completion times of the jobs and the total energy consumption, for the
non-preemptive multiprocessor speed-scaling problem. Instead of using convex
cost flows, our algorithm is based on the computation of a minimum weighted
maximum matching in an appropriate bipartite graph.

Keywords: speed-scaling, polynomial-time algorithms, convex cost flows,
weighted matchings

1. Introduction

In the last few years, a series of papers deal with the minimization of the
energy consumption in the area of scheduling (see the recent surveys [3] and
[4] and the references therein). One of the most studied models in this context
is the speed-scaling model in which a set of tasks has to be executed on one
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or more processors whose speed may change dynamically during the schedule.
Hence, the scheduler has to decide not only the job to execute at any given
time, but also the speed of the processor(s) in order to satisfy some level of
Quality of Service (QoS), while at the same time to minimize the overall energy
consumption. In speed-scaling, power is usually defined as a convex function of
the speed and the energy is power integrated over time. Intuitively, the higher
is the speed, the better is the performance in terms of QoS, but the higher is
the consumption of energy.

The first theoretical result in this area has been proposed in the seminal
paper of Yao et al. [21], where the authors considered the energy minimiza-
tion problem when a set of jobs, each one specified by its processing volume
(work), its release date and its strict deadline, has to be scheduled on a single
speed-scalable processor. They proposed an algorithm that solves the problem
optimally in polynomial time, when the preemption of the jobs, i.e. the possi-
bility to interrupt the execution of a job and resume it later, is allowed. Since
then, different problems have been studied taking into account the energy con-
sumption, mainly in the single processor case (e.g., [6, 20]), but more recently
in the multiprocessor case as well (e.g., [5, 7, 10, 17]). Different algorithmic
techniques have been used in order to optimally solve different speed-scaling
scheduling problems, including the use of greedy algorithms, dynamic program-
ming, convex programming, and more recently, maximum flows.

In this paper, we show that the use of convex cost flow computations may
lead to polynomial-time algorithms for basic speed-scaling scheduling problems.
This adds a new tool for solving speed-scaling scheduling problems. More pre-
cisely, we first revisit the multiprocessor speed-scaling problem with migrations
studied in [5, 7, 10], and we show that it can be solved easily using a convex
cost flow formulation, simplifying both the existing algorithms and their proofs
of optimality. This problem is the same as the one considered in [21], except
that now there are m processors on which the jobs have to be executed and
that the execution of an interrupted job may be continued on the same or on
another processor (i.e., the migration of jobs is allowed). In [10], Bingham and
Greenstreet presented an optimal algorithm for this problem based on the use
of the Ellipsoid method. In [5], Albers et al. proposed an O(n2f(n))-time com-
binatorial algorithm, where f(n) is the time to compute a maximum flow in
a graph. This algorithm is based on a series of maximum flow computations
each one of them determining a set of jobs that will be executed with the same
speed. Independently, in [7] a similar approach has been presented. Our method
simplifies the proof of optimality of the algorithm proposed in [5, 7] in the price
of the use as black box of a more sophisticated flow algorithm, namely a com-
putation of a convex cost flow. This flow provides the speeds for all jobs in an
optimal solution, i.e., the speeds that minimize the energy consumption which
corresponds to the convex cost of the flow.

We also consider the preemptive open-shop speed-scaling problem. In this
problem, there are m speed-scalable processors and n jobs, and every job is
composed by a set of operations, at most one per processor, and every operation
is characterized by its processing volume. There is no order in the execution of
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the operations but two operations of the same job cannot be executed in parallel.
The jobs are all available at the same time and there is a common deadline.
This is the first attempt to study a speed-scaling problem in a shop scheduling
environment. Our algorithm is based again on a transformation to a convex cost
flow problem. However, we are not able to calculate in advance the total flow in
an optimal solution for our problem, but we propose a generic procedure that
uses several convex cost flow computations. In fact, this procedure is a kind of
binary search that determines at the same time the total flow and the energy
consumption in an optimal solution. Note that this procedure can be used
directly for other problems in the speed-scaling setting which can be formulated
as a convex cost flow problem.

Finally, we propose a polynomial-time algorithm for minimizing a linear
combination of the sum of the completion times of the jobs and the total en-
ergy consumption, for the non-preemptive multiprocessor speed-scaling problem.
Here, we are given m processors and n jobs, each one characterized by its pro-
cessing volume, while the preemption of the jobs is not allowed. The proposed
algorithm is based on the computation of a minimum weighted maximum match-
ing in an appropriate bipartite graph. Notice that in [20] the complexity of
the single-processor speed-scaling problem with preemptions where the jobs are
subject to release dates has been left open. Our result makes progress towards
answering this challenging question.

In Section 2 we present the notation concerning the speed-scaling mechanism
as well as the convex cost flow and the minimum weighted maximum matching
problems. In Sections 3, 4 and 5 we deal with the three speed-scaling scheduling
problems mentioned above. In each section, we formally define the studied
problem and we give the related work and our approach for it. In Section 6 we
discuss more problems that can be solved using the idea of convex cost flows
and we propose some interesting open questions.

2. Preliminaries

In most works in the speed-scaling area (see for example [21]), if a processor
operates at a speed s(t) at time t, then its energy consumption rate (power) is
equal to P (s(t)) = s(t)α, where α > 1 is a constant usually between two and
three. In this paper we consider the more general model (see for example [9]) in
which the power P (s(t)) of a processor is any differentiable convex function of
the speed s(t). Then the energy consumption is equal to the power integrated
over time. Using a standard exchange argument and based on the convexity of
the speed-to-power function, it can be shown that each job/operation runs at a
constant speed in any optimal schedule for the considered scheduling problems
(see for example [21]).

