
Optimal Energy Trade-off Schedules

Neal Barcelo∗, Daniel Cole∗, Dimitrios Letsios†, Michael Nugent∗, and Kirk Pruhs∗
∗Department of Computer Science

University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Email: ncb30, dcc20, mnugent, kirk@cs.pitt.edu

†IBISC, University of Evry, France
LIP6, University Pierre et Marie Curie, France

Email: dimitris.letsios@ibisc.univ-evry.fr

Abstract—We consider scheduling tasks that arrive over time
on a speed scalable processor. At each time a schedule specifies
a job to be run and the speed at which the processor is
run. Processors are generally less energy efficient at higher
speeds. We seek to understand the structure of schedules that
optimally trade-off the energy used by the processor with
a common scheduling quality of service measure, fractional
weighted delay. We assume that there is some user defined
parameter β specifying the user’s desired additive trade-off
between energy efficiency and quality of service. We prove that
the optimal energy trade-off schedule is essentially unique, and
has a simple structure. Thus it is easy to check the optimality of
a schedule. We further prove that the optimal energy trade-off
schedule changes continuously as a function of the parameter
β. Thus it is possible to compute the optimal energy trade-off
schedule using a natural homotopic optimization algorithm.
We further show that multiplicative trade-off schedules have
fewer desirable properties.

Keywords-scheduling; algorithms; energy; power; speed scal-
ing;

1. INTRODUCTION

It seems to be a corollary to the laws of physics that, all
else being equal, higher performance devices are necessarily
less energy efficient than lower performance devices. For
example, a Ferrari sports car is less energy efficient than a
Toyota Prius, and it is not possible with current technology
to get Ferrari performance with Prius fuel efficiency. Con-
ceptually there is an energy efficiency spectrum of design
points, with high performance and low energy efficiency on
one end, and low performance and high energy efficiency
on the other end. Early in the design process a car designer
has to select a sweet spot on this spectrum as a design
goal. There is seldom a uniquely defined sweet spot that
is best for all situations, which is why both sports cars
and economy cars are produced. Traditionally computer
chip designers invariably picked sweet spots near the high
performance end of the spectrum. But about a decade ago,
due in large part to the exponentiality of Moore’s law
finally kicking in, there was a relatively abrupt shift in the
design sweet spot for major chip manufacturers towards the
middle of the energy efficiency spectrum. As with cars,
there is not a universal sweet spot for computer chips that

is best for all situations. There are situations, for example
when there are critical tasks to be done, when performance
is more important than energy efficiency, and there are
situations, for example when there are no critical tasks to be
done, when energy efficiency may be more important than
performance. However, unlike for cars, it is technologically
and economically feasible to design computer chips with
multiple operational modes, each at a different point on
the performance and energy efficiency spectrum. The most
obvious examples are speed scalable processors, which we
will focus on here, and heterogeneous multiprocessors. Thus
a naturally arising broad algorithmic question is how to find
the right operational mode that is the sweet spot on the
energy efficiency spectrum for the tasks at hand.

Our initial motivation was to extend work done in [1].
[1] considered the problem of scheduling tasks that arrive
over time on a single speed scalable processor. A schedule
specifies, at each time, a task to be run at that time, and
the speed at which to run the processor. A user defined
parameter, β, specifies the relative importance of energy
versus performance (for example, the operating systems on
most laptops allow the user to specify some desired trade-off
between battery life and performance). The objective is to
find a schedule, S, that minimizes some quality of service
objective Q plus β times the energy used by the processor.
This schedule S is the optimal energy trade-off schedule in
the sense that: No schedule can have better quality of service
given the current investment of energy used by S, and an
additional investment of 1 unit of energy is insufficient to
improve the quality of service by more than β. While this
optimization problem is natural enough that it may find
application someplace, the main motivation for considering
this algorithmic problem is to obtain a better understanding
of optimal energy trade-off schedules.

[1] assumed that all jobs were of the same size, and
considered the quality of service measure of total delay.
[1] further assumed that the processor could be run at any
nonnegative real speed s, and that the power used by the
processor was of the form sα for some constant α > 1. By
formulating the problem as a convex program and applying
the Karush-Kuhn-Tucker (KKT) optimality conditions, [1]



showed that the unique optimal schedule had a simple struc-
ture, and was easily recognizable. This revealed seemingly
counter-intuitive properties of the optimal energy trade-off
schedule. For example, as β becomes larger, and thus energy
becomes more important relative to quality of service, the
energy invested in some jobs counter-intuitively increases;
hence, most natural properties of jobs in the optimal trade-
off schedule are not necessarily monotone in the cost of
energy. However, [1] showed that the time where each bit
of work is executed is a continuous function of β. Using this
insight, [1] then developed an efficient algorithm to compute
the optimal trade-off schedule.

Here we interpret the algorithm given in [1] as a ho-
motopic optimization algorithm. The setting for homotopic
optimization is a collection of optimization problems with
identical feasible regions, but with different objectives. Let
Q be one objective, the scheduling objective in our setting,
and let E be another objective, the energy objective in our
setting. Assume that when the objective is Q, it is easy to
solve the optimization problem, but when the objective is
Q + E , the optimization is not easy to solve. This is the
case in the speed scaling setting because if energy is not
part of the objective, the processor should always be run
at maximum speed. Intuitively the homotopic optimization
method solves the optimization problem, with objective
Q+E , by maintaining the optimal solution with the objective
Q+ βE as β continuously increases from 0 to 1. A highly
desirable, if not strictly necessary condition, to develop
a homotopic algorithm is that in some sense the optimal
solution should change continuously as a function of β so
that the knowledge of the optimal solution for a particular
β is useful to obtain the optimal solution for β+ ε for small
ε. Thus a natural way to animate a homotopic optimization
algorithm is to have a slider specifying β, such that moving
the slider causes the optimal schedule for the objective
Q+βE to be displayed. A Mathematica based animation is
reported on in [1], and a more portable Java based animation
by Yori Zwols can be found at [2].

[1] showed that if the quality of service measure is total
delay, and jobs have arbitrary sizes, then the optimal energy
trade-off schedule can change radically in response to a
small change in β. Thus there is seemingly no hope of
extending the results in [1] when the quality of service
objective is total delay and jobs have arbitrary sizes. Because
of this, we instead consider fractional delay. The fractional
delay of a job weights the delay according to the fraction of
the job remaining. For example, if a job is 75% complete at a
particular time, then the job’s fractional delay is increasing
at a rate of only 1/4 the job’s normal (integral) delay. If
each job is assigned a relative importance, i.e., a weight, the
weighted fractional delay of a job is the weight of the job
times the job’s fractional delay and the weighted fractional
delay of a schedule is the sum, over all jobs, of the weighted
fractional delays. Fractional delay is the “right” measure if

the benefit that a client gets from a partially completed task
is proportional to the fraction of the task that is completed.

Our optimization problem now becomes finding the
schedule that minimizes the total weighted fractional delay
plus β times the energy used by the processor. Again this
can be viewed as an optimal trade-off schedule in the sense
that: No schedule can have better weighted fractional delay
given the current investment of energy, and any additional
investment of one unit of energy can not improve the
weighted fractional delay by more than β.

