
Noname manuscript No.
(will be inserted by the editor)

Speed Scaling on Parallel Processors with Migration

Eric Angel · Evripidis Bampis · Fadi
Kacem · Dimitrios Letsios

Received: date / Accepted: date

Abstract We study the problem of scheduling a set of jobs with release dates,
deadlines and processing requirements (or works) on parallel speed scalable
processors so as to minimize the total energy consumption. We consider that
both preemptions and migrations of jobs are allowed. For this problem, there
exists an optimal polynomial-time algorithm which uses as a black box an
algorithm for linear programming. Here, we formulate the problem as a convex
program and we propose a combinatorial polynomial-time algorithm which
is based on finding maximum flows. Our algorithm runs in O(nf(n) logU)
time, where n is the number of jobs, U is the range of all possible values of
processors’ speeds divided by the desired accuracy and f(n) is the time needed
for computing a maximum flow in a layered graph with O(n) vertices.

Keywords Energy efficient scheduling · Speed scaling · Network flows ·
Convex programming

Work supported by (i) the French Agency for Research under the DEFIS program TODO,
ANR-09-EMER-010, (ii) GDR du CNRS, RO, (iii) the European Research Council, Grant
Agreement No. 691672, and (iv) the German Research Foundation, project AL464/9-1.

E. Angel
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1 Introduction

Energy consumption is a major issue in our days. Great efforts are devoted to
the reduction of energy dissipation in computing environments ranging from
small portable devices to large data centers. From an algorithmic point of
view, new challenging optimization problems are studied in which the energy
consumption is taken into account as a constraint or as the optimization goal
itself (for recent reviews see [2], [3]). This later approach has been adopted in
the seminal paper of Yao et al. [22] who considered the problem of scheduling
a set of jobs with release dates and deadlines on a single processor so that the
total energy is minimized, under the so-called speed scaling model in which the
speed of a processor can be varied over time and the power consumption is a
convex function of the processor’s speed. Specifically, at a given time t, if the
speed of a processor is s(t), then the power consumption is s(t)α, where α > 1
is a constant, and the energy consumption is the power integrated over time.

Single processor Yao et al. [22] proposed an optimal offline algorithm, known
as the YDS algorithm according to the initials of the authors, for the problem
of minimizing the energy with preemptions, i.e. where the execution of a job
may be interrupted and resumed later on. In the same work, they initiated
the study of online algorithms for this problem, introducing the Average Rate
(AVR) and the Optimal Available (OA) algorithms. Bansal et al. [8] proposed
a new online algorithm, the BKP algorithm according to the authors’ initials,
which has better competitive ratio than AVR and OA for large values of α.

Multiprocessor When there are multiple processors available, we may consider
different variants of speed scaling problems. In the non-migratory variant, we
allow preemptions of jobs but not migrations. This means that a job may be
interrupted and resumed later on the same processor, but it is not allowed to
continue its execution on a different processor. In the migratory variant, both
preemptions and migrations of jobs are allowed.

Albers et al. [6] considered the multiprocessor non-migratory problem of
minimizing the energy of a set of unit-work jobs. For the case in which the jobs
have agreeable deadlines, they proposed an optimal polynomial time algorithm.
Then, they showed that the problem is NP-hard when the jobs have arbitrary
deadlines and they proposed an αα24α-approximation algorithm for it. Note
that, the ratio of this algorithm is constant because α is a constant. For the
more general problem in which the jobs have arbitrary works, Greiner et al.
[15] established a generic reduction transforming a ρ-approximation algorithm
for the single-processor problem to a ρBdαe-approximation algorithm for the
multiprocessor non-migratory problem, where Bdαe is the dαe-th Bell number.
This result basically implies a constant factor approximation algorithm for the
multiprocessor non-migratory problem with arbitrary works.

For the migratory variant, Chen et al. [13] initiated the study of the multi-
processor speed scaling problem of minimizing the energy and they proposed
a greedy algorithm for the basic setting in which all jobs have the same release
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date and deadline. Bingham and Greenstreet [11] proposed a polynomial-time
algorithm for the more general setting where the jobs have arbitrary release
dates and deadlines. The algorithm in [11] needs an algorithm for linear pro-
gramming as a black box. So, after this work, an intriguing open question was
whether there exists a faster combinatorial algorithm.

It has to be noticed that after the conference version of our paper, mul-
tiprocessor speed scaling problems attracted much attention and new papers
appeared (e.g. [9] and [7]) in the direction of improving the above results and
generalizing them for power-heterogeneous environments in which different
processors obey to different power functions.

Multi-objective In general, energy and performance are conflicting objectives
and a series of papers addressed speed scaling problems in a multicriteria
context. Pruhs et al. [20] studied the problem of optimizing performance with-
out exceeding a fixed budget of energy. Their objective was total flow time
minimization and they presented an optimal polynomial-time algorithm for
instances with unit-work jobs. In order to prove the optimality of their algo-
rithm, they formulated the problem as a convex program and they showed that
their algorithms always produces a solution satisfying the well-known Karush,
Kuhn, Tucker (KKT) conditions which are necessary and sufficient conditions
for optimality in convex programming. Albers and Fujiwara [5] studied the
problem of minimizing the total flow time plus energy which is an alternative
way for optimizing two conflicting objectives. Finally, Chan et al. [12] pro-
posed an online algorithm for maximizing the throughput and minimizing the
energy of a set of jobs which have to be executed by a processor whose speed
is bounded above. Their algorithm has constant competitive ratio in terms of
both objectives.

