
Energy Minimization via a Primal-Dual
Algorithm for a Convex Program

Evripidis Bampis1,?,??, Vincent Chau2,?, Dimitrios Letsios1,2,?,
Giorgio Lucarelli1,2,?,??, and Ioannis Milis3,??

1 LIP6, Université Pierre et Marie Curie, France.
{Evripidis.Bampis, Giorgio.Lucarelli}@lip6.fr

2 IBISC, Université d’Évry, France.
{vincent.chau,dimitris.letsios}@ibisc.univ-evry.fr

3 Dept. of Informatics, AUEB, Athens, Greece.
milis@aueb.gr

Abstract. We present an optimal primal-dual algorithm for the energy
minimization preemptive open-shop problem in the speed-scaling setting.
Our algorithm uses the approach of Devanur et al. [JACM 2008], by ap-
plying the primal-dual method in the setting of convex programs and
KKT conditions. We prove that our algorithm converges and that it re-
turns an optimal solution, but we were unable to prove that it converges
in polynomial time. For this reason, we conducted a series of experiments
showing that the number of iterations of our algorithm increases linearly
with the number of jobs, n, when n is greater than the number of ma-
chines, m. We also compared the speed of our method with respect to
the time spent by a commercial solver to directly solve the correspond-
ing convex program. The computational results give evidence that for
n > m, our algorithm is clearly faster. However, for the special family of
instances where n = m, our method is slower.

1 Introduction

The primal-dual method has been extensively used for obtaining optimal [7, 8, 13]
and approximate [9, 14] solutions for many well known optimization problems.
It has been mainly applied for problems formulated as linear programs. Only
recently Devanur et al. [6] applied the primal-dual paradigm in the more general
setting of convex programming and the Karush-Kuhn-Tucker (KKT) conditions.
Our work is in the same vein. We explore the primal-dual paradigm in the context
of energy minimization scheduling with respect to the speed-scaling model. In
this model the speed of each processor can dynamically change at any time,

? Partially supported by the French Agency for Research under the DEFIS program
TODO, ANR-09-EMER-010, and a PHC CAI YUANPEI France-China bilateral
project.

?? Partially supported by the project ALGONOW, co-financed by the European Union
(European Social Fund - ESF) and Greek national funds, through the Operational
Program “Education and Lifelong Learning”, under the program THALES.

while the energy consumption is a convex function of the speed. More formally,
if a processor runs at speed s(t) at time t, then the power needed is P (t) = s(t)α,
where α > 1 is a machine-dependent constant.4 The energy consumption of the
processor is equal to the integral of the power over time, i.e., E =

∫
P (t)dt.

Moreover, the processor’s speed is the rate at which work is executed and, thus,
the total of work amount executed by a processor is the integral of its speed, i.e.
w =

∫
s(t)dt.

We focus on the speed-scaling preemptive open-shop problem for which there
is a natural formulation as a convex program. In the energy minimization speed-
scaling preemptive open-shop problem, we are given a set of n jobs J = {J1, J2,
. . . , Jn} and a set of m processors M = {M1,M2, . . . ,Mm}. Each job consists
of operations that have to run on different processors. Operations of the same
job cannot be executed at the same time. The operation Oij of the job Jj has
to be executed on processor Mi and it has an amount of work wij ≥ 0. Note
that, it is not necessary for each job to have an operation to all processors;
in this case wij = 0. The operations may be preempted, that is they can be
interrupted and continue their execution later. The goal is to minimize the total
energy consumed such that all operations are completed before a given deadline
d. Extending the Graham’s three-field notation [11] for scheduling problems, we
denote our problem by O|pmtn, d|E.

Related Work. The preemptive open-shop problem has been extensively studied
in the classical setting (without caring about the energy consumption). In this
setting, each operation Oij has a processing time pij , instead of a work. When the
goal is the minimization of the length of the schedule (makespan) the problem
O|pmtn|Cmax can be solved in polynomial time [10]. Several other results for the
preemptive open-shop can be found in [5]. The speed-scaling preemptive open-
shop problem has beed studied, recently, by Bampis et al. [3], who presented a
combinatorial algorithm for O|pmtn, d|E based on a transformation to a convex
cost flow problem.

In [12], Gupta et al. apply a primal-dual approach in order to obtain a con-
stant factor competitive algorithm for a speed-scaling problem in the online
setting. This algorithm is based on a primal-dual schema using the Lagrangian
duality and it is quite different from our primal-dual approach.

There is a lot of work in the speed-scaling area, and the interested reader is
referred to the recent reviews [1, 2].

Our contribution. In linear programming, the idea of the primal-dual approach
is, in general, to modify the dual and the primal variables in turns, based on
the complementary slackness conditions. In the convex programming setting, it
is not possible to define a dual program as for the linear problems. However,
there is always an optimal solution for any convex program in which the primal
variables are related with the dual variables through some equality relationships
known as the stationarity conditions. Therefore, by modifying the dual variables,

4 In most applications, α is considered to be between two and three.

that correspond to Lagrangian multipliers, there is a direct impact on the values
of the primal variables.