An instance of the convex cost flow problem consists of a networkN = (V,A),
where V is a set of nodes and A ⊆ V × V is a set of arcs between the nodes.
Each arc (u, v) ∈ A is associated with a capacity cu,v ≥ 0 and a cost function
κu,v(f) ≥ 0, where f ≥ 0. The function κu,v(f) is convex with respect to
f and it represents the cost incurred if f units of flow pass through the arc
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(u, v). Moreover, we are given an amount of flow F , a source node s ∈ V and a
destination node t ∈ V . The objective is to route the amount of flow F from s
to t so that the total cost is minimized and the amount of flow that crosses each
edge (u, v) does not exceed the capacity cu,v, for each (u, v) ∈ A. The convex
cost flow problem can be efficiently solved in O(|A| log(max{F , cmax})(|A| +
|V | log |V |)) time, where cmax = max(u,v)∈A{cu,v} (see for example [2]).

An instance of a minimum weighted maximum bipartite matching problem
consists of a bipartite graph G = (V,U ;A), where each edge e ∈ A has a weight
κe ≥ 0. A matching M in G is a subset of edges, i.e. M ⊆ A, such that no
two edges in M have a common endpoint, while the weight of the matching
M is equal to

∑
e∈M κe. A matching of maximum cardinality is a matching

that contains the maximum number of edges among all possible matchings in
G. The objective is to find the matching with the minimum weight among the
matchings of maximum cardinality. There exists an algorithm for finding such
a matching in O(|V |(|A|+ |V | log |V |)) time (see for example [2]).

3. Energy Minimization on Multiprocessors with Migrations

The problem. We consider the scheduling problem of minimizing the energy
consumption of a set of n jobs that have to be executed on m parallel processors,
where each job Jj is characterized by a processing volume (or work) wj , a release
date rj and a deadline dj . In this setting, the preemption and the migration of
the jobs are allowed, i.e., a job may suspend its execution and continue on the
same or another processor, later from the point of suspension. A convex speed-
to-power function P (s) defines the energy consumption rate of any processor
running at speed s ≥ 0. By extending the Graham’s classical three-field notation
[16] in the speed-scaling setting, we denote this problem as S|pmtn, rj , dj |E.

Previous results. This problem is an extension in the speed-scaling setting of one
basic problem in scheduling theory, the well-known P |pmtn, rj , dj |− problem.
In this problem, we are given a set of n jobs that have to be executed on a set
of m parallel identical processors, while preemption and migration of jobs are
permitted. Each job Jj has a processing time pj , a release date rj and a deadline
dj . The objective is to either construct a feasible schedule in which every job
Jj is executed during its interval [rj , dj ], or decide that such a schedule does
not exist. The P |pmtn, rj , dj |− problem can be solved in polynomial time (see
[11]).

Polynomial-time algorithms for finding an optimal solution for S|pmtn, rj ,
dj |E, known as the multiprocessor speed-scaling problem with migration, have
been proposed by Bingham and Greenstreet [10], Albers et al. [5] and Angel
et al. [7]. The algorithm in [10] is based on the use of the Ellipsoid method.
As the complexity of the Ellipsoid algorithm is high for practical applications,
[5] and [7] proposed purely combinatorial algorithms. These algorithms use
repeated computations of maximum flows in appropriate flow networks, in order
to determine a partition of the set of jobs into subsets in which all the jobs
are executed with the same speed. When the speed of such a subset of jobs is
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determined, these jobs as well as the corresponding time-intervals and processors
are removed from the flow network and the process continuous until no job
remains unscheduled. At the end, every job is associated with a unique speed
and thus an execution time. The final schedule can be produced by applying
the algorithm of McNaughton [19]. The optimality of the algorithms in [5] and
[7] is based on a series of technical lemmas showing that this partition and the
corresponding speeds lead to the minimization of the energy consumption.

3.1. Our Approach

The rough idea of our algorithm is the following: we first formulate the
problem S|pmtn, rj , dj |E as a convex cost flow problem. An optimal convex
cost flow allows us to get the optimal speed sj for every job Jj , and thus its
total execution time tj =

wj

sj
. Then, given the execution times of the jobs, the al-

gorithm constructs a feasible schedule by applying a polynomial-time algorithm
for P |pmtn, rj , dj |−.

Convex cost flow formulation. We consider that the time is partitioned into
intervals defined by the release dates and the deadlines of jobs. That is, we define
the time points t0, t1, . . . , tk, in increasing order, where each ti corresponds to
either a release date or a deadline, so that for each release date and deadline
of job there is a corresponding ti. Then, we define the intervals Ii = [ti−1, ti],
for 1 ≤ i ≤ k, and we denote by |Ii| the length of Ii. We call a job Jj alive
in a given interval Ii, if Ii ⊆ [rj , dj ]. The number of alive jobs in interval Ii is
denoted by A(Ii).

J1

J2

s
...

I1

I2

Ii

...
t

Jj
...

Jn

Ik

...

Ns

arc c κ

(s, Jj) +∞ fs,Jj · P (
wj

fs,Jj
)

(Jj , Ii) |Ii| 0
(Ii, t) m|Ii| 0

Figure 1: The flow network Ns for S|pmtn, rj , dj |E.