Our contribution and organization of the paper We consider the multiproces-
sor migratory speed scaling problem and our objective is energy minimization.
In Section 3, we formulate the problem as a convex program. In Section 4, we
apply the KKT conditions to our convex program and we obtain a set of
structural properties of optimal schedules. Then, in Section 5, we propose an
optimal algorithm which is based on maximum flow computations. The run-
ning time of our algorithm, which we call BAL, is O(nf(n) logU), where n is
the number of jobs, U is the range of all possible values of processors’ speed
divided by the desired accuracy and f(n) is the complexity of computing a
maximum flow in a layered graph with O(n) vertices. Independently to our
work, Albers et al. [4] proposed another optimal algorithm for the same prob-
lem which also explores the relation of the problem with maximum flow.

2 Preliminaries

We begin with a formal description of our problem and some definitions. An
instance of our problem consists of a set of jobs J = {J1, ..., Jn} which have to
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be executed by m parallel processors. Each job Jj is specified by an amount of
work wj , a release date rj and a deadline dj . The processors are speed scalable
which means that they can vary their speeds dynamically over time. Every
processor satisfies the speed-to-power function P (s) = sα, where P (s) is the
processor’s power consumption if it runs with speed s and α > 1 is a constant.
It has to be noticed that the speed of a processor may be any non-negative
value. If a processor runs with speed s for t units of time, then it executes t · s
units of work and it consumes t · sα units of energy. In our setting, we allow
preemptions and migrations of the jobs. That is, a job may be executed on
some processor, suspended and resumed later on the same or on a different
processor. However, we do not allow parallel execution of a job which means
that a job cannot be run by more that one processors at a given time. Our
objective is to find a schedule with minimum energy consumption so that every
job is entirely executed between its release date and its deadline.

An important remark is that there is always an optimal schedule for our
problem such that every job Jj is executed with fixed speed sj . This is a well-
known fact for most speed scaling problems (see [22]) and it can be derived
by using the convexity of the speed-to-power function.

Let t0 < t1 < . . . < t` be the times which correspond to all the release dates
and deadlines of the jobs. We define the intervals Ii = [ti−1, ti), for all 1 ≤ i ≤
`, and we refer by I to the set of all these intervals, i.e. I = {I1, I2, . . . , I`}.
For a time interval Ii ∈ I, we denote by |Ii| its length and by Ai the set of jobs
which are allowed to be executed during Ii, i.e. Ai = {Jj ∈ J : Ii ⊆ [rj , dj)}.
If Jj ∈ Ai, then we say that job Jj is active during Ii.

Next, we state a problem which we call Work Assignment Problem (WAP)
and which is a key ingredient for our analysis. WAP resembles to our original
problem except that the speed of each processor is fixed (it cannot be varied)
and the number of available processors is not the same at each time. An
instance of WAP consists of a set of jobs J = {J1, ..., Jn} and a set of disjoint
time intervals I = {I1, I2, · · · , I`}. Each job Jj has an amount of work wj
and it is active (i.e. it is allowed to be executed) in a subset of the intervals.
During interval Ii there are mi available processors. Furthermore, we are given
a value v. Our objective is to decide whether there exists a feasible schedule in
which all jobs are feasibly executed with a fixed speed v. Note that a schedule
is feasible only if each job is entirely executed during the intervals that it is
active. Preemptions and migrations of jobs are allowed but parallel execution
of a job is not permitted. In WAP, each job Jj has a fixed processing time equal
to

wj

v . Therefore, WAP can be solved in polynomial time with a variant of the
optimal algorithm of the well-known scheduling problem P |pmtn, rj , dj |− (see
[10]).

3 Convex Programming Formulation

In this section, we propose a convex program for our problem. We introduce
the variables sj and ti,j , for all Jj ∈ J and Ii ⊆ [rj , dj), corresponding to the
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speed of job Jj and the total amount of time that job Jj is processed during
Ii, respectively. Then, the problem can be formulated as follows:

min
∑
Jj∈J

wjs
α−1
j (1)

∑
Ii⊆[rj ,dj)

ti,j ≥
wj
sj

Jj ∈ J (2)

∑
Jj∈Ai

ti,j ≤ m · |Ii| Ii ∈ I (3)

ti,j ≤ |Ii| Jj ∈ J , Ii ⊆ [rj , dj) (4)

ti,j ≥ 0 Jj ∈ J , Ii ⊆ [rj , dj) (5)

sj ≥ 0 Jj ∈ J (6)

Expression (1) corresponds to the total energy consumption. Constraints
(2) enforce that at least wj units of work are executed for each job Jj . Because
of the constraints (3), at most m processors are used at each time. Due to the
constraints (4), a job Jj is executed by at most one processor at each time.
Constraints (5) and (6) ensure the non-negativity of the variables sj and ti,j .
It has to be mentioned that Constraints (1)-(6) are not sufficient for feasibility,
i.e. there exist unfeasible schedules satisfying all of them. However, by applying
the well-known McNaughton’s algorithm [18] in each interval Ii ∈ I, every
such schedule can be converted into a feasible one without increasing the total
energy consumption.