Besides changing the quality of service objective, we
extend the general setting considered in [1] in three ways.
First, we assume that jobs can have arbitrary sizes, as
one would expect to be the case on a general purpose
computational device. Second, we assume that each task has
an associated importance, the previously mentioned weight
of a job, derived from either some higher level application or
from the user. Third, we assume that the allowable speeds,
and the relationship between the speed and the power, of
the processor are essentially arbitrary. Note that because we
have changed our quality of service measure from delay to
fractional delay, [1] is no longer a special case of our setting.

Our strategy was to try to follow the same line of inquiry
as [1]. We were largely, though not completely, successful.
We believe that the points of failure raise interesting future
research questions, and the differences between the results
obtained here from those in [1] are instructive. We first
model the problem as a convex program, and then apply the
KKT conditions to derive necessary and sufficient conditions
for optimality of a schedule. We find that a feasible schedule
is optimal if and only if three conditions hold:
• There is a linearly decreasing hypopower function

associated with each job that maps a time to a hy-
popower, where the slope of the hypopower function
is proportional to the density of the job, and inversely
proportional to β. We coin the term hypopower to refer
to the rate of change of power with respect to speed as
we are not aware of any standard name for this quantity.

• At all times, the job that is run is the job whose
hypopower function is largest at that time.

• If a job is run, it is run at the hypopower specified by
the hypopower function.

We then show that as a consequence of these conditions,
the optimal schedule is unique and that to specify an
optimal schedule, it is sufficient to specify the value of each
hypopower function at the release time of the corresponding
job. It is perhaps somewhat surprising that these conditions
are so structurally different that the optimality conditions
given in [1] for unit jobs when the quality of service
objective is total delay. In that setting, [1] showed that
in an optimal schedule the jobs could be partitioned into
partitions of consecutively released jobs by cutting at points
in time when a completion time coincided with the release
of the next job; then a necessary and sufficient condition for



optimality of a feasible schedule is that each job that didn’t
delay subsequent jobs is run at a power ρ that would be
optimal if it was the only job to be scheduled, and every
other job that wasn’t last in its partition is run at a power ρ
more than the subsequent job. So the resulting natural way
to specify an optimal schedule is to give the relationship
between the completion time of each job and the release of
the subsequent jobs, and to give the power for all jobs where
these two times coincide. So when the quality of service
objective is total (integer) delay, it seems most natural to
reason about the power of the jobs, and when the quality of
service objective is fractional delay, it seems most natural to
reason about the hypopower of jobs, because the optimality
conditions are linear in these quantities.

We then show that the initial values of hypopower func-
tions change continuously as a function of β. (It is clear
that the time when a particular bit of work is done does
not change continuously as a function of β, as in [1].)
This allows us to develop an efficient homotopic algorithm
for a modest number of jobs. We also report on a Java-
based animation of this algorithm, based on an animation
by Yuri Zwols [2]. Unfortunately, we are not able to give
an efficient homotopic algorithm for a large number of jobs
because while the starting hypopowers change continuously,
we do not know how to efficiently compute the direction
and rate of change in the starting hypopowers as β changes
infinitesimally. To give some evidence that this might be
a challenging problem, we show that the most obvious
mathematical programming formulation of this problem is
not convex.

Another commonly studied trade-off objective is to min-
imize the product of the quality of service and energy
objectives. In section 5, we consider the objective Qσ × E ,
where Q is fractional flow, E is energy, and σ is a param-
eter representing the relative importance of the scheduling
objective and energy. We give the following results:

• Perhaps counter-intuitively, we show that if the static
power is zero, then the optimal solution is to either
always go as fast as possible or to always go as slow
as possible.

• We show that locally optimal product trade-off sched-
ules have a nice structure similar to globally optimal
sum trade-off schedules, but local optimality does not
imply global optimality.

• We show that, for a fixed instance, the set of schedules
that are optimal for the product objective (for any σ)
are (a generally strict) subset of the schedules that are
optimal for the sum objective (for any β).

• We show that the optimal product trade-off schedule
may be a discontinuous function of σ. Thus there
is unlikely to be a homotopic algorithm to compute
optimal product trade-off schedules.

We therefore conclude that for the purposes of reasoning

theoretically about optimal energy trade-off schedules, the
sum trade-off objective is probably preferable to the product
trade-off objective, as it has many more mathematically
desirable properties.

1.1. Related Results

The results in [1], as presented, assume an objective of
total delay subject to a constraint on the total energy used,
although it is straight-forward to see that the same approach
works when the objective is a linear combination of total
delay and energy. [3] introduced the idea of considering
an objective that is a linear combination of energy and a
scheduling quality of service objective into the literature. [3]
gave a dynamic programming based algorithm to compute
the optimal energy trade-off schedule for unit work jobs. To
the best of our knowledge there is no other algorithmic work
directly related to the results in this paper.

[4] showed that a natural online algorithm is 2-competitive
for the objective of a linear combination of energy and
weighted fractional delay. [4], [5] showed that a natural
online algorithm is 2-competitive for the objective of a linear
combination of energy and total (unweighted) (integer) de-
lay. Previously, [3], [6], [7], [8], [9], [10], [11] gave online
algorithms with competitive analyses in the case that the
power function was of the form sα.

[12] first introduced the energy-delay product as a metric,
and its use has been prevalent since then.

2. PRELIMINARIES

The input consists of n jobs, where job i has release time
ri, work pi, and a weight wi > 0. The density of a job is its
weight divided by work, that is wi/pi. A schedule is defined
by specifying, for each time, a job to be run and a speed at
which to run the processor. Preemption is allowed, that is, a
job may be suspended and later restarted from the point of
suspension. A schedule may only specify a job i to be run
at time t if i has been released by t, i.e., t ≥ ri. Job i is
completed once pi units of work have been performed on i.
Speed is the rate at which work is completed, thus if job i,
of work pi, is run at constant speed s until completion, job
i will complete pi/s time units after being started. Without
loss of generality, we assume that no two jobs are released
at the same time. If this is not the case, then we can create a
new input that spaces out the releases of jobs released at the
same time by ε > 0, where jobs are then released in order
of non-increasing wi/pi. An optimal schedule for this new
input is optimal for the original input as the optimal schedule
for the original input works on each job for at least time ε
and prioritizes jobs by non-increasing wi/pi.

For job i, the delay (also called flow), Fi, is i’s completion
time minus its release time and the weighted delay is wiFi.
The delay of a schedule is

∑n
i=1 Fi and the weighted delay

is
∑n
i=1 wiFi. If pi(t) work is performed on job i at time t

then a pi(t)/pi fraction of job i was delayed t−ri time units



before being completed, thus the total fractional delay of job
i is

∫∞
ri
pi(t)(t−ri)/pi dt and the fractional weighted delay

of job i is
∫∞
ri
wipi(t)(t − ri)/pi dt. The fractional delay

and fractional weighted delay of a schedule are the sum,
over all jobs, of the fractional delay and fractional weighted
delay respectively. The objective we consider is the energy
used by the schedule plus the fractional weighted delay of
the schedule.

We adopt the speed scaling model, originally proposed
in [4], that essentially allows the speed to power function
to be arbitrary. In particular the power function may have
a maximum power, and hence maximum speed. For our
setting, [4] showed that results that hold for power func-
tions that are continuous, differentiable, and convex from
speed/power 0 to the maximum speed/power, will hold for
any power function meeting the less strict constraints of
being piecewise continuous, differentiable, and integrable.
Thus, without loss of generality, we may assume the power
function is continuous, differentiable, and convex from
speed/power 0 to the maximum speed/power. We define the
power function as P (S), where S is a speed. Energy is
power integrated over time,

∫
t
P (S)dt. The static power is

equal to P (0), which is the power used by the processor
even if it is idling.