Then, in the flow network Ns for S|pmtn, rj , dj |E (see Figure 1), we intro-
duce a source node s, a destination node t, a node for each job Jj , 1 ≤ j ≤ n,
and a node for each interval Ii, 1 ≤ i ≤ k. For each j, 1 ≤ j ≤ n, we add an arc
(s, Jj) and, for each i, 1 ≤ i ≤ k, we add an arc (Ii, t). If the job Jj , 1 ≤ j ≤ n,
is alive during the interval Ii, 1 ≤ i ≤ k, we introduce an arc from the node Jj
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to the node Ii. The capacity of the arc (u, v) is

cu,v =

 +∞ if u = s and v = Jj
|Ii| if u = Jj and v = Ii
m|Ii| if u = Ii and v = t

If an amount of flow fu,v passes through the arc (u, v) of Ns, then the cost
function of the arc is defined as

κu,v(fu,v) =

{
fu,v · P (

wj

fu,v
) if u = s and v = Jj

0 otherwise

In the network Ns, if an amount fu,v of flow passes through the arc (u, v) =
(s, Jj), then fu,v corresponds to the execution time of job Jj ,

wj

fu,v
corresponds

to the speed of Jj and fu,v · P (
wj

fu,v
) is the energy consumed for the execution

of Jj . Furthermore, the flow passing through an edge (Jj , Ii) (resp. an edge
(Ii, t)) represents the execution time of the job Jj (resp. the execution time of
all jobs) during the interval Ii. Hence, the total flow that leaves the source node
corresponds to the total execution time of all jobs. In [5], it was shown that
the total execution time of all jobs in an optimal schedule for S|pmtn, rj , dj |E
can be easily computed using the following lemma, whose proof is based on the
convexity of the speed-to-power function.

Lemma 1. [5] In an optimal schedule for S|pmtn, rj , dj |E, where each job Jj,
1 ≤ j ≤ n, is executed with speed sj, the total execution time, T , of all jobs is

T =

n∑
j=1

wj
sj

=

k∑
i=1

(
min{m,A(Ii)} · |Ii|

)
The above lemma gives the total amount of flow that has to be sent from the

source node to the destination node, concluding the formulation of S|pmtn, rj ,
dj |E as a convex cost flow problem.

The algorithm and its optimality. Our algorithm for S|pmtn, rj , dj |E can be
summarized as follows.

Algorithm 1

1: Construct the flow network Ns;
2: Find a convex cost flow F of value

∑k
i=1(min{m,A(Ii)} · |Ii|) in Ns;

3: Determine the execution time of each job;
4: Apply a polynomial-time algorithm for P |pmtn, rj , dj |− to find a feasible

schedule;

In order to establish the optimality of our algorithm, we need the following
lemma whose proof can be found in [19]. The lemma concerns the problem
P |pmtn, rj = 0, dj = d|− in which all jobs have a common release date and a
common deadline.
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Lemma 2. [19] An instance of P |pmtn, rj = 0, dj = d|− is feasible if and only
if (i) pj ≤ d, for each 1 ≤ j ≤ n, and (ii)

∑n
j=1 pj ≤ m · d.

Theorem 1. Algorithm 1 finds an optimal schedule for S|pmtn, rj , dj |E in
O(n4 log(m · L)) time, where L = max1≤j≤n{dj}.

Proof. We first prove that there is a feasible schedule for S|pmtn, rj , dj |E with

total execution time of all jobs equal to T =
∑k
i=1(min{m,A(Ii)} · |Ii|), if and

only if, there is a feasible flow of value T in Ns.
Assume that there exists a feasible schedule for S|pmtn, rj , dj |E with total

execution time equal to T . Let ej be the execution time of job Jj in this schedule
and let ej(Ii) be the total time that Jj is being processed by some processor
during the interval Ii. Consider the flow F in Ns which is defined as follows:

fu,v =


ej if u = s and v = Jj
ej(Ii) if u = Jj and v = Ii∑
Jj :Ii⊆[rj ,dj ] ej(Ii) if u = Ii and v = t

Since the parallel execution of a job is not permitted, for each job Jj and each
interval Ii ⊆ [rj , dj ] it holds that ej(Ii) ≤ |Ii|. Moreover, it holds that (i)
each processor can operate for at most |Ii| units of time during an interval Ii,
1 ≤ i ≤ k, (ii) each processor can execute at most one job at each time and
(iii) there are m available processors. Therefore, for each 1 ≤ i ≤ k, it holds
that

∑
Jj :Ii⊆[rj ,dj ] ej(Ii) ≤ min{m,A(Ii)} · |Ii|. Hence, F is a feasible flow in

Ns because it does not exceed the capacity of any arc.
Assume now that there is a feasible flow F of value T in Ns. In order

to define a feasible schedule S for S|pmtn, rj , dj |E, we assign to each job Jj ,
1 ≤ j ≤ n, a speed sj =

wj

fs,Jj
. So, the total execution time of Jj is fs,Jj .

Moreover, for each job Jj , 1 ≤ j ≤ n, and each interval Ii ⊆ [rj , dj ], we set
the execution time of Jj during Ii to be fJj ,Ii . Consider now any interval Ii,
1 ≤ i ≤ k, in S and let ej(Ii) be the total time that Jj is processed by any
processor during Ii. Since F is a feasible flow, it holds that ej(Ii) = fJj ,Ii ≤ |Ii|
and

∑
Jj :Ii⊆[rj ,dj ] ej(Ii) =

∑k
i=1 fIi,t ≤ min{m,A(Ii)} · |Ii|. By Lemma 2, for

each interval Ii, 1 ≤ i ≤ k, there is a feasible schedule during Ii, and hence
there is a feasible schedule S for the whole instance of S|pmtn, rj , dj |E.

Next, we establish the optimality of our algorithm. By the convex cost flow
computation, the algorithm finds a flow of value

∑k
i=1(min{m,A(Ii)}· |Ii|) such

that the term
∑n
j=1 fs,Jj · P (

wj

fs,Jj
) is minimized. By our previous claim, we

may define a feasible schedule of total execution time
∑k
i=1(min{m,A(Ii)}· |Ii|)

where each each job Jj is assigned a speed
wj

fs,Jj
, 1 ≤ j ≤ n. Since the energy

consumption of this schedule is equal to
∑n
j=1 fs,Jj ·P (

wj

fs,Jj
), it is a minimum en-

ergy schedule among the schedules of total execution time
∑n
j=1 fs,Jj ·P (

wj

fs,Jj
).