The single variable functions wjs
α−1
j are convex, as (wjs

α−1
j )′′ = (α −

1)(α − 2)wjs
α−3
j > 0, for each α > 2. Similarly, the single variable func-

tions wj/sj are also convex. Because the objective function and Constraints
(2) consist of convex function sums while all remaining constraints are linear,
the above mathematical program is convex for α > 2. By using variable tj
corresponding to job Jj processing time instead of variable sj , we obtain an
equivalent mathematical program which is convex for any α > 1. In partic-
ular, every occurrence of sj is replaced by wj/tj , the objective function be-
comes

∑
j∈J w

α
j /t

α−1
j , Constraints (2) become

∑
Ii⊆[rj ,dj) ti,j ≥ tj , for Jj ∈ J ,

and all other constraints remain identical. Function wαj /t
α−1
j is convex, since

(wαj /t
α−1
j )′′ = α(α − 1)wαj /t

α+1
j > 0, for each α > 1. Because speed rela-

tionships are more intuitive, we elaborate on the convex program with the
sj variables. Nevertheless, our analysis may be equivalently applied using the
convex program with the tj variables and obtain an optimal algorithm for all
α > 1.

Since our problem can be formulated as a convex program, it can be solved
in polynomial time as follows. We solve the convex program in polynomial
time by applying the Ellipsoid Algorithm and we obtain a processing time
(i.e. speed) for each job. Once these processing times have been computed, we
construct a feasible schedule by using an optimal algorithm for the feasibility
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problem P |pmtn, rj , dj |−. In the remainder of the paper, we derive a faster
combinatorial algorithm.

4 Structure of an Optimal Schedule

In what follows, we elaborate on the structure of an optimal schedule for our
problem and we derive some properties which are necessary and sufficient
for optimality. These properties are obtained by using the well-known KKT
(Karush, Kuhn, Tucker) conditions which are necessary and sufficient for opti-
mality in convex programming (see [19]). A description of the KKT conditions
can be found in the Appendix. We apply the KKT conditions to the convex
program that we presented in the previous section and we obtain the following
lemma which specifies the structure of an optimal schedule.

Lemma 1 A feasible solution of the problem is optimal if and only if, for
every Ii ∈ I, the following properties hold:

1. If |Ai| ≤ m, then ti,j = |Ii| for every job Jj ∈ Ai.
2. Otherwise, it holds that

i.
∑
Jj∈Ai

ti,j = m · |Ii|.
ii. All jobs Jj ∈ Ai with 0 < ti,j < |Ii| have equal speeds.

iii. If a job Jj ∈ Ai is not executed during Ii, i.e. ti,j = 0, then sj ≤ sj′

for any job Jj′ ∈ Ai with ti,j′ > 0.
iv. If a job Jj ∈ Ai is executed during the whole interval Ii, i.e. ti,j = |Ii|,

then sj ≥ sj′ for any job Jj′ ∈ Ai with ti,j′ < |Ii|.

Proof The proof consists of two parts. Part 1 shows that a solution satisfying
the KKT conditions also satisfies the lemma’s properties. Part 2 shows that
all feasible solutions satisfying the lemma’s properties attain equal energy
consumption and assign the same speeds to the jobs. Because there is always
an optimal solution to the convex program satisfying the KKT conditions, the
lemma follows.

Part 1 Consider an interval Ii s.t. |Ai| ≤ m. A job Jj cannot be executed
for more than |Ii| units of time during the interval Ii because we do not
allow parallel execution of jobs. Assume for contradiction that there exists an
optimal schedule S∗ s.t. ti,j < |Ii|, for some job Jj ∈ Ai. Then, we can increase
the time that Jj is processed during Ii in order to obtain a new schedule which
is feasible because |Ai| ≤ m and of lower energy consumption.

Now, we consider the more challenging case of an interval Ii s.t. |Ai| > m.
Note that, with a similar argument as before, we can show that

∑
Jj∈Ai

ti,j =

m · |Ii|. We prove the remaining properties by applying the KKT conditions.
We associate to each constraint of the convex program a dual variable.

So, to the constraints (2)-(5), we associate the dual variables λj , µi, πi,j and
σi,j , respectively. Clearly, sj > 0 for each job Jj ∈ J . Therefore, by the
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complementary slackness conditions, the dual variables associated with the
constraints (6) must be equal to zero.

By stationarity conditions,

∇

∑
Jj∈J

wjs
α−1
j

+
∑
Jj∈J

λj · ∇
(
wj
sj
−

∑
Ii⊆[rj ,dj)

ti,j

)
+
∑
Ii∈I

µi∇
( ∑
Jj∈Ai

ti,j −m · |Ii|
)

+
∑
Ii∈I

∑
Jj∈Ai

πi,j∇(ti,j − |Ii|) +
∑
Ii∈I

∑
Jj∈Ai

σi,j∇(−ti,j) = 0 ⇔

∑
Jj∈J

(
(α− 1)wjs

α−2
j − λj

wj
s2j

)
∇sj +

∑
Ii∈I

∑
Jj∈Ai

(
− λj + µi + πi,j − σi,j

)
∇ti,j = 0

In order to satisfy the stationarity conditions, the coefficients of the partial
derivatives ∇sj and ∇ti,j must be equal to zero. Thus, we get that

(α− 1)sαj = µi + πi,j − σi,j Ii ∈ I, Jj ∈ Ai (7)

By complementary slackness conditions,

πi,j · (ti,j − |Ii|) = 0 Ii ∈ I, Jj ∈ Ai (8)

σi,j · (−ti,j) = 0 Ii ∈ I, Jj ∈ Ai (9)

Note that, if we applied the KKT conditions in the formulation with pro-
cessing time variables tj instead of the speed variables sj , then the would derive
exactly the same conditions (7) - (9). For a given job Jj ∈ Ai, we consider the
following cases:

– 0 < ti,j < |Ii|
Complementary slackness conditions (8) and (9) imply that πi,j = σi,j = 0.
As a result, (7) can be written as

(α− 1)sαj = µi. (10)

Therefore, all such jobs have the same speed which is proportional to µi.
That is, 2ii is true.