We use the term hypopower to refer to the derivative
of power with respect to speed. A particular hypopower
function that will be important to our discussions is the
derivative of the processor’s power function, P (S), with
respect to speed, which will be denoted as P ′(S). The
functional inverse of P ′(S) will be denoted as P ∗ (x), where
x is a hypopower and P ∗ (x) is speed. It’s important to
keep in mind that the definition of hypopower is completely
unrelated to the function P ′(S) in the same way that the
definition of power is completely unrelated to the function
P (S).

In the context of schedules we will need to specify how
speed, power, and hypopower change over time, thus we
define S(t, A), P (t, A), and P ′(t, A), as the speed, power,
and hypopower respectively, of schedule A at time t, such
that P (t, A) = P (S(t, A)) and P ′(t, A) = P ′(S(t, A)).
If A is understood, then we drop A. Further, we denote
the speed, power, and hypopower experienced by a job
i run at a time t in a schedule A as Si(t, A), Pi(t, A),
and P ′i (t, A) respectively, such that Pi(t, A) = P (Si(t, A))
and P ′i (t, A) = P ′(Si(t, A)). Again, we drop A if A is
understood.

3. CHARACTERIZING THE OPTIMAL SCHEDULE

In this section we characterize the optimal schedule for
the objective of fractional flow plus energy. We start, in
section 3.1, by giving a time-indexed convex programming
formulation of the problem and then in section 3.2 we use
the well known KKT conditions to derive properties that
are necessary and sufficient for optimality. In section 3.3 we

show that these properties imply that there is only a single
optimal schedule. Finally, in section 3.4, we give a simple
algorithm that uses the necessary and sufficient properties to
decide whether or not a schedule is optimal in O(n2) time.

3.1. Convex Programming Formulation
We now give a convex programming formulation of the

problem. Let T be some sufficiently large time bound such
that all jobs finish by time T in the optimal schedule. Define
the variable S(t) as the speed of the schedule at time t and
the variable pj(t) to be the work performed on job j at time
t ≥ rj . The problem of minimizing a linear combination of
fractional weighted flow plus energy for a set of jobs with
release times and arbitrary work requirements can thus be
expressed as the following convex program:

min
n∑
j=1

T∑
t≥rj

wjpj(t)

pj
(t− rj) + β

T∑
t=1

P (S(t))

Subject to
T∑

t=rj

pj(t) = pj j ∈ [1, n] [dual αj ] (1)∑
j:rj≤t

pj(t) = S(t) t ∈ [1, T ] [dual δ(t)] (2)

pj(t) ≥ 0 t ≥ rj , j ∈ [1, n] [dual γj(t)] (3)

The convexity of the program follows from the fact that, with
the exception of

∑
P (S(t)), the objective and constraints

are linear functions of variables.
∑
P (S(t)) is the non-

negative sum of convex functions and thus is convex.
The objective has two terms, the right term is β times the

energy used by the schedule. The left term is the sum over all
jobs of the fractional weighted flow of the job. Constraint (1)
ensures that every job is finished, constraint (2) ensures that
the speed at each time is equal to the work performed at
that time, and constraint (3) ensures that the work variables
are non-negative. Constraints (2) and (3) ensure that the
variables for speed are non-negative. To apply the KKT
conditions in the next section, we associate the dual vari-
ables αj , δ(t), and γj(t) with constraints, (1), (2), and (3)
respectively.

3.2. KKT Conditions
The Karush-Kuhn-Tucker (KKT) conditions provide nec-

essary and sufficient conditions to establish the optimality
of feasible solutions to certain convex programs. We now
describe the KKT conditions in general. Consider the fol-
lowing convex program,

min f0(x)

Subject to

fi(x) ≤ 0 i = 1, . . . , n (λi)

gj(x) = 0 j = 1, . . . ,m (αj)



Assume that all fi and gj are differentiable and that there
exists a feasible solution to this program. The variable
γi is the dual (Lagrangian multiplier) associated with the
function fi(x) and similarly for αj with gj(x). Given that
all constraints are differentiable linear functions and that the
objective is differentiable and convex, the KKT conditions
state that necessary and sufficient conditions for optimality
are

fi(x) ≤ 0 i = 1, . . . , n (4)
λi ≥ 0 i = 1, . . . , n (5)

λifi(x) = 0 i = 1, . . . , n (6)
gj(x) = 0 j = 1, . . . ,m (7)

∇f0(x) +

n∑
i=1

λi∇fi(x) +

m∑
j=1

αj∇gj(x) = 0 (8)

Here ∇fi(x) and ∇gj(x) are the gradients of fi(x) and
gj(x) respectively. Condition 6 is called complementary
slackness.

Before applying the KKT conditions, we define the hy-
popower function of job i in schedule A as,

Qi(t, A) = qi(A)− wi
βpi

(t− ri) (9)

where qi(A) is any constant such that Qi(t, A) satisfies the
condition that at all times t such that i is run in A, the
hypopower at which i is run is Qi(t, A). If there is no such
function (no qi(A)) satisfying this condition, then i does not
have an associated hypopower function in schedule A. Note
that regardless of the speed to power function, P (S), if the
function Qi(t, A) exists (it may not), then the hypopower
function of i is a linearly decreasing function of time with
slope −wi

βpi
. We refer to the constant qi(A) as i’s initial

hypopower. We drop A if the schedule is understood.
Because the hypopower function of i gives the hypopower

of i, the hypopower function implies a speed function and a
power function for i, specifically, Si(t, A) = P ∗ (Qi(t, A))
and Pi(t, A) = P (P ∗ (Qi(t, A))). Figure 2 gives a visual
representation of the hypopower functions for the optimal
schedule when P (S) = S3 for an instance consisting of
three jobs: with release times 0, 60, and 200, sizes 45, 35,
and 25 and weights 0.1875, 0.25, and 0.125 respectively.
Figure 1 shows the speed functions that correspond to the
three hypopower functions of figure 2.

Lemma 1 states that a feasible schedule is optimal if and
only if
• The hypopower of all jobs are defined by the hy-

popower function given in equation 9.
• At all times, the job that is run is the job whose

hypopower function is largest at that time.
• If a job is run, it is run at the hypopower specified by

the hypopower function.

Figure 1. A three job instance viewed as speed functions.

Figure 2. A three job instance viewed as hypopower functions.

Before we prove lemma 1, consider a couple of implications
of these conditions.

First, an optimal schedule can be thought of as the upper
envelope of the hypopower functions of all jobs. The set of
times when the upper envelope is i’s hypopower function
are exactly the times during which i is run. Further, because
the value of t that satisfies Qi(t) = Qj(t), for any jobs i
and j, is equal to the value of t that satisfies Si(t) = Sj(t),
the upper envelope of the speed functions also defines an
optimal schedule. The integral of the upper envelope of the
speed functions equals the total work of all jobs and the
integral of i’s speed function, over the times when i’s speed
function defines the upper envelope, equals exactly i’s total
work. See figures 1 and 2 as examples of schedules defined
by speed and hypopower functions respectively.