In Section 3 we formulate our problem as a convex program. Then, in Sec-
tion 4, we propose a primal-dual algorithm and we prove that it is optimal and
that it converges. Unfortunately, we are unable to prove that it converges in
polynomial time. In Section 5, we present a series of experiments showing that
the number of iterations of our algorithm increases linearly with the number of
jobs when n > m. We are also interested in the comparison of the execution time
of our method with respect to the time spent by a commercial solver to directly
solve the corresponding convex program. The computational results show that
for n > m, our algorithm is clearly faster. However, for the special family of
instances where n = m, our method is slower.

2 Preliminaries

In most of the speed-scaling problems, due to the convexity of the speed-to-
power function, each job/operation runs at a constant speed during its whole
execution in an optimal schedule (see for example [15]). This observation holds
also for our problem and its proof directly follows from the convexity of the
power function. Note that, given the speed sij of the operation Oij , the time
needed for the execution of Oij is

wij
sij

, while the energy consumed during its

execution is
wij
sij
sαij = wijs

α−1
ij .

In what follows in this paper, we will consider a relaxation Π ′ of our original
problem Π, in which operations of the same job are allowed to be executed
simultaneously but the sum of the execution times of the operations of the
same job cannot exceed d. A solution of this problem gives the speeds of the
operations, without determining their order. Clearly, for an optimal solution E′

of Π ′, it holds that E′ ≤ E, where E is the energy consumption in an optimal
solution for Π.

In the following sections we formulate the relaxed problem as a convex pro-
gram and we propose a primal-dual algorithm to find an optimal solution for
it. A solution for Π ′ determines the speeds of operations, and hence their pro-
cessing times. Then, we can run a polynomial algorithm for O|pmtn|Cmax (see
for example [10]) to get a feasible open-shop solution for our problem Π. This
procedure is described formally in Algorithm 1.

Algorithm 1

1: Solve optimally the relaxed problem Π ′ to define the speeds of operations;
2: For each Oij set processing time pij =

wij
sij

;

3: Run the algorithm proposed in [10] for O|pmtn|Cmax;

Theorem 1. Algorithm 1 returns an optimal schedule for O|pmtn, d|E.

Proof. In an optimal solution for Π ′, all jobs and processors are active for time
at most d, while it is easy to see that there is at least one job or processor
with processing time exactly d. If not, we can decrease the speeds of all oper-
ations and get a feasible schedule for Π ′ of smaller energy consumption, which
is a contradiction as we have considered an optimal schedule. Moreover, it is
known (e.g. [5]) that any optimal solution for O|pmtn|Cmax has length equal to
max{maxi

∑
Oij∈Mi

pij , maxj
∑
Oij∈Jj pij}, which in our case is d. Thus, Algo-

rithm 1 returns a feasible open-shop solution for Π, i.e., a solution where no
operations of the same job are executed simultaneously and the completion time
of all operations is at most d. In other words, the algorithm for O|pmtn|Cmax

produces a feasible solution of Π given the speeds obtained by a feasible solution
for Π ′, and hence the energy consumed for Π is equal to E′. As the speeds, and
hence the processing times, of operations are selected in Line 1 in such a way
that E′ is minimized, the theorem holds. ut

3 Convex Programming Formulation and the KKT
conditions

In this section we first formulate our relaxed problem as a convex program.

min
∑

Oij∈Jj

∑
Oij∈Mi

wijs
α−1
ij∑

Oij∈Mi

wij
sij
≤ d 1 ≤ i ≤ m (1)

∑
Oij∈Jj

wij
sij
≤ d 1 ≤ j ≤ n (2)

sij ≥ 0 Oij ∈ Jj , Oij ∈Mi

Constraints (1) and (2) do not allow a job and a processor, respectively, to
be active for a time period greater than d.

The Karush-Kuhn-Tucker conditions are necessary and sufficient conditions
[4] for a feasible solution of our convex program to be optimal. Note that, the
βi’s, 1 ≤ i ≤ m, correspond to the Lagrangian multipliers for the Constraints (1)
and the γj ’s, 1 ≤ j ≤ n, correspond to the Lagrangian multipliers for the Con-
straints (2).

Stationarity conditions:

∇

 ∑
Oij∈Jj

∑
Oij∈Mi

wijs
a−1
ij

+

m∑
i=1

βi · ∇

 ∑
Oij∈Mi

wij
sij
− d


+

n∑
j=1

γj · ∇

 ∑
Oij∈Jj

wij
sij
− d

+
∑

Oij∈Jj

∑
Oij∈Mi

δij · ∇(−sij) = 0

or equivalently

∑
Oij∈Jj

∑
Oij∈Mi

(
wij(a− 1)sa−2ij − (βi + γj)

wij
s2ij
− δij

)
∇sij = 0 (3)

Complementary slackness conditions:

βi ·

 ∑
Oij∈Mi

wij
sij
− d

 = 0 1 ≤ i ≤ m (4)

γj ·

 ∑
Oij∈Jj

wij
sij
− d

 = 0 1 ≤ j ≤ n (5)

δij · (−sij) = 0 Oij ∈ Jj , Oij ∈Mi (6)