– ti,j = 0
By (8), we have that πi,j = 0 and (7) is expressed as (α− 1)sαj = µi−σi,j .
Since σi,j ≥ 0, we get that

(α− 1)sαj ≤ µi. (11)

– ti,j = |Ii|
By (9), we get that σi,j = 0. So, (7) becomes (α− 1)sαj = µi + πi,j . Given
that πi,j ≥ 0,

(α− 1)sαj ≥ µi. (12)

By equations (10), (11) and (12), we conclude that 2iii and 2iv are satisfied
by an optimal schedule.
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Part 2 Given an optimal solution of the convex program that satisfies the
KKT conditions, we derived some relations between the primal variables.
Based on them, we obtained some structural properties of an optimal sched-
ule for our problem. Next, we show that these properties are also sufficient for
optimality.

Assume for the sake of contradiction that there exists a non-optimal sched-
ule S satisfying the properties of Lemma 1 and let S∗ be an optimal schedule
which satisfies Lemma 1. We denote by E, sj and ti,j the energy consumption,
the speed of job Jj and the total execution time of job Jj during Ii, respec-
tively, in schedule S. Let E∗, s∗j and t∗i,j be the corresponding values for the
schedule S∗.

We define the set J ′ which contains the jobs Jj with sj > s∗j . Since E > E∗,
J ′ is not empty. By the definition of J ′,∑

Jj∈J ′

∑
Ii:⊆[rj ,dj)

ti,j <
∑
Jj∈J ′

∑
Ii:⊆[rj ,dj)

t∗i,j

Hence, there is at least one interval Ii such that∑
Jj∈J ′

ti,j <
∑
Jj∈J ′

t∗i,j

If |Ai| ≤ m, then there is at least one job Jj such that ti,j < t∗i,j . Due to
the property 1 of Lemma 1, it should hold that ti,j = t∗i,j = |Ii| which is a
contradiction. So, it must be the case that |Ai| > m. Then, the last equation
gives that ti,j < t∗i,j for some job Jj ∈ J ′. Thus, ti,j < |Ii| and t∗i,j > 0.
Both schedules S and S∗ must have equal sum of processing times during the
interval Ii, by property 2i of Lemma 1. So, there must be a job Jj′ /∈ J ′ such
that ti,j′ > t∗i,j′ . Therefore, ti,j′ > 0 and t∗i,j′ < |Ii|. We conclude that

sj′ ≥ sj > s∗j ≥ s∗j′

The first inequality comes from the fact that ti,j′ > 0, ti,j < |Ii| and Lemma 1.
The second inequality holds because Jj ∈ J ′. The third inequality is obtained
similarly with the first inequality. Given the above, we have a contradiction
on the fact that Jj′ /∈ J ′.

5 Optimal Combinatorial Algorithm

Next, we propose an optimal combinatorial algorithm for our problem which
constructs schedules satisfying Lemma 1.

Our algorithm is based on the notion of critical jobs defined below. Initially,
the algorithm conjectures that all jobs are executed at the same speed in the
optimal schedule and it assigns to all of them a sufficiently large speed. The
key idea is to continuously decrease the speeds of the jobs step by step. At each
step, it assigns a speed to the critical jobs which are ignored in the subsequent
steps and it goes on reducing the speeds of the remaining jobs. At the end of
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the last step, every job has been assigned a speed. Critical jobs are recognized
by finding a minimum (s, t)-cut in an appropriate graph as we describe in the
following. Once the algorithm has computed a speed, i.e. a processing time, for
each job, it constructs a feasible schedule by applying an optimal algorithm
for P |pmtn, rj , dj |−.

At a given step, the algorithm performs a binary search in order to reduce
the speeds of the jobs. The binary search is performed by solving repeatedly
different instances of the WAP. Each instance of the WAP is solved by a
maximum flow computation. Specifically, given an instance < J , I, v > of the
WAP, the algorithm constructs a directed graph G as follows. There is one
node for each job Jj ∈ J , one node for each interval Ii ∈ I, a source node
s and a destination node t. The algorithm introduces an arc (s, Jj), for each
Jj ∈ J , with capacity

wj

v , an arc (Jj , Ii) with capacity |Ii|, for each couple
of job Jj and interval Ii such that Jj ∈ Ai, and an arc (Ii, t) with capacity
mi|Ii| for each interval Ii ∈ I. We say that this is the corresponding graph of
< J , I, v >. The algorithm decides if an instance < J , I, v > of the WAP
is feasible by computing a maximum (s, t)-flow on its corresponding graph G,
based on the following theorem.

s

J1

J2

J3

J4

J5

J6

I1

I2

I3

t

|I2|

|I3|

m · |I1|

m · |I3|

w
1
/v

w2
/v

w3/v

w4/v

w
5 /v

w
6 /v

|I1|

|I1|

|I1|

|I2|

|I2|

|I3|

|I3|

m · |I2|

Fig. 1 Graph corresponding to an instance of the WAP.
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Theorem 1 There exists a feasible schedule for an instance < J , I, v > of
the WAP iff there exists a feasible (s, t)-flow of value

∑
Jj∈J

wj

v in the corre-
sponding graph G.