Second, because i’s speed function is on the upper enve-
lope of the speed functions if and only if i’s hypopower func-
tion is on the upper envelope of the hypopower functions,
the area under i’s speed function, while i’s speed function
is on the upper envelope, can increase (or decrease) if and
only if the area under i’s hypopower function, while i’s
hypopower function is on the upper envelope, increases (or
decreases). Thus, unless we need to calculate the specific



work done on a job, it is generally easier to work with
the hypopower functions of jobs rather than the speed
functions of jobs because a job’s hypopower functions is
linear in time, while the speed function generally is not.
Thus, unless explicitly stated otherwise, we will think of
any schedule as n hypopower functions or equivalently as
n initial hypopower values. Note that such a representation
does not guarantee optimality, but does allow full description
of any optimal schedule.

Lemma 1. A primal feasible solution to the convex program
is optimal if and only if, at all times t, for all jobs j, if
pj(t) > 0, then P ′(S(t)) = Qj(t), and if pj(t) = 0 then
P ′(S(t)) ≥ Qj(t).

Proof: We prove the lemma by showing that the KKT
conditions are exactly the three conditions of the lemma:
feasibility, the hypopower of A is Qj(t, A) whenever j is
run, and Qj(t, A) is a lower bound on the hypopower of the
schedule if j is not run.

First note that equations 4 and 7 of the KKT conditions
are simply constraining all optimal solutions to be feasible,
thus we need only show that the remaining two properties
are exactly equations 5, 6, and 8.

Because qj = P ′(S(t∗)) +
wj
βpj

(t∗ − rj) for any time t∗

such that j is run at t∗, it is sufficient to show the rest of the
lemma for P ′(t) = P ′(t∗)− wj

βpj
(t− t∗) as this is equivalent

to Qj(t). We start by computing the gradient of equation 8
of the KKT conditions. We then consider two cases for any
job j: when j is running and when j is not running.

First consider equation 8 of the KKT conditions by first
taking the partial derivative with respect to S(t):

βP ′(S(t))− δ(t) = 0 or equivalently δ(t) = βP ′(t) (10)

and pj(t):

αj − γj(t) + δ(t) + (t− rj)
wj
pj

= 0

or equivalently,

αj = γj(t)− δ(t)− (t− rj)
wj
pj

(11)

We can then plug equation 10 into equation 11 to get

αj = γj(t)− βP ′(t)− (t− rj)
wj
pj

(12)

Thus, whatever the value of αj , it is constant for job j at
all times t ≥ rj .

For the first case, consider any job j, and time, t∗, when
j is run. Call the speed of the schedule at t∗, S(t∗). By
equation 12,

αj = γj(t
∗)− βP ′(t∗)− (t∗ − rj)

wj
pj

(13)

Now consider any other time t during which j is run. Again
by equation 12 we have,

αj = γj(t)− βP ′(t)− (t− rj)
wj
pj

(14)

Equating equations 13 and 14 for αj and solving for βP ′(t)
gives us,

βP ′(t) = −γj(t∗) + γj(t) + βP ′(t∗)− (t− t∗) wj
pj

(15)

However, applying complementary slackness (6) to con-
straint 3 of our convex program, we get that γj(t)(−pj(t)) =
0 and γj(t

∗)(−pj(t∗)) = 0. However, because we know
that at both t∗ and t, job j is run, both pj(t) > 0 and
pj(t

∗) > 0, thus it must be that γj(t) = 0 and γj(t∗) = 0,
thus equation 15 becomes,

βP ′(t) = βP ′(t∗)− (t− t∗) wj
pj

or equivalently,

P ′(t) = P ′(t∗)− wj
βpj

(t− t∗)

Thus we have the second condition of our lemma. Lastly,
note that equation 5 of the KKT conditions is satisfied by
γj(t) = 0, and it must be that γj(t) = 0 in order to satisfy
complementary slackness (6) in the case that job j is run at
time t.

For the second case, consider any time, t′, such that job
j is not run. We apply equation 12 to get

αj = γj(t
′)− βP ′(t′)− (t′ − rj)

wj
pj

Because αj is constant whether j is run or not, we then set
this equal to equation 13 and solve for P ′(t′) to get,

P ′(t′) = −γj(t
∗)

β
+
γj(t

′)

β
+ P ′(t∗)− (t′ − t∗) wj

βpj

=
γj(t

′)

β
+ P ′(t∗)− (t′ − t∗) wj

βpj

≥ P ′(t∗)− (t′ − t∗) wj
βpj

The equality follows from the fact that γj(t∗) = 0 and the
inequality follows by the fact that β ≥ 0 and by equation 5
of the KKT conditions which requires that γj(t′) ≥ 0.
Thus we have the third condition of our lemma. Lastly,
note that because pj(t′) = 0 when job j is not run at t′,
complementary slackness (6) is thus always satisfied in this
case.

The job selection policy highest density first (HDF),
schedules, at time t, the unfinished job i, with the largest
density, which is defined to be wi/pi. By using a standard
exchange argument one can show that HDF is the optimal
job selection policy for weighted fractional delay. Thus we
expect that any feasible schedule meeting the conditions of
Lemma 1 schedules jobs in HDF order. To see why this is



indeed true, consider that the slope of Qi(t) is dependent
only on β and i’s density. Thus when Qi(t) and Qj(t)
intersect, the less dense job will have a larger hypopower
at all times after the intersection. Lemma 1 then implies
that, in the optimal schedule, the denser of i and j must
have been completed prior to the intersection of Qi(t) and
Qj(t). Because this holds for all jobs, if Qi(t) is on the
upper envelope at time t, then because Qi(t) ≤ Qj(t) for
all j released by t, all released jobs with density larger than
i’s density must have been completed by t. However, this
is the definition of HDF, thus the conditions of Lemma 1
imply HDF job selection.

3.3. The Optimal Schedule is Unique

In this section, we show that the optimal schedule is
unique. We do this by examining the upper envelope of the
hypopower functions for two purportedly optimal schedules,
A and B, and consider the set of jobs H such that i is in
H if the initial hypopower of i in A is strictly smaller than
the initial hypopower of i in B. We show that area under
the hypopower upper envelope, over all times a schedule is
running any job in H , is larger for schedule B than schedule
A. This implies the same for the speed functions, that is,
the total work done on jobs in H is different in A and B, a
contradiction to both schedules being optimal.

Lemma 2. The optimal schedule is unique.

Proof: We will prove this lemma by contradiction.
Specifically, assume there are two optimal schedules, A,
and B. We will convert A into B by changing the jobs
one at a time. If the set H consists of all jobs i such that
qi(A) < qi(B), then we show that every time we change a
job in H , the total work done on jobs in H either goes up
or stays the same. And every time we change a job not in
H the total work done on jobs in H either goes up or stays
the same. Finally, we show that the work done on jobs in
H goes up at least once, thus A does less work on jobs in
H than B, a contradiction to both schedules being optimal.
Instead of looking at work directly we will look at area
under the hypopower curves. Proving this quantity increases
implies the same for the area under the corresponding speed
functions, thus completing the contradiction.