By Lemma 1, an optimal schedule for S|pmtn, rj , dj |E has total execution time∑k
i=1(min{m,A(Ii)} · |Ii|). Hence, the schedule returned by the algorithm is

optimal for the S|pmtn, rj , dj |E problem.
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The complexity of our algorithm is dominated by Line 2 where a convex
cost flow is sought. The flow network Ns constructed by the algorithm contains
O(n) nodes and O(n2) arcs. Moreover, the maximum capacity among all arcs is
at most m ·L, where L = max1≤j≤n{dj}, while by Lemma 1 the total amount of
the flow that crosses the network is at most m ·L. Hence, the overall complexity
of our algorithm is O(n2 log(m ·L)(n2 +n log n)) = O(n4 log(m ·L)). Note that
Line 4 runs in O(n2) time [11]. �

4. Energy Minimization on an Open-Shop with Preemptions

In this section we study the well-known preemptive open-shop problem in
the speed-scaling setting. We follow again the idea of transforming the problem
as a convex cost flow problem. For this problem we are not able to specify in
advance the value of flow which again corresponds to the total execution time.
However, we give an iterative procedure that specifies this value using several
convex cost flow computations. Note that this procedure can be also used as a
black box for other speed-scaling problems that can be transformed as a convex
cost flow problem.

The problem. We consider the scheduling problem of minimizing the energy
consumed in an open-shop setting. We are given a set of n jobs that have to be
executed in a prespecified time interval [0, d] on a set of m parallel processors.
Each job Jj consists of m operations O1,j , O2,j , . . . , Om,j . Each operation Oi,j ,
1 ≤ i ≤ m and 1 ≤ j ≤ n, has an amount of work wi,j ≥ 0 and can only be
executed on the processor Mi. The preemption of the operations is allowed,
while the parallel execution of operations of the same job is not permitted. A
convex speed-to-power function P (s) defines the energy consumption rate of any
processor running at speed s ≥ 0. The goal is to schedule the jobs within the
interval [0, d] so that the total energy consumption is minimized. We denote
this problem as OS|pmtn, rj = 0, dj = d|E.

The shop scheduling problems formulate several applications in computer
systems, where jobs are partitioned into tasks of different requirements which
usually cannot be executed in parallel as they share common resources. As
the tasks are of different type, specific purpose processors are used in order
to optimize the execution. Hence, each task is preassigned to an appropriate
processor. The open-shop problem describes such a situation. Note also that
a formulation of a map-reduce environment as a shop scheduling problem has
been recently proposed [13]. This formulation corresponds to the concurrent
open-shop problem [18], in which the parallel execution of operations of the
same job is allowed. Notice that map-reduce is a standard programming model
widely used in data centers, where the energy consumption is one of the most
important issues which has to be handled by the companies and the designers.
In this direction, the map-reduce/concurrent open-shop problem in combination
with the speed-scaling mechanism have been studied in [8], with objective to
minimize the sum of the weighted completion times jobs under a given budget
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of energy. Finally, note that the results we present in this section hold also for
the energy minimization concurrent open-shop problem.

Previous results. This problem is an extension of the preemptive open-shop
problem O|pmtn, rj = 0, dj = d|− [11] in the speed-scaling setting. In this
problem, we are given a set of n jobs and a set of m processors. Each job Jj
consists of a set of m operations, where the processing time of the operation Oi,j ,
1 ≤ i ≤ m and 1 ≤ j ≤ n, is pij ≥ 0. The open-shop constraint enforces that no
pair of operations of a job are executed at the same time. The goal is to find
a feasible schedule such that all operations are preemptively scheduled during
the interval [0, d] or decide that such a schedule does not exist. A polynomial
algorithm for this problem can be found in [11].

Up to the best of our knowledge, no results were known for this problem in
the speed-scaling setting until now.

4.1. Our Approach

As in the previous section, we first give a formulation of OS|pmtn, rj =
0, dj = d|E as a convex cost flow problem. In order to compute the total
execution time of all operations in an optimal schedule for OS|pmtn, rj =
0, dj = d|E, we use a search algorithm that repeatedly computes convex cost
flows. Given the optimal value of the total execution time of all operations, an
optimal convex cost flow gives the speeds, and hence the execution times, of the
operations in an optimal schedule for OS|pmtn, rj = 0, dj = d|E. To compute
a feasible schedule, we solve the corresponding instance of O|pmtn, rj = 0, dj =
d|− (see for example [11]).

M1

M2

s
...

J1

J2

Jj

...
t

Mi

...

Mm

Jn

...

Ns

arc c κ

(s, Jj) d 0
(Jj ,Mi) +∞ fij · Pij(sij)
(Mi, t) d 0

Figure 2: The flow network Ns for OS|pmtn, rj = 0, dj = d|E.