We are ready to introduce the notion of criticality for feasible instances of
the WAP. Given a feasible instance for the WAP, we say that job Jc is critical
if, for any feasible schedule S and for each interval Ii such that Jc ∈ Ai,
either ti,c = |Ii| or

∑
Jj∈Ai

ti,j = mi|Ii|, where ti,j is the total amount of time
that job Jj is processed during Ii in S. Moreover, we say that an instance
< J , I, v > of the WAP is critical if v is the minimum speed so that the set
of jobs J can be feasibly executed during the intervals in I. We refer to this
speed v as the critical speed of J and I.

Based on the Theorem 1, we extend the notion of criticality. Let us consider
a feasible instance < J , I, v > of the WAP and let G be its corresponding
graph. Given an arc e and a feasible (s, t)-flow F of G, we say that the arc e is
saturated by F if the amount of flow that crosses the arc e according to F is
equal to the capacity of e. Additionally, we say that a path p of G is saturated
by F if there exists at least one arc e in p which is saturated. Then, a job Jc
is critical if every path Jc, Ii, t is saturated by any maximum (s, t)-flow F .

In order to continue our analysis, we need the following lemma which re-
lates, in a sense, the notions of critical job and critical instance.

Lemma 2 If < J , I, v > is a critical instance of WAP, then there is at least
one critical job Jj ∈ J .

Proof Let G be the corresponding graph of < J , I, v >. Since the instance
< J , I, v > is critical, there exists a minimum (s, t)-cut C in G that contains
either an arc (Jj , Ii), for some Jj ∈ J and Ii ∈ I, or an arc (Ii, t), for some
Ii ∈ I. If this was not the case, the only minimum (s, t)-cut would be the one
with all the arcs (s, Jj). This means that we could reduce the speed v to v− ε,
for an infinitesimal quantity ε > 0, and the instance < J , I, v − ε > would
admit a feasible flow equal to

∑
Jj∈J

wj

v−ε which contradicts the criticality of
< J , I, v >.

Now, there must be at least one arc (s, Jc) that does not belong to C, which
is a minimum (s, t)-cut containing at least one of the arcs (Jj , Ii) or (Ii, t). If
all arcs (s, Jj) were included in C, then C would have greater capacity than
the (s, t)-cut that contains just all the arcs (s, Jj) in contradiction with the
fact that C is a minimum (s, t)-cut. Based on the definition of an (s, t)-cut, we
conclude that all paths Jc, Ii, t must have an arc that belongs in C so that if
we remove the arcs of C, the nodes s and t become disconnected. Hence, the
job Jc is critical.

Note that the instance < J , I, v− ε > is not feasible if < J , I, v > is criti-
cal. Up to now, the notion of a critical job has been defined only in the context
of feasible instances. We extend this notion for unfeasible instances as follows.
In an unfeasible instance < J , I, v−ε >, a job Jj is called critical if every path
Jj , Ii, t is saturated by any maximum (s, t)-flow in the corresponding graph
G′.
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Let < J , I, v > be a critical instance of the WAP and let G be its cor-
responding graph. Next, we propose a way for identifying the critical jobs of
< J , I, v > using the graphG′ that corresponds to the instance< J , I, v−ε >,
for some sufficiently small constant ε > 0 based on Lemmas 3 and 4 below. The
value of ε is such that the two instances have exactly the same set of critical
jobs. Moreover, the critical jobs of < J , I, v− ε > can be found by computing
a minimum (s, t)-cut in the graph that corresponds to < J , I, v − ε >.

Lemma 3 Given a critical instance < J , I, v > of the WAP, there exists a
sufficiently small constant ε > 0 such that the unfeasible instance < J , I, v −
ε > and < J , I, v > have exactly the same critical jobs. The same holds for
any other unfeasible instance < J , I, v − ε′ > such that 0 < ε′ ≤ ε.

Proof Since < J , I, v > is a critical instance, because of Lemma 2, it must
contain at least one critical job.

If all the jobs of the instance are critical, then, in the graph G that corre-
sponds to < J , I, v >, there is a minimum (s, t)-cut C that contains exactly
one arc of every path Jj , Ii, t. Clearly, C is a minimum (s, t)-cut for the graph
G′ that corresponds to < J , I, v − ε > for any ε > 0, because all the arcs
(s, Jj), Jj ∈ J , have greater capacity in G′ than in G, while all the other arcs
have equal capacities in the two graphs. Hence, for any job Jj ∈ J , either the
arc (Jj , Ii) or the arc (Ii, t) is saturated by any maximum (s, t)-flow in G′, for
all Ii ∈ I such that Jj ∈ Ai. That is, all jobs are critical in G′ as well and the
lemma is true.

Now, assume that there is at least one non-critical job. Consider a non-
critical job Jj . We know that there must be at least one maximum (s, t)-flow
F in G such that at least one path Jj , Ii, t is not saturated by F , for some
Ii ∈ I such that Jj ∈ Ai. Consider such a path Jj , Ii, t. Since the path is not
saturated, we have that c(Jj ,Ii) − f(Jj ,Ii) > 0 and c(Ii,t) − f(Ii,t) > 0, where ce
is the capacity of the arc e and fe is the amount of flow that passes through
e according to F , respectively. Then, we set

ηj = min{c(Jj ,Ii) − f(Jj ,Ii), c(Ii,t) − f(Ii,t)}

The intuition behind the value ηj is the following. Assume that we increase the
capacity of the arc (s, Jj) while keeping the same capacities for the remaining
arcs. If this increase is less than ηj , then there is a maximum (s, t)-flow F ′ in
the new graph such that neither the arc (Jj , Ii), nor the arc (Ii, t) are saturated
by F ′. The maximum (s, t)-flow F ′ in the new graph can be easily obtained
from the maximum (s, t)-flow F in G.