Assume A and B are each represented by n qi values, thus
schedule A can be thought of as Q(t, A) = maxi {Qi(t, A)}
and B as Q(t, B) = maxi {Qi(t, B)}. For any set of
jobs S, define Q(t, S ∈ A) as 0 if maxi {Qi(t, A)} >
maxi∈S {Qi(t, A)} and maxi∈S {Qi(t, A)} otherwise. We
can similarly define Q(t, S ∈ B). In other words, these
functions are the subset of the upper envelope where some
job in S is the running job. Without loss of generality,
assume A has at least one job, j, such that qj(A) < qj(B).
Call the set H , all jobs, i, such that qi(A) < qi(B) and the
set L, all jobs, i, such that qi(A) > qi(B). We can convert
A into B by setting, one at a time, qk(A) to qk(B), for

each job k. Consider what happens when we do this for job
arbitrary job k:

If k ∈ H , then qk(A) < qk(B). Thus Qk(t, A) increases
at all times t, but Qj(t, A), for all j 6= k and time t, does
not decrease. These facts imply that the area under Q(t,H ∈
A) either increases or stays the same. Further, if prior to
increasing qk(A), it is the case that Qk(t, A) = Q(t,H ∈ A)
for any t, then the area under Q(t,H ∈ A) strictly increases.

If k ∈ L, then qk(A) > qk(B). Thus Qk(t, A) decreases
at all times t, but Qj(t, A), for all j 6= k and time t, does
not decrease. These facts also imply that the area under
Q(t,H ∈ A) either increases or stays the same.

We still need at least a single increase in the area under
Q(t,H ∈ A). However, recall that we are guaranteed to
have some job j such that such that qj(A) < qj(B). Thus
if we convert A to B by starting with j, it must be that
Qj(t, A) = Q(t,H ∈ A) for at least one time t, else A
does no work on j, a contradiction to the optimality of A.

3.4. Checking a Schedule for Optimality

We conclude section 3 by giving an algorithm to check
the optimality of a schedule in time O(n2). The algorithm
takes as input the initial hypopower for each job j. If the
input schedule is not in this form, then qi = P ′i (t

∗) +
(wi/βpi)(t

∗ − ri) for any time t∗ when j is run in the
input schedule. If the resulting hypopower functions are
not optimal then the input schedule is not optimal. If the
resulting hypopower functions are optimal, then determining
if the input schedule is optimal reduces to the problem of
deciding if the input schedule is identical to the schedule
produced by the upper envelope of the resulting hypopower
functions.

Because the hypopower functions are linear, when two
hypopower functions intersect, the function defined by a job
of lower density will be strictly larger at all times after the
intersection. Thus any hypopower function is involved in at
most 1 crossing on the upper envelope with a lower density
job, specifically the earliest crossing with a lower density
job. Thus there are most n such crossings, and it is not too
hard to see that for each hypopower function, Qi(t), we
can find, in linear time, the earliest time, if it exists, that
Qi(t) crosses some Qj(t) such that wi/pi > wj/pj and
the crossing time is at least max {ri, rj}. Thus one can, in
O(n2) time, compute the upper envelope of the hypopower
functions.

4. APPLYING THE HOMOTOPIC APPROACH

The main idea of the homotopic approach is to start with
a schedule we can easily compute for some β′ and slowly
change β′, calculating the new optimal schedule each time
we do so, until β′ = β. This seemingly requires that the
optimal schedules for infinitesimally different β’s must be
closely related, so to find the new optimal schedule, when



we change β′ to β′+ ε, we only have to examine schedules
that are close to the previously computed optimal schedule
for β′. In section 4.1 we discuss how to easily find an initial
optimal schedule that can be used as the starting point for
a homotopic algorithm. In section 4.2 we prove that the
initial hypopowers change continuously as a function of β.
(Although, perhaps somewhat counter-intuitively, the initial
hypopowers are not monotone in β.) This then allows us to
obtain an efficient homotopic algorithm for computing the
optimal energy trade-off schedule for a small number of jobs
by simply searching over schedules with nearly identical
initial hypopowers. In section 4.3 we report on a Java-based
animation of this algorithm.

4.1. Finding an Initial Optimal Schedule

If the processor has a maximum speed, then initially
β = 0, and the optimal schedule always runs at the
maximum speed if there are unfinished jobs, and uses HDF
to determine which job to run. If the processor does not
have a maximum speed, we choose β small enough such that
every job is completed before any other jobs are released.
For each job j, we can calculate a βj such that it completes
before any other job is released, and then take β to be the
minimum over all βj .

4.2. The Optimal Schedule is a Continuous Function of β

In this section we show that the initial hypopowers are
a continuous function of β. To this end, we first define the
initial hypopower of job j, as a function of β, as qj(β) and
likewise the hypopower function for j, as a function of β,
as Qj(t, β).

We show in Lemma 3 that the optimal schedule changes
continuously as a function of β. By Lemma 1, the optimal
schedule can be described as set of n initial hypopowers,
thus we show Lemma 3 by showing that these initial
hypopowers are continuous functions of β. We do this by
showing that if there is some non-empty set of jobs whose
initial hypopowers are increasing discontinuously at β, then
for some small increase in β, the total work done by the
optimal schedule on this set of jobs increases. However, this
is a contradiction to optimality. If the initial hypopowers are
decreasing continuously, then the same method can be used
for a small decrease in β.

Lemma 3. The initial hypopowers are a continuous function
of β.

Proof: We show the lemma by showing that, in the
optimal schedule, for all jobs j, the value qj(β) is a
continuous function of β. That is, assume that there is at
least one qj(β) value that is not continuous in β. More
precisely, qj(β) is discontinuously increasing at β > 0 if
there exists constants c1, c2 > 0 such that for all ε ∈ (0, c2),
qj(β + ε) ≥ qj(β) + c1. Likewise, qj(β) is discontinuously

decreasing at β > 0 if there exists constants c1, c2 > 0 such
that for all ε ∈ (0, c2), qj(β − ε) ≥ qj(β) + c1.

We start by assuming the following claim:

Claim 1. For any job j with discontinuously increasing
qj(β), there exists some ε′ ∈ (0, c2) such that the following
two properties hold:

1) For all times t, Qj(t, β′) > Qj(t, β) for all β′ ∈
(β, β + ε′]

2) For all jobs i such that qi(β) is not discontinu-
ously increasing at β, define tc as the solution of
Qj(tc, β) = Qi(tc, β) and t′c as the solution of
Qj(t

′
c, β
′) = Qi(t

′
c, β
′), then for all β′ ∈ (β, β + ε′]:

• If wi/pi > wj/pj then tc > t′c else
• If wi/pi < wj/pj then tc < t′c

Likewise if qj(β) is discontinuously decreasing, then the
same facts hold except β′ ∈ [β − ε′, β).

The proof of the lemma is now the same as for Lemma 2:
we convert from one schedule into another by changing jobs
one at a time and show that there is some set of jobs such
that the total work increases. For the sake of contradiction,
assume that there is at least one job such that the job’s
q(β) is discontinuous at some value of β. There are two
cases, if q(β) is discontinuously increasing and if q(β) is
discontinuously decreasing.

If there is at least one discontinuously increasing q(β)
function, consider the smallest β = β1 such that there
are some set of jobs, H with q(β) functions that are
discontinuously increasing at β1. By Claim 1, there exists
some ε′ > 0, such that the properties of Claim 1 hold for
all jobs in H . We now convert the optimal schedule at β1
to the optimal schedule at any β′ ∈ (β1, β1 + ε′] following
the proof of Lemma 2 with the main difference being that
for some jobs i /∈ H , it may be that qi increases, however
Claim 1 ensures that changing them does not decrease the
work done on any job in H .