Convex cost flow formulation. We construct the flow network Ns (see Figure 2)
which consists of a source node s, a destination node t, a job-node Jj , for each
1 ≤ j ≤ n, and a processor-node Mi, for each 1 ≤ i ≤ m. The network Ns
contains an arc (s, Jj) for each job Jj , 1 ≤ j ≤ n, an arc (Mi, t) for each
processor Mi, 1 ≤ i ≤ m, and an arc (Jj ,Mi), 1 ≤ j ≤ n and 1 ≤ i ≤ m if
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wi,j > 0. The capacity of the arc (u, v) is

cu,v =

 d if u = s and v = Jj
+∞ if u = Jj and v = Mi

d if u = Mi and v = t

Assuming that flow fu,v passes through the arc (u, v), the cost of this arc is

κu,v(fu,v) =

{
fJj ,Mi

· P (
wj

fJj,Mi
) if u = Jj and v = Mi

0 otherwise

As in the network for S|pmtn, rj , dj |E presented in the previous section, in
the network Ns for OS|pmtn, rj = 0, dj = d|E, the flow traversing the arcs
corresponds to execution time. More specifically, if an amount fu,v of flow
passes through the arc (u, v) = (Jj ,Mi), then fu,v corresponds to the execution
time of operation Oi,j ,

wi,j

fu,v
corresponds to the speed of Oi,j and fu,v · P (

wi,j

fu,v
)

is the energy consumed for the execution of Oi,j . Furthermore, the flow passing
through an edge (s, Jj) (resp. an edge (Mi, t)) represents the total execution
time of the job Jj (resp. the total time that Mi operates). Hence, the total
flow that leaves the source node corresponds to the total execution time of all
operations. However, the total execution time of all operations in an optimal
schedule for OS|pmtn, rj = 0, dj = d|E, and thus the total amount of flow that
has to be sent from the source node to the destination node, cannot be easily
computed as in the previous section. At the end of this section, we describe
how to compute it in polynomial time.

The algorithm and its optimality. Our algorithm for OS|pmtn, rj = 0, dj = d|E
can be summarized as follows.

Algorithm 2

1: Construct the flow network Ns;
2: Determine the total execution time of all operations T in an optimal sched-

ule;
3: Find a convex cost flow F of value T in Ns;
4: Determine the execution time of each operation;
5: Apply a polynomial-time algorithm for O|pmtn, rj = 0, dj = d|− to find a

feasible schedule;

In order to establish the correctness of our algorithm, we make use of the
following lemma whose proof can be found in [15].

Lemma 3. [15] An instance of the O|pmtn, rj = 0, dj = d|− problem is feasible
if and only if (i)

∑m
i=1 pi,j ≤ d and (ii)

∑n
j=1 pi,j ≤ d.

We will initially assume that the total execution time of all operations T
in an optimal schedule for OS|pmtn, rj = 0, dj = d|E can be computed in
polynomial time.
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Theorem 2. Algorithm 2 finds an optimal schedule for OS|pmtn, rj = 0, dj =
d|E.

Proof. We first prove that there exists a feasible schedule for OS|pmtn, rj =
0, dj = d|E of total execution time T if and only if there is a feasible flow F of
value T in the network Ns.

Suppose that there is a feasible schedule for OS|pmtn, rj = 0, dj = d|E of
total execution time T . Let ei,j be the execution time of the operation Oi,j .
Hence, the speed of Oi,j is

wi,j

ei,j
. Then, consider the flow F in Ns which is

defined as follows:

fu,v =


∑m
i=1 ei,j if u = s and v = Jj

ei,j if u = Jj and v = Mi∑n
j=1 ei,j if u = Mi and v = t

Recall that every operation must be executed during the interval [0, d]. Because
of the open-shop constraint, it must hold that

∑m
i=1 ei,j ≤ d. Moreover, due to

the fact that each processor can execute at most one operation at each time, we
have that

∑n
j=1 ei,j ≤ d. Therefore, the flow F is of value T and it is a feasible

flow in the network Ns.
To the other direction, assume that there exists a feasible flow F of value T

in the network Ns. We can then define a feasible schedule for OS|pmtn, rj =
0, dj = d|E by setting the execution time of the operation Oi,j to be equal
to fJj ,Ii , i.e., we set the speed of Oi,j equal to

wi,j

fJj,Ii
. Since F is feasible, it

must hold that
∑m
i=1 fJj ,Ii ≤ d and

∑n
j=1 fJj ,Ii ≤ d. Using Lemma 3, we can

construct a feasible schedule for OS|pmtn, rj = 0, dj = d|E.
We conclude the proof with the optimality of our algorithm. Among the set

of feasible flows of value T , the algorithm finds the one which minimizes the
term

∑m
i=1

∑n
j=1 fJj ,Mi

· P (
wj

fJj,Mi
). In other words, given our convex cost flow

construction, the algorithm finds the schedule with the minimum energy among
the schedules of total execution time T . But, we have assumed that there exists
an optimal schedule of total execution time equal to T . Hence, our algorithm
is optimal. �

4.2. Computing the Total Execution Time

It remains to show how we algorithmically determine the total execution
time of all operations in an optimal schedule for OS|pmtn, rj = 0, dj = d|E.

First, we introduce some additional notation. Henceforth, we denote by T ∗

the sum of execution times of all operations in an optimal schedule for OS|pmtn,
rj = 0, dj = d|E. Let S be any feasible schedule for the problem and assume that
ti,j is the execution time of the operation Oi,j in S, 1 ≤ i ≤ m and 1 ≤ j ≤ n.
We denote by ~t = (t1,1, t2,1, . . . , tm,1, t1,2, . . . , tm,n) the vector that contains
the execution times of all the operations. Then, let T (~t) =

∑m
i=1

∑n
j=1 tij

and E(~t) =
∑m
i=1

∑n
j=1 tij · P (

wij

tij
) be the functions that map any vector of

execution times ~t to the total execution time and the total energy consumption
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of the schedule S. Note that, E(~t) is convex with respect to the vector ~t as a sum
of convex functions. Furthermore, we define the function E∗(T ) = min{E(~t) :
T (~t) = T} which indicates the minimum energy consumption when the sum of
execution times of all operations has to be equal to T .

Proposition 1. E∗(T ) is convex with respect to T .