For every non-critical job Jj , we fix a positive value ηj as we described in
the previous paragraph. Note that we do not want to compute such a value but
we only care for its existence. Let ηmin be the minimum value ηj , among all
the non-critical jobs. From the instance < J , I, v >, we obtain an unfeasible
instance < J , I, v − ε > as follows. We pick an ε such that the total increase
of the capacities of all the arcs from the source node to the job nodes is less
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than ηmin. In other words, the value ε must satisfy the following inequality∑
Jj∈J

wj
v − ε

<
∑
Jj∈J

wj
v

+ ηmin

Let us, now, explain why the two instances have the same critical jobs.
Initially, we will show that if a job is non-critical in G, then it remains non-
critical in G′. By the way we picked ε, for any non-critical job Jj in G, there is
always a maximum (s, t)-flow such that some path from Jj to t is not saturated
in G′. Therefore, each non-critical job in G, remains a non-critical job in G′.

Next, consider a critical job Jj of < J , I, v >. By construction, the arc
(s, Jj) has greater capacities in G′ than in G and all the arcs (Jj , Ii) and (Ii, t),
Jj ∈ Ai, have equal capacities in the two graphs. We conclude that (s, Jj)
cannot belong to any minimum (s, t)-cut in G′. Thus, every path Jj , Ii, t is
saturated by any maximum (s, t)-flow in G′. Therefore, if a job is critical in
G, then it is critical in G′ as well.

The following lemma is a direct consequence of the definition of criticality
on feasible and infeasible WAP instances.

Lemma 4 Assume that < J , I, v > is a critical instance for the WAP and
let G′ be the graph that corresponds to the instance < J , I, v − ε >, for any
sufficiently small constant ε > 0 in accordance with the Lemma 3. Then, any
minimum (s, t)-cut C′ of G′ contains exactly:

i. one arc of every path Jj , Ii, t for any critical job Jj,
ii. the arc (s, Jj) for each non-critical job Jj.

We are now ready to give a high level description of our algorithm. When
the algorithm begins, we assume that the optimal schedule consumes a large
amount of energy and all jobs are executed with the same speed sUB . This
speed value is selected so that there exists a feasible schedule executing all
jobs with equal speed sUB . Then, the algorithm decreases the common speed
of all jobs up to a point where no further reduction is possible so as to obtain
a feasible schedule. At this point, all jobs are assumed to be executed with
the same speed, which is critical, and there is at least one job that cannot
be executed with speed less than this, in any feasible schedule. The jobs that
cannot be executed with speed less than the critical one form the current
set of critical jobs. So, the critical job(s) is (are) assigned the critical speed
and is (are) ignored thereafter. In what follows, the algorithm considers the
subproblem in which some jobs are omitted (critical jobs), because they are
already assigned the lowest speed possible (critical speed) so that they can be
feasibly executed, and there are less than m processors during some intervals
because these processors are dedicated to the omitted jobs.

In more detail, the algorithm schedules the jobs in a sequence of ` ≤ n
discrete steps. In the initial step, it identifies the set Jcrit of critical jobs which
are the ones executed with the maximum speed in the optimal schedule. To
do so, it first computes the speed scrit that these jobs are assigned, i.e. the
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speed for which < J , I, scrit > is a critical WAP instance. The value scrit is
determined by performing binary search in the interval [sLB , sUB ], where sLB
is a speed value such < J , I, sLB > is infeasible. Once scrit is determined,
the critical jobs are identified by computing a maximum flow on the infeasible
WAP instance < J , I, scrit − ε >. The value ε is selected so that it satisfies
the requirement of the Lemma 3, i.e. the feasible, critical WAP instance <
J , I, scrit > and the infeasible WAP instance < J , I, scrit−ε > have the same
set of critical jobs. Based on the maximum flow computation, the algorithm
determines the critical jobs using Lemma 4 which indicates that there is a
unique minimum cut on the corresponding graph of < J , I, scrit − ε >, for
any ε > 0 upper bounded as indicated by Lemma 3. Note that, if we choose
ε = 0, then the graph of < J , I, scrit > has multiple different minimum cuts
with respect to the number of (s, Jj) edges, because it is a feasible WAP
instance, and identifying the critical jobs is not obvious. This observation is
the reason for detecting the critical jobs on the graph of < J , I, scrit − ε >.
Once the algorithm identifies the critical jobs, it goes on with the remaining
jobs and machine-intervals in the same manner. Algorithm 1 is a pseudocode
of the proposed algorithm.

Next, we derive a valid, concrete value ε. Given a value ε in accordance with
Lemma 3, Algorithm 1 produces the distinct job speed values s1 > s2 > . . . >
s`. Because these speed values are critical speeds of critical jobs in critical
WAP instances, they must belong to a well-defined discrete, exponential set
as indicated by the following lemma.

Lemma 5 Let sj′ be the speed that Algorithm 1 assigns to job Jj′ ∈ J . It
holds that sj′ = (

∑
Jj∈S wj)/(

∑
Ii∈I xi|Ii|), for some subset S ⊆ J of jobs

and numbers xi ∈ [0,m] of machines ∀Ii ∈ I.