If there is at least one discontinuously decreasing q(β)
function, we follow the same method except we start from
the largest such β1.

All that remains is to show Claim 1.
First note that if we find an ε′1 satisfying the first

property and an ε′2 satisfying the second property, then
ε′ = min {ε′1, ε′2} will satisfy both properties. Thus we can
find an ε′ value separately for each property.

We start by showing that if qj(β) is discontinuously
increasing at β, the first property holds. In other words, we
want to find an ε′ such that the following holds for any
β′ ∈ (β, β + ε′]:

qj(β)− wj
pjβ

(t− rj) < qj(β
′)− wj

pjβ′
(t− rj)

As ε′ is constrained to be less than c2 and by definition



of the discontinuity of qj(β), we have that,

qj(β) + c1 −
wj
pjβ′

(t− rj) < qj(β
′)− wj

pjβ′
(t− rj)

Thus it is sufficient to show

qj(β)− wj
pjβ

(t− rj) < qj(β) + c1 −
wj
pjβ′

(t− rj)

Or equivalently,

− wj
pjβ

(t− rj) < c1 −
wj
pjβ′

(t− rj) (16)

However, this is clearly true for all β′ > β as c1 > 0, thus
any ε′ ∈ (0, c2) will satisfy the inequality. If instead qj(β)
discontinuously increasing, and we require β′ ∈ [β − ε′, β),
we can re-arrange inequality 16 to get

wj
pj

(t− rj)
(

1

β′
− 1

β

)
< c1 (17)

Because (wj/pj)(t−rj) (1/β′ − 1/β) is a decreasing func-
tion of β′, if we can find a single β′ = β − ε′ such that 17
holds then we are done. However, consider that for ε′ = 0,

wj
pj

(t− rj)
(

1

β − ε′
− 1

β

)
< c1

holds. Thus, because (wj/pj)(t− rj) (1/(β − ε′)− 1/β) is
continuous in ε′ and c1 > 0, there must be some ε′ > 0 for
which this holds.

Now we show that if qj(β) is discontinuously increasing
at β, then the second property holds. First we give the
explicit definition of tc and t′c:

tc =
(qj(β)− qi(β))β +

wjrj
pj
− wiri

pi
wj
pj
− wi

pi

(18)

Likewise, solving for t′c gives

t′c =
(qj(β

′)− qi(β′))β′ + wjrj
pj
− wiri

pi
wj
pj
− wi

pi

(19)

Now we would like to show that tc > t′c if wi/pi > wj/pj
and tc < t′c if wi/pi < wj/pj . Equivalently, t′c− tc < 0 and
t′c − tc > 0 respectively. Solving directly for t′c − tc using
equations 18 and 19 we get

t′c − tc =
(qj(β

′)− qi(β′))β′ − (qj(β)− qi(β))β
wj
pj
− wi

pi

Note that if wi/pi > wj/pj , then wj/pj − wi/pi < 0 and
if wi/pi < wj/pj then wj/pj − wi/pi > 0, thus for both
cases it is sufficient to show that

(qj(β
′)− qi(β′))β′ − (qj(β)− qi(β))β > 0

By definition of job j and the valid range of β′, qj(β′) ≥
qj(β) + c1, thus giving us

(qj(β
′)− qi(β′))β′ − (qj(β)− qi(β))β ≥

(qj(β) + c1 − qi(β′))β′ − (qj(β)− qi(β))β

Or equivalently,

(qj(β
′)− qi(β′))β′ − (qj(β)− qi(β))β ≥

c1β
′ + qj(β)(β′ − β) + qi(β)β − qi(β′)β′ (20)

In the case that qj(β) is discontinuously increasing, we have
that β′ > β, which implies that qj(β)(β′ − β) > 0 and
c1β
′ > c1β. Thus it is sufficient to show

c1β + qi(β)β − qi(β′)β′ > 0 (21)

If qi(β) is continuous at β, the limit of qi(β)β− qi(β′)β′
as β′ goes to β is 0. If qi(β)β−qi(β′)β′ goes to 0 from larger
than 0, then inequality 21 holds. Because c1β is strictly
larger than 0, if qi(β)β − qi(β′)β′ goes to 0 from less than
0, then we can make qi(β)β−qi(β′)β′ arbitrarily close to 0,
in a continuous manner, as we decrease β′. Thus, there must
be some ε′ > 0 such that − (qi(β)β − qi(β + ε′′)) < c1β
for all ε′′ < ε′.

If however qi(β) is discontinuously decreasing at β, then
by the first property, there is some small ε1 such that for β1 ∈
(β, β + ε1], Qi(t, β1) < Qi(t, β) for all t. This implies that
qi(β)β − qi(β′)β′ > 0 for β′ ∈ (β, β + ε1], thus inequality
21 holds for any ε′ < ε1.

Finally consider the case that qi(β) is discontinuously
decreasing at β and thus we want β′ ∈ [β − ε, β). The
only difference is that c1β′ ≥ c1(β − ε′) = c1β − ε′c1 and
qj(β)(β′ − β) ≥ −qj(β)ε′. Applying these to equation 20,
we need to show the following for all β′,

c1β + qi(β)β − qi(β′)β′ − ε′c1 − qj(β)ε′ > 0 (22)

However, consider that both −ε′c1 and −qj(β)ε′ are contin-
uous and go to 0 as ε′ goes to 0. In the case that qi(β) is
continuous, qi(β)β−qi(β′)β′−ε′c1−qj(β)ε′ is thus contin-
uous, has a limit of 0 at ε′ = 0, and we can therefore use the
same reasoning as in the previous continuous case. If qi(β)
is discontinuous, it must be discontinuously increasing in β
or in other words, discontinuously decreasing as we lower β.
Thus there exists some ε1 such that for all β′ ∈ [β − ε1, β),
qi(β)β−qi(β′)β′ ≥ c3 > 0, but this just makes the left hand
side of inequality 22 larger than if qi(β) was continuous.

4.3. Implementation

We built a java-based application that, using the homo-
topic approach presented in this paper, allows one to view
the evolution of the optimal schedule as a function of β. Our
application allows the user to view the optimal schedule of
up to four jobs. Moving a slider changes the value of β
in real time, thus allowing the user to see how the optimal
schedule evolves over several values of β in the range of
0 to 1. The application displays the optimal schedule as
hypopower over time, and also displays how the initial
hypopowers of any two jobs change as a function of β.
Figure 3 shows the application running for a 4 job instance



Figure 3. The interface of our implementation of the homotopic algorithm.
Moving the slider back and forth changes the value of β and thus the
schedule and objective function.

that can be seen at the top of the figure. The implementation
can be found at http://www.cs.pitt.edu/∼kirk/erg2. It is our
hope that our animation implementation will be of use
in gaining intuition on how to attack some of the open
questions presented in the next section.

The primary difficulty in developing this animation was
reasonably bounding the number of potential solutions that
the program examined to find the next set of initial hypopow-
ers given the current set of initial hypopowers and some
small change in β. It is not clear how to upper bound the
change in the initial hypopowers as a function of the change
in β. This necessitated that the program search a large neigh-
borhood to find the new optimal schedule, which severely
restricted the granularity of candidate hypopowers since if
we consider m possible values for each initial hypopower,
the running time of exhaustive search is Ω(mn). To achieve
a reasonable degree of accuracy within a reasonable period
of time, we set the initial granularity to be rather course,
and then recursively searched the most promising subregion.
Thus there may be small inaccuracies and flickers in the
displayed schedule. We believe that in the default setting that
these inaccuracies are negligible. We provide a slider which
allows the user to adjust the relative importance between run
time and accuracy.