Proof. Consider three values of total execution times T1, T2, T3 > 0, and let ~t1,
~t2, ~t3 be three corresponding optimal vectors of execution times, respectively.
That is, (i) T (~t1) = T1, T (~t2) = T2, T (~t3) = T3, and (ii) E∗(T1) = E(~t1),
E∗(T2) = E(~t2), E∗(T3) = E(~t3). In other words, ~t1, ~t2, ~t3 define optimal
schedules (with respect to minimizing the total energy consumption) given that
the total execution time of all jobs must be equal to T1, T2, T3, respectively.
Without loss of generality, assume that T1 ≤ T3 ≤ T2. Clearly, there must
be a θ ∈ [0, 1] such that T3 = θT1 + (1 − θ)T2. Consider, now, the vector
~t = θ~t1 + (1− θ)~t2. As T (~t) is linear with respect to ~t, it holds that

T (~t) = T (θ~t1 + (1− θ)~t2) = θT (~t1) + (1− θ)T (~t2) = T3 = T (~t3)

By the definition of E∗(T ), it holds that E∗(T3) ≤ E(~t). Moreover, recall that
the function E(~t) is convex with respect to ~t. In all, we have that

E∗(θT1 + (1− θ)T2) = E∗(T3) ≤ E(~t) = E
(
θ~t1 + (1− θ)~t2

)
≤ θE(~t1) + (1− θ)E(~t2) = θE∗(T1) + (1− θ)E∗(T2)

and hence, the function E∗(T ) is convex with respect to T . �
Next, we give the search algorithm that finds the value T ∗ = arg minT {E∗(T )}

with accuracy 1/ε. Consider any T1, T2, T3 > 0 such that T1 < T2 = T1+T3

2 < T3.

As E∗(T ) is convex, we have that E∗(T2) ≤ E∗(T1)+E
∗(T3)

2 . Therefore, it follows
that either E∗(T2) ≤ E∗(T1) or E∗(T2) ≤ E∗(T3) (or both). If only the first is
true, then we reduce our search space to [T2, T3]. Accordingly, if only the second
is true, then we reduce our search space to [T1, T2]. Finally, if both are true, then
we reduce our search space to one of the following intervals: [T1, T2], [T2, T3]
or [T1+T2

2 , T2+T3

2 ]. If E∗(T1+T2

2 ) ≤ E∗(T2), then the search space is reduced to

[T1, T2]. If E∗(T2+T3

2 ) ≤ E∗(T2), then the search space is reduced to [T2, T3].

Finally, if E∗(T1+T2

2 ) > E∗(T2) and E∗(T2+T3

2 ) > E∗(T2), then the search space

is reduced to [T1+T2

2 , T2+T3

2 ]. The correctness of all the cases is based on the
fact that E∗(T ) is convex. We call this procedure Algorithm FIND-FLOW
and we initialize T1, T2 and T3 with 0, T2 and T , respectively, where T is an
upper bound on the sum of execution times for all operations, i.e., T = m · d.

Lemma 4. Algorithm FIND-FLOW returns a value T ∗ such that the term
E∗(T ∗) is minimized among all T ∗ > 0. The complexity of the algorithm is
O(nm log(md)(nm + (n + m) log(n + m))(log md

ε )), where ε is the accuracy of
the machine.
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Algorithm FIND-FLOW

1: Initialize: T1 = 0, T2 = T
2 , T3 = T ;

2: while T3 − T1 > ε do
3: Compute E∗(T1), E∗(T2) and E∗(T3) by finding a convex cost flow of

value T1, T2 and T3, respectively, in the network Ns;
4: if E∗(T3) < E∗(T2) ≤ E∗(T1) then
5: Update: T1 = T2 and T2 = T1+T3

2 ;
6: if E∗(T1) < E∗(T2) ≤ E∗(T3) then
7: Update: T3 = T2 and T2 = T1+T3

2 ;
8: if E∗(T2) ≤ E∗(T1) and E∗(T2) ≤ E∗(T3) then
9: Compute E∗(T1+T2

2 ) and E∗(T2+T3

2 ) by finding a convex cost flow of

value T1+T2

2 and T2+T3

2 , respectively, in the network Ns;

10: if E∗(T1+T2

2 ) < E∗(T2) then

11: Update: T3 = T2 and T2 = T1+T3

2 ;

12: if E∗(T2+T3

2 ) < E∗(T2) then

13: Update: T1 = T2 and T2 = T1+T3

2 ;

14: if E∗(T1+T2

2 ) ≥ E∗(T2) and E∗(T2+T3

2 ) ≥ E∗(T2) then

15: Update: T1 = T1+T2

2 and T3 = T2+T3

2 ;
16: return T2;

Proof. At each iteration of the algorithm, the search space is reduced. In a
given iteration, this reduction is accomplished by removing one of the intervals
[T1, T2], [T2, T3], or [T1,

T1+T2

2 ]∪[T2+T3

2 , T3]. In order to establish the correctness
of our algorithm, it suffices to show that, at the end of each iteration, there is
a value T ∗ in the algorithm’s remaining search space that minimizes the term
E∗(T ∗).

Suppose that [T2, T3] is the interval removed by the algorithm and assume
for the sake of contradiction that T ∗ ∈ [T2, T3], for any T ∗ = arg minT {E∗(T )}.
Since the interval [T2, T3] is removed by the algorithm, we have that either (i)
E∗(T1) < E∗(T2) ≤ E∗(T3), or (ii) E∗(T2) ≤ E∗(T1), E∗(T2) ≤ E∗(T3) and
E∗(T1+T2

2 ) < E∗(T2).
Consider first the case (i). Let T ∗ be the total execution time of an optimal

solution. Since T ∗ ∈ [T2, T3], we know that there is a θ ∈ [0, 1] such that
T2 = θT1 + (1 − θ)T ∗. Then, due to the convexity of the function E∗(T ) we
have that E∗(T2) = θE∗(T1) + (1 − θ)E∗(T ∗). By the way we picked T ∗, it
holds that E∗(T ∗) ≤ E∗(T1). Hence, we get that E∗(T2) ≤ E∗(T1), which is a
contradiction.