Proof When job Jj′ is assigned a speed by the algorithm, it is a critical job
for some critical WAP instance < J ′, I ′, v′ > and sj′ = v′. Let S be the set
of critical jobs in < J ′, I ′, v′ > and

∑
Ii∈I xi|Ii| the sum of the arcs of the

(Jj , Ii, t) paths in the Lemma 4 minimum cut. By the definition of criticality,
it must be the case that sj′ = (

∑
Jj∈S wj)/(

∑
Ii∈I xi|Ii|).

In what follows, we derive a suitable value for ε assuming that input data
are integers. However, the arguments can be adapted to obtain an alternative,
valid ε in the case of bounded rational input data. Lemma 3 selects a value
ε such that the feasible, critical WAP instance < J , I, v > and the infeasible
instance < J , I, v − ε > have the same set of critical jobs, and thus the same
set of non-critical jobs. In each step of the algorithm, this requirement for the
value ε is equivalent to sk − sk+1 ≥ ε. Otherwise, by the way the algorithm
computes sk and sk+1 and the way ε is obtained in the proof of Lemma 3,
the corresponding WAP instances < J , I, v > and < J , I, v − ε > in the
computation of sk would not have the same set of non-critical jobs, i.e. we
would have a contradiction. Because the input data are integral and the fact
that the speed values produced by the algorithm belong to a discrete set as
indicated by Lemma 5, Lemma 6 derives an appropriate ε value.



14 Eric Angel et al.

Lemma 6 Consider a pair of jobs Jj′ , Jj′′ ∈ J for which Algorithm 1 assigns
speeds sj′ and sj′′ such that sj′ 6= sj′′ . Without loss of generality, suppose that
sj′ > sj′′ . Assuming that the input data are integral, if ε = 1/2m2L2, where
L = dmax − rmin, then it holds that sj′ − sj′′ > ε.

Proof By Lemma 5, sj′ = (
∑
Jj∈S′ wj)/(

∑
Ii∈I x

′
i|Ii|) and sj′′ = (

∑
Jj∈S′′ wj)/(

∑
Ii∈I x

′′
i |Ii|),

where S ′,S ′′ ⊆ J and x′i, x
′′
i ∈ [0,m] for Ii ∈ I. Then, it holds that

sj′ − sj′′ =

∑
Jj∈S′ wj∑
Ii∈I x

′
i|Ii|

−
∑
Jj∈S′′ wj∑
Ii∈I x

′′
i |Ii|

=

(∑
Jj∈S′ wj

) (∑
Ii∈I x

′′
i |Ii|

)
−
(∑

Jj∈S′′ wj

) (∑
Ii∈I x

′
i|Ii|

)(∑
Ii∈I x

′
i|Ii|

) (∑
Ii∈I x

′′
i |Ii|

)
>

1/2(∑
Ii∈I x

′
i|Ii|

) (∑
Ii∈I x

′′
i |Ii|

) > 1

2m2L2
,

where the first inequality holds because the input data are integers and s′j 6=
sj′′ .

Note that the binary search procedure may compute scrit subject to ε
accurracy. However, once the set Jcrit of critical jobs has been determined, we
may compute the critical speed exactly as follows. For each interval Ii, let mi

be the number of available processors. Then, min{|Jcrit|,mi} processors are
occupied by the jobs Jcrit which are scheduled with constant speed so as to
occupy these processors in every interval. This last speed is equal to

scrit =

∑
Jj∈Jcrit

wj∑
Ii∈I min{|Jcrit|,mi}|Ii|

(13)

Due to the convexity of the speed-to-power function, we know that each
job Jj cannot be executed with speed less than its density δj =

wj

dj−rj in any

optimal schedule. Therefore, given a set of jobs J , we know that there does not
exist an optimal schedule that executes all jobs with a speed s < maxJj∈J {δj}.
Also, observe that if all jobs have speed s = maxIi∈I{ 1

|Ii|
∑
Jj∈J wj}, then we

can construct a feasible schedule. These bounds define the search space of the
binary search performed in the initial step. In the next step the critical speed
of the previous step is an upper bound on the speed of all remaining jobs and
a lower bound is the maximum density among them. We use these updated
bounds to perform the binary search of the current step and we go on like
that.

Theorem 2 Given a sufficiently small constant ε satisfying Lemma 4, Algo-
rithm 1 produces an optimal schedule.

Proof We will show that any schedule constructed by the algorithm satisfies
the properties of Lemma 1. Let G(k) be the graph maintained by the algorithm
at the beginning of the k-th step.
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Algorithm 1

1: sUB = maxi{ 1
|Ii|

∑
Jj∈Ai

wj}, sLB = maxJj∈J {δj}
2: while J 6= ∅ do
3: Find the maximum speed v so that the instance < J , I, v > of the WAP is not

feasible, using binary search in the interval [sLB , sUB ] with repeated maximum flow
computations until the size of the interval is at most ε (this ε is small enough to
satisfy Lemma 3).

4: Determine the set of critical jobs Jcrit by computing a minimum (s, t)-cut in the
graph G′ that corresponds to the instance < J , I, v − ε > based on Lemma 4.

5: Assign to each job in Jcrit the speed computed according to Equation (13).
6: J = J\Jcrit.
7: Update the set of available processors for each interval Ii ∈ I.
8: sUB = scrit, sLB = maxJj∈J\Jcrit

{δj}
9: Apply an optimal algorithm for P |pmtn, rj , dj |− to schedule the jobs, where each job
Jj has processing time wj/sj .