5. PRODUCT OBJECTIVES

In this section we consider objectives of the form Qσ ×
E , where Q is a scheduling objective, E is energy, and σ
is a parameter representing the relative importance of the
scheduling objective versus energy. In Lemma 4, we show
that (perhaps counter-intuitively) this product objective is not
particularly interesting from a theoretical perspective if the
static power is zero. We do this by showing that if the power
function is of the form P (s) = sα, then the optimal solution

is to either always go as fast as possible or to always go as
slow as possible.

When the scheduling objective Q is integer flow, we
are unable to characterize the optimal scheduling for the
objective Qσ×E for the same reasons that we are unable to
characterize the optimal schedules for the additive objective
with integral flow. We therefore only consider fractional
flow. The next issue that arises is during what time period
does one count the static power’s contribution to energy.
Perhaps the most natural assumption might be to only count
static power when the processor is running jobs. But this
has various mathematical issues, such as it then becomes
difficult to write a reasonable mathematical program. Thus
we assume that there is a specified time period T , add
a constraint that all jobs much be finished by time T ,
and assume that static power accumulates during exactly
the period T . So the energy arising from static power is
P (0)T . We characterize the optimal schedule in Lemma 5.
In Lemma 6 and Lemma 7 we show that, for a fixed instance,
the schedules that are optimal for the product objective
Qσ × E (for any σ) are a (generally strict) subset of the
schedules that are optimal for the sum objective Q+βE (for
any β). We then show in Lemma 8 that it is unlikely that
one will be able to compute an optimal schedule for Qσ×E
using a homotopic approach as the optimal schedule may be
a discontinuous function of σ.

Lemma 4. Assume that the power function is P (s) = sα

and the scheduling objective Q is either fractional flow or
integral flow. Then for every instance, the optimal schedule
for the objective Qσ × E either always runs the processor
as slowly as possible, or always runs the processor as fast
as possible.

Proof: We give the proof for integral flow; the proof for
fractional flow is similar. Consider an instance with a single
job with work 1. When running at constant speed s, the time
to finish the job is 1/s and the energy used is sα/s = sα−1,
which yields an objective value of sα−1

sσ = sα−σ−1. Thus, if
α − σ − 1 > 0, the objective is minimized at 0 by running
as slow as possible, while if α− σ− 1 < 0, the objective is
minimized again at 0 by running as fast as possible. Finally,
if α− σ− 1 = 0, any schedule that runs the job at constant
speed is optimal so running either as fast or as slow as
possible is optimal. In any unweighted, unit work n job
instance, if α − σ − 1 ≤ 0, the schedule that runs jobs
as fast as possible is still optimal, and if α − σ − 1 > 0
the schedule that runs jobs as slow as possible is also still
optimal, since the increased flow at every time only increases
the objective by a factor of O(n2σ). It is straightforward to
see that this to extends when jobs have weights and arbitrary
work requirements since in this case the objective would, at
worst, be multiplied by an additional value dependent on the
input, but not the schedule.

The problem of minimizing Qσ×E over a time period T



can be expressed as the following mathematical program:

min

 n∑
j=1

T∑
t≥rj

wjpj(t)

pj
(t− rj)

σ (
T∑
t=1

P (S(t))

)

Subject to:

T∑
t=rj

pj(t) = pj j ∈ [1, n] [dual αj ] (23)∑
j:rj≤t

pj(t) = S(t) t ∈ [1, T ] [dual δ(t)] (24)

pj(t) ≥ 0 t ≥ rj , j ∈ [1, n] [dual γj(t)] (25)

Note that these constraints are the same as (1), (2), and (3)
from section 3.1. Unlike there, however, this mathematical
program is not convex, and so the KKT conditions (sec-
tion 3.2) provide only necessary conditions for optimality.

Before applying the KKT conditions, we define a new
hypopower function of job i in schedule A as,

Q̃i(t, A) = q̃i(A)− E(A)

Q(A)

σwi
pi

(t− ri) (26)

where E(A) is the total energy used by schedule A, Q(A) is
the total fractional flow incurred by schedule A, and q̃i(A) is
any constant such that Q̃i(t, A) satisfies the condition that at
all times t such that i is run in A, the hypopower at which
i is run is Q̃i(t, A). Note that (26) is very similar to the
hypopower function defined by equation (9), and the same
qualifications apply. The only difference is that the slope is
now E(A)

Q(A)
σwi
pi

, which is a function of σ as well as the total
energy and total flow used by the entire schedule.

Lemma 5 states that if a feasible schedule is optimal, the
following must be true:
• The hypopower of all jobs are defined by the hy-

popower function given in equation 26.
• At all times, the job that is run is the job whose

hypopower function is largest at that time.
• If a job is run, it is run at the hypopower specified by

the hypopower function.

Lemma 5. If a solution to the mathematical program is
optimal then at all times t, for all jobs j, if pj(t) > 0, then
P ′(S(t)) = Q̃j(t), and if pj(t) = 0 then P ′(S(t)) ≥ Q̃j(t).

Proof: This proof is almost identical to the proof of
lemma 1, so only the differences are highlighted, with the
main difference being the difference in objective functions.
In regards to the different objective, first note that mini-
mizing the objective Qσ × E is equivalent to minimizing
σ log(Q)+log(E). Thus, when we take the partial derivative
with respect to S(t) we obtain

P ′(S(t))∑T
t′=0 P (S(t′))

− δ(t) = 0

or equivalently,

δ(t) =
P ′(S(t))

E
(27)

and pj(t):

αj − γj(t) + δ(t) +
σ (t− rj) wjpj∑n

j′=1

∑T
t′≥rj′

wj′pj′ (t
′)

p′
j

(t′ − rj′)
= 0

or equivalently,

αj = γj(t)− δ(t)−
σ (t− rj)wj
Q pj

(28)

Observe that (27) and (28) are almost identical to (10)
and (11) from lemma 1, the only differences being the
coefficients on some of the terms. The rest of the proof
of this lemma follows exactly as the proof of lemma 1, only
requiring the additional observation at one point that E ≥ 0.

Lemma 6. For any instance, the set of all optimal schedules
for the product objective (for any σ) is a subset of the set
of all optimal schedules for the sum objective (for any β).

Proof: Fix an arbitrary σ. In the optimal schedule
for that σ, if it exists, each job has a linearly decreasing
hypopower function with slope σ EQ times its density. If we
set 1/β = σ EQ , then we have a set of identical hypopower
functions for the sum objective for that β. Thus if the
schedule is optimal for that σ in the product objective, it
must also be optimal for β in the sum objective. Thus the
optimal schedule for any σ in the product objective has
a corresponding optimal schedule for some β in the sum
objective.

Lemma 7. There are instances where there are schedules
that are optimal for the sum objective but are not optimal
for the product objective for any σ.

Proof: Consider a two job instance where the jobs have
release time 0 and 60, work 11 and 7, and weight 0.15 and
1.5, respectively. The power function is P (s) = s3 + .01/T ,
where T is sufficiently big so that finishing before T is not
a tight constraint. Thus the total static energy used is 0.01.
As an example, see Figure 4 with σ = 1.79 and Figure 5.
For each β, Figure 4 shows the value of σ for which the
optimal sum schedule is a locally optimum schedule for the
produce objective. Simple calculations show that different
local optimums have different objective values in the product
objective.