In the same vein, consider now the case (ii). Assume that T ∗ ∈ [T2, T3].
Then, there is a θ ∈ [0, 1] such that T2 = θ(T1+T2

2 )+(1−θ)T ∗. By the convexity

of the E∗(T ) function, we get as before that E∗(T2) ≤ E∗(T1+T2

2 ), which is a
contradiction.

Note that, if the interval ignored by the algorithm is [T1, T2], then the fact
that T ∗ ∈ [T2, T3] can be proved with almost the same manner as in the case
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where the interval [T2, T3] is removed.
Finally, suppose that the algorithm reduces the search space to [T1+T2

2 , T2+T3

2 ]

and assume for contradiction that T ∗ ∈ [T2+T3

2 , T3] (note that it might also be

the case that T ∗ ∈ [T1,
T1+T2

2 ]; this case can be handled analogously). Clearly,

it holds that E∗(T2+T3

2 ) ≤ E∗(T2)+E
∗(T3)

2 ≤ E∗(T3). That is, we have that

T2 ≤ T2+T3

2 ≤ T ∗ ≤ T3 and E∗(T2), E∗(T2+T3

2 ),≤ E∗(T3). Hence, we can reach
a contradiction as before.

In order to compute the complexity of the algorithm, note that the network
constructed by the algorithm contains O(n+m) nodes and O(nm) edges. The
maximum capacity of an edge is d while the total flow that crosses the network
can be at most md. Thus, the overall complexity of finding a convex cost flow in
the network is O(nm log(md)(nm+(n+m) log(n+m))). Note now that in each
iteration the search domain, i.e., the interval [T1, T3], reduces by half. In each
iteration at most five convex cost flows on network Ns are sought. Therefore,
for the complexity of our algorithm we have the following recursion:

F (B) = F (B/2) + 5 ·O(nm log(md)(nm+ (n+m) log(n+m)))
F (ε) = 1

Solving this recurrence for B = T = m · d, the lemma follows. �
Note that, in order to compute the total execution time T ∗ of all the op-

erations in an optimal schedule, the algorithm performs a binary search in the
interval [0,m · d]. However, it has to be noticed that in machines with lim-
ited precision, accuracy issues might occur. More specifically, our algorithm
produces an OPT + ε solution in time polynomial to log m·d

ε , where ε is the
accuracy of the machine. In other words, the complexity of our algorithm is
polynomial not only to the dimensions of the problem (i.e., n and m) but also
to the number of bits needed to represent T ∗, that is log m·d

ε . This kind of
algorithms are usually called “weakly polynomial” algorithms2.

5. Mean Completion Time plus Energy Minimization on Multipro-
cessors without Preemptions

The problem. We consider the multiprocessor scheduling problem of minimizing
a linear combination of the sum of completion times of a set of n jobs and
their total energy consumption. The jobs have to be executed by a set of m
parallel processors where the preemption and migration of jobs are not allowed.
Each job Jj , 1 ≤ j ≤ n, has an amount of work wj to accomplish and all
jobs are released at time t = 0. We denote by Cj the completion time of job
Jj , 1 ≤ j ≤ n. A convex speed-to-power function P (s) defines the energy
consumption rate when a job is executed with speed s > 0 on any processor.
The goal is to minimize the sum of completion times of all the jobs plus β

2For a discussion about weakly and strongly polynomial algorithms, see for example the
introduction in [1].
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times their total energy consumption. The parameter β > 0 is used to specify
the relevant importance of the mean completion time criterion versus the total
energy consumption criterion. We denote this problem as S||

∑
Cj + β · E.

Known results. This problem is an extension in the speed-scaling setting of
the problem P ||

∑
Cj of scheduling non-preemptively a set of n jobs, each one

characterized by its processing time pj , on a set of m machines such that the sum
of the completion times of all jobs is minimized. A polynomial-time algorithm
has been proposed for P ||

∑
Cj [12].

The single-processor speed-scaling problem without preemptions of minimiz-
ing the jobs’ mean completion time has been studied by Albers et al. [6] and
Pruhs et al. [20] in the presence of release dates and unit work jobs. In [20] the
objective is the minimization of the sum of the flow times of the jobs3 under a
given budget of energy, while in [6] the goal is to minimize the sum of the flow
times of the jobs and of the consumed energy.

5.1. Our Approach

The main idea is to formulate S||
∑
Cj+β ·E as a problem of searching for a

minimum weighted maximum matching in an appropriate bipartite graph. This
formulation is based on two observations. Firstly, the fact that the preemption
and the migration of jobs is not allowed means that there is an order of the
jobs executed by any processor in any feasible schedule. Given such a schedule,
if ` jobs are executed by the processor Mi, then we can consider that there
are ` available positions on Mi, one for the execution of each of the ` jobs.
If the job Jj is executed in the k-th position of the processor Mi, then k − 1
jobs precede Jj and ` − k jobs succeed Jj . Clearly, there can be at most n
such positions for each processor. Secondly, the contribution of a job Jj to the
objective function depends only on its position on the processor on which it is
executed and it is independent of where the other jobs are executed. Overall,
our problem reduces to assigning every job to a position of a machine so that
our objective is minimized.

Minimum weighted maximum matching formulation. In order to formulate the
S||
∑
Cj + β ·E problem as a minimum weighted maximum matching problem,

we define a bipartite graph Gs whose edges are weighted. The following lemma is
our guide for assigning weights on the edges of Gs and fixes the cost of executing
a job Jj to the k-th position of any processor.