We begin with the proof of property 1. Consider an interval Ii s.t. |Ai| ≤ m
and a job Jj ∈ Ai. Assume that Jj becomes critical in the k-th step. Then,
either the edge (Jj , Ii) or the edge (Ii, t) must belong to a minimum (s, t)-cut
of G(k). Since |Ai| ≤ m, only the first is possible which means that ti,j = |Ii|
in the algorithm’s schedule.

In the remainder of the proof, we consider an interval Ii s.t. |Ai| > m.
Assume that a job Jj ∈ Ai is scheduled in the k-th iteration. Then, either the
edge (Jj , Ii) or the edge (Ii, t) belongs to a minimum (s, t)-cut of G(k). Since
there are more than m jobs active during Ii, we conclude that

∑
Jj∈Ai

ti,j =

m|Ii| in the algorithm’s schedule and property 2i is true.

For property 2ii, consider two jobs Jj and Jj′ , active during Ii, such that
0 < ti,j < |Ii| and 0 < ti,j′ < |Ii|. We will show that the jobs are assigned equal
speeds by the algorithm. For this, it suffices to show that they are assigned a
speed at the same step. So, assume for contradiction that Jj becomes critical
before Jj′ , at the k-th step. Then, either the arc (Jj , Ii) or the arc (Ii, t)
belongs to a minimum (s, t)-cut C in G(k). Since 0 < ti,j < |Ii|, we know that
there exists a maximum (s, t)-flow in G(k) such that 0 < f(Jj ,Ii) < |Ii|. Thus,

it is the arc (Ii, t) that belongs in C. Consequently, in G(k), the edge (Ii, t)
is saturated by any maximum (s, t)-flow, and as a result, all the processors
during the interval Ii are dedicated to the execution of some tasks at the end
of the k-th step. Hence, Jj′ cannot be scheduled in a subsequent step.

For property 2iii, consider the case where ti,j = 0 for a job Jj ∈ Ai and
assume that Jj becomes critical at the k-th step. Then, either (Ii, t) does not
appear in G(k) or (Ii, t) belongs to a minimum (s, t)-cut of G(k). If none of
these was true, then Jj would not be critical in G(k). Therefore, Jj cannot
have speed greater than any job scheduled during Ii.

Next, let Jj be a job with ti,j = |Ii| and assume that it is assigned a speed
at the k-th step. Given our previous observations, this cannot happen after a
step where a job Jj′ with 0 < ti,j′ < |Ii| or ti,j′ = 0 is scheduled.
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We turn, now, our attention to the running time of the algorithm. Because
of Lemma 2, at least one job is scheduled at each step of the algorithm. There-
fore, there will be at most n steps. Assume that U is an upper bound on the
speed of any job in the optimal schedule, e.g. U = maxIi∈I{ 1

|Ii|
∑
Jj∈J wj}.

Then, the binary search needs to check O(log U
ε ) values of speed to determine

the next critical speed at one step, where ε is small enough so that Lem-
mas 3 and 4 are satisfied. That is, BAL performs O(log U

ε ) maximum flow
calculations at each step. Thus, the overall complexity of our algorithm is
O(nf(n) log U

ε ), where f(n) is the complexity of computing a maximum flow
in a graph with O(n) vertices.

In a graph with V vertices and E edges, a maximum flow can be computed
in O(V 2E) time using (i) the push-relabel algorithm [1], or (ii) Dinic’s blocking
flow algorithm [14]. Using the dynamic tree data structure by Sleator and
Tarjan [21], a maximum flow is computed in O(V E log V ) time. The network
of Algorithm 1 contains V = O(n) vertices and E = O(n2) edges. Based on
this result, we conclude the following corollary.

Corollary 1 There exists an optimal algorithm for the speed scaling problem
on parallel processors with migration, running in O(n4 log(nm2L2U)) time.

6 Conclusion

We studied the multiprocessor speed scaling problem of minimizing the en-
ergy with migrations. We proposed a combinatorial polynomial-time algorithm
based on a reduction to the maximum flow problem. Since there is not much
work on problems with migrations there are many directions and speed prob-
lems to be considered in a multicriteria context. All these problems seem to be
very interesting and might require new algorithmic techniques because of their
continuous nature. We believe that the approach used in our paper might be
useful in this direction.
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Appendix: Convex Programming and KKT Conditions

A optimization problem in the following form is called a convex optimization
problem if all the functions f, g1, . . . , gm : Rn → R are convex.

min f(x)

gi(x) ≤ 0 1 ≤ i ≤ m
x ∈ Rn

In what follows, we state the KKT (Karush, Kuhn, Tucker) conditions
which are necessary and sufficient for optimality in convex programming (see
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[19]). Consider any convex program in the above form where all functions all
functions gi are differentiable in their domain. Suppose that the program is
strictly feasible, i.e. there is a point x such that gi(x) < 0, for all 1 ≤ i ≤ m.
To each constraint gi(x) ≤ 0, we associate a dual variable λi. Then, the KKT
conditions are expressed as follows

gi(x) ≤ 0 1 ≤ i ≤ m (11)

λi ≥ 0 1 ≤ i ≤ m (12)

λi · gi(x) = 0 1 ≤ i ≤ m (13)

∇f(x) +

m∑
i=1

λi · ∇gi(x) = 0 (14)

KKT conditions are necessary and sufficient for the solutions x ∈ Rn and
λ ∈ Rm to be primal and dual optimal, where λ = (λ1, λ2, . . . , λm). The
conditions (11) are known as primal feasible, (12) as dual feasible, (13) as
complementary slackness and (14) as stationarity conditions, respectively.