Lemma 8. The optimal schedule for the product objective
is not necessarily a continuous function of σ.



Figure 4. β vs σ for schedules satisfying the KKT conditions in a two
job instance.

Figure 5. β vs (the log of) Qσ ×E for σ = 1.79 in the same instance as
Figure 4. The β values that give σ = 1.79 in in Figure 4 are approximately
10, 26, and 128. Note how they yield locally optimal solutions here.

Proof: To see this, consider the example in Figure 4.
Here, for all σ less than σ1 ≈ 1.785 or greater than
σ2 ≈ 1.80 there is only one β that maps to it, but there
are multiple β that map to all σ ∈ [σ1, σ2]. Further, in this
case, for any σ, only one of the up to three β’s that provide
KKT condition satisfying schedules for that σ minimize the
objective. This implies that the function mapping a σ to the
β that shares its optimal schedule is not continuous since it is
an inverse function of a continuous function that is not one-
to-one. This further implies the optimal schedule does not
change continuously from σ1 to σ2, since a discontinuous
increase (or decrease) in β implies a discontinuous decrease
(or increase) in the slopes of all hypopower functions, so if
the initial hypopowers did not also change discontinuously,
the resulting schedule after the discontinuity would do too
little (or too much) work, and thus not be feasible (or
optimal).

6. OPEN QUESTIONS

Our investigations have revealed some natural open ques-
tions, which we list below. We believe that it is quite
plausible that the introduction of these problems into the

literature might be the most lasting contribution of this paper.
Question 1: Given the configuration of the optimal energy
trade-off schedule (when the quality of service measure is
weighted fractional flow), can the optimal schedule be com-
puted in polynomial time? In this context, a configuration
is the sequence of jobs run on the processor as well as
whether a job completes before, at, or after the release
of the next job to be run (which is not necessarily the
next job that was released). This seems to be the natural
definition of a configuration, as the configuration and β
uniquely defines a set of equations for which the initial
hypopowers of the optimal schedule for that configuration
are the sole (real) solution. [1] was able to use binary search
to solve these equations. We were unable to compute the
optimal schedule even knowing the optimal configuration.
The main difficulty is that even when the power function
is sα the configuration equations yield a series of α-degree
polynomial equations (in the variables hypopower, or speed,
or interval length). We know of no technique to acquire
a general algebraic solution to these equations. Another
natural alternative approach is to create a mathematical
program from the equations, and solve them using some
standard optimization algorithm. However, any formulation
we examined had equations relating to work that were not
convex (again, in variables hypopower, or speed, or interval
length). More precisely, let pj(~x) be the amount of work
done on job j for some variable assignment ~x. Then for
variable assignments ~x and ~y, where pj(~x) = pj(~y) = pj ,
there exist some situations where pj((~x + ~y)/2) > pj and
other situations where pj((~x + ~y)/2) < pj . Thus one can
not seemingly use convex optimization.
Question 2: Is there an efficient algorithm to compute
the optimal energy trade-off schedule (when the quality of
service measure is weighted fractional flow) for β+ ε given
the optimal trade-off schedule for β? As we know how to
detect when the optimal configuration changes and how to
find the new optimal configuration, this is closely related to
the previous open question.
Question 3: As a function of the number of jobs n, how
many times can the optimal configuration change as β
changes? [1] shows that for unit jobs and when the quality of
service measure is total delay, the number of configuration
changes is O(n2). We would be quite surprised if the
number of configurations changes in our setting was not also
polynomially bounded, although we do not know how to
prove any upper bound that is a function of n. The problem
is because the initial hypopowers are not monotone in β, we
do not even know how to show that a particular configuration
will be optimal for a contiguous collection of β’s.
Question 4: Is there a polynomial time algorithm to verify
the optimality of schedule for the objective of total (integer)
delay plus energy? Using insights from [1], one can design
a polynomial time algorithm that given a schedule S and



a configuration C, can verify the optimality of S among
schedules in configuration C. But we do not know how to
verify that a schedule is in the optimal configuration.

Question 5: For what quality of service measures can
homotopic optimization be used to compute optimal energy
trade-off schedules? It is not completely implausible that
one can characterize the natural quality of service measures
where this is possible.

ACKNOWLEDGMENT

Supported in part by an IBM Faculty Award, and NSF
grants CCF-0830558 and 1115575. Supported partially by
GDR RO, ANR TODO and a grant by the Ecole Doctorale
of the University of Evry.

REFERENCES

[1] K. Pruhs, P. Uthaisombut, and G. J. Woeginger, “Getting the
best response for your erg,” ACM Transactions on Algorithms,
vol. 4, no. 3, 2008.

[2] Y. Zwols, http://www.cs.mcgill.ca/∼yzwols/software.html.

[3] S. Albers and H. Fujiwara, “Energy-efficient algorithms for
flow time minimization,” ACM Transactions on Algorithms,
vol. 3, no. 4, 2007.

[4] N. Bansal, H.-L. Chan, and K. Pruhs, “Speed scaling with an
arbitrary power function,” in SODA, C. Mathieu, Ed. SIAM,
2009, pp. 693–701.

[5] L. L. H. Andrew, A. Wierman, and A. Tang, “Optimal
speed scaling under arbitrary power functions,” SIGMETRICS
Performance Evaluation Review, vol. 37, no. 2, pp. 39–41,
2009.

[6] N. Bansal, K. Pruhs, and C. Stein, “Speed scaling for
weighted flow time,” SIAM J. Comput., vol. 39, no. 4, pp.
1294–1308, 2009.

[7] T. W. Lam, L.-K. Lee, I. K.-K. To, and P. W. H. Wong, “Speed
scaling functions for flow time scheduling based on active
job count,” in ESA, ser. Lecture Notes in Computer Science,
D. Halperin and K. Mehlhorn, Eds., vol. 5193. Springer,
2008, pp. 647–659.

[8] H.-L. Chan, J. Edmonds, T. W. Lam, L.-K. Lee, A. Marchetti-
Spaccamela, and K. Pruhs, “Nonclairvoyant speed scaling for
flow and energy,” Algorithmica, vol. 61, no. 3, pp. 507–517,
2011.

[9] S.-H. Chan, T. W. Lam, and L.-K. Lee, “Non-clairvoyant
speed scaling for weighted flow time,” in ESA (1), ser. Lecture
Notes in Computer Science, M. de Berg and U. Meyer, Eds.,
vol. 6346. Springer, 2010, pp. 23–35.

[10] S.-H. Chan, T. W. Lam, L.-K. Lee, H.-F. Ting, and P. Zhang,
“Non-clairvoyant scheduling for weighted flow time and
energy on speed bounded processors,” Chicago J. Theor.
Comput. Sci., vol. 2011, 2011.

[11] H.-L. Chan, T. W. Lam, and R. Li, “Tradeoff between energy
and throughput for online deadline scheduling,” in WAOA, ser.
Lecture Notes in Computer Science, K. Jansen and R. Solis-
Oba, Eds., vol. 6534. Springer, 2010, pp. 59–70.

[12] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power
digital design,” in Low Power Electronics, 1994. Digest of
Technical Papers., IEEE Symposium, oct 1994, pp. 8 –11.