Lemma 5. Assume that in an optimal schedule for S||
∑
Cj +β ·E the job Jj,

1 ≤ j ≤ n, is executed at speed sj on processor Mi in the k-th position from
the end of Mi. Then, the total contribution of Jj to the objective function is
minimized if it holds that sjP

′(sj) − P (sj) = k
β , where P ′(s) is the derivative

of the power function P with respect to the speed s.

3The flow time of a job is defined as the amount of time that the job spends in the system,
i.e., the difference between its completion time and its release date.
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Proof. The execution time of job Jj is
wj

sj
. Since k − 1 jobs follow Jj on Mi,

the term
wj

sj
is added k times on the sum of completion times of all the jobs.

Moreover,
wj

sj
P (sj) units of energy are consumed for the execution of the job Jj .

Hence, the total contribution of Jj to the objective is k · wj

sj
+ β · wj

sj
P (sj). By

differentiating the last term with respect to sj and setting this derivative equal
to zero, we can get the value of sj for which this contribution is minimized. �
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. . . . . .
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Figure 3: The bipartite graph Gs for S||
∑
Cj + β · E. Each edge (Jj , (Mi, k)) has a weight

κi,j,k = k · wj

sj
+ β · wj

sj
P (sj).

Based on the above lemma, we create the complete bipartite graph Gs =
(V,U ;E) as follows: (i) for each job Jj , 1 ≤ j ≤ n, we add a vertex in V , (ii) for
each processor Mi, 1 ≤ i ≤ m, and each position k, 1 ≤ k ≤ n, (counting from
the end) we add a vertex in U , and (iii) for each edge (Jj , (Mi, k)), we set its
weight κi,j,k = k · wj

sj
+β · wj

sj
P (sj) where sj is computed according to Lemma 5.

The algorithm and its optimality. Recall that each job Jj runs at a constant
speed sj in any optimal schedule for S||

∑
Cj + β · E. Moreover, based on a

similar argument, it holds that there is no idle period on any processor between
the common release date of the jobs and the date at which the last job completes
its execution, in any optimal schedule. A description of our algorithm follows.

Algorithm 3

1: Construct the bipartite graph Gs;
2: Find a minimum weighted maximum matching M in Gs;
3: for each (Jj , (Mi, k)) ∈M do
4: Schedule Jj to the position k of Mi with speed sj such that

sjP
′(sj)− P (sj) = k

β ;

Theorem 3. Algorithm 3 finds an optimal schedule for S||
∑
Cj + β · E in

O(n2m2(n+ logm)) time.

Proof. By the construction of Gs, the vertex Jj , 1 ≤ j ≤ n, can belong to
at most one edge of the matching. Moreover, the number of the job nodes
is less than the number of the processor-position nodes and every job node is
connected with every processor-position node. Hence, every job node belongs
to a maximum matching of Gs. Therefore, each job is scheduled exactly once
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in a single processor and, as a result, the schedule produced by the algorithm is
feasible.

We next prove the optimality of our algorithm. Among the matchings with
cardinality n, the algorithm finds the one which minimizes the term

∑n
j=1(k ·

wj

sj
+ β · wj

sj
P (sj)), where sj has been selected in an optimal way according to

Lemma 5. In other words, given the construction of the bipartite graph Gs, the
algorithm finds the schedule with the minimum energy consumption. Hence,
our algorithm is optimal.

For the complexity of our algorithm, observe first that our graph contains
O(nm) nodes and O(n2m) edges. Therefore, the overall complexity of our al-
gorithm is O(n3m2 + n2m2 logm). �

6. More Problems and Conclusions

The idea of formulating a problem as a convex cost flow problem can be
applied in order to solve other scheduling problems in the speed-scaling setting
as well. As examples, we briefly discuss here the following problems:

(a) Preemptive speed-scaling scheduling malleable jobs without migration costs.
In this problem, a job can be executed by more than one processor in
parallel, decreasing in this way its total execution time. If each job can
use any number of processors, then the problem reduces to the single
processor case. We consider here the case where each job j is allowed to
use at most δj ≤ m processors at the same time (see for example [14]).
Note that, in some applications, this parallelization may add an additional
cost to the execution time of a job due to communication issues. Here,
we consider that we pay no cost for this. A convex cost flow formulation
for this problem is almost the same with the one where the jobs are not
malleable. The main difference is that the total execution time of a job
during an interval Ii is upper bounded by δj |Ii| since it is allowed to be
executed by at most δj processors at the same time.

(b) Restricted (or multi-purpose) multiprocessor speed-scaling problem with
migrations. This problem is a generalization of the multiprocessor prob-
lem with migrations in which every job can be executed only by a subset
of the available processors. More specifically, each job is associated with a
subset of processors, and it can be executed only on one of the processors
of its set at each time. We can model this problem as a convex cost flow
problem in a more complicated flow network. This flow network is similar
to the network proposed in [11] (page 280) for the feasibility version of
the same problem when speed-scaling is not permitted, i.e., the energy
consumption issues are not considered.

In order to determine the value of the flow that crosses the network in the above
problems, we can use the general searching procedure proposed in Section 4.2.

A reasonable question that arises after all is whether we can characterize
the problems that can be solved using the convex cost flow transformation.
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A common characteristic of these problems up to now is that their feasibility
question when speed-scaling is not allowed can be answered through a maximum
flow network. However, the opposite does not seem to be always true. Finally,
we would like to mention as a very interesting open question the complexity of
the single-processor speed scaling problem with preemptions and release dates
when the objective is to minimize the sum of the completion times of the jobs
plus the total energy consumption.
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