Note that operations with work wij = 0 are not counted into the above sums.
Then, as each operation has a work wij > 0 to execute, it holds that sij > 0,
and hence, by condition (6) we have that δij = 0. Thus, Equation (3) can be
reformulated as

sαij =
βi + γj
α− 1

Oij ∈ Jj , Oij ∈Mi (7)

As we already mentioned in the introduction, the KKT conditions, and especially
the stationarity conditions, give a relation between the primal and the dual
variables. Indeed, Equations (7) directly connect our primal variables sij with
our dual variables βi and γj . Intuitively, each dual variable βi, 1 ≤ i ≤ m,
can be considered as the contribution of the processor Mi to the speed of the
operations Oij , 1 ≤ j ≤ n. In a similar way, each dual variable γj , 1 ≤ j ≤ n, can
be considered to be the contribution of the job Jj to the speed of the operations
Oij , 1 ≤ i ≤ m.

4 The Primal-Dual Algorithm

In this section we present a combinatorial algorithm based on the primal-dual
approach. The main idea of the algorithm is to determine the values of dual
variables, βi and γj , and hence the speeds of operations, through a primal-dual
scheme. Our algorithm initializes the dual variables according to the following
proposition that provides upper and lower bounds for them.

Proposition 1.

(i) For each βi, 1 ≤ i ≤ m, it holds that 0 ≤ βi ≤ (α− 1)

(∑
Oij∈Mi

wij

d

)α
.

(ii) For each γj, 1 ≤ j ≤ n, it holds that 0 ≤ γj ≤ (α− 1)

(∑
Oij∈Jj

wij

d

)α
.

Proof. The lower bounds follow by the definition of βi’s and γj ’s.
For the upper bound on βi’s, consider a processor Mi, 1 ≤ i ≤ m. As we

search for an upper bound we can assume that βi > 0. Hence, by the comple-
mentary slackness conditions (4) and applying the stationarity conditions (7),
in an optimal solution it holds that∑

Oij∈Mi

wij
sij
− d = 0⇔

∑
Oij∈Mi

wij

α

√
βi+γj
α−1

= d

To obtain the upper bound on βi, we can consider that the speeds of all oper-
ations Oij ∈ Mi depend only on the contribution of the processor Mi, that is
γj = 0 for all Oij ∈Mi. Hence, we have that

∑
Oij∈Mi

wij

α

√
βi
α−1

≥ d⇔ βi ≤ (α− 1)

(∑
Oij∈Mi

wij

d

)α

The same arguments hold for the upper bounds on γj ’s. ut

Based on the previous proposition, we initialize each dual variable βi, 1 ≤
i ≤ m, to its lower bound and each dual variable γj , 1 ≤ j ≤ n, to its upper
bound. Given these initial values, the obtained schedule may not be feasible.
More specifically, the processing time of some processors may be more than d,
i.e.,

∑
Oij∈Mi

wij
α
√

γj
α−1

> d. For such a processor Mi, we increase βi such that the

processing time of Mi is exactly d, i.e.,
∑
Oij∈Mi

wij
α
√
βi+γj
α−1

= d. We refer to this

step as an “infeasible-to-feasible” step. The increasing of βi’s has as a result
some jobs to become non-tight, i.e.,

∑
Oij∈Jj

wij
α
√
βi+γj
α−1

< d. For such a job Jj ,

we decrease γj such that to be equal to the maximum between zero (respecting
our definition) and the value of γj needed so that Jj becomes tight again, i.e.,∑
Oij∈Jj

wij
α
√
βi+γj
α−1

= d. We refer to this step as a “non-tight-to-tight” step. Thus,

the decreasing of γj ’s has as a result some processors to become non-feasible,
and so on. The criterion to terminate this procedure is when after a “non-tight-
to-tight” step all the complementary slackness conditions are satisfied. A formal
description of the above procedure is given in Algorithm 2.

Note that, the algorithm modifies a dual variable βi only if the processor
Mi is non-feasible in such a way to make it feasible (and tight). To do this, the
speed of each operation Oij ∈ Mi is increased through the increasing of βi. By
the definition of the algorithm, Mi can be in a feasible and non-tight state only
if βi = 0. In a similar way the algorithm modifies a dual variable γj only if the
job Jj is non-tight (and feasible) in such a way to make it tight. To do this,
the speed of each operation Oij ∈ Jj is decreased through the decreasing of γj .
By the definition of the algorithm, Jj cannot be in an infeasible state. Based on
these observations, the following proposition follows.

Algorithm 2

1: For each i, 1 ≤ i ≤ m, set βi = 0;

2: For each j, 1 ≤ j ≤ n, set γj = (α− 1)

(∑
Oij∈Jj

wij

d

)α
;

3: while the complementary slackness conditions are not satisfied do
4: for each i, 1 ≤ i ≤ m, such that the processor Mi is not feasible do

5: Choose βi such that

∑
Oij∈Jj

wij

α
√
βi+γj
α−1

− d

 = 0;

6: for each j, 1 ≤ j ≤ j, such that the job Jj is not tight do

7: Choose the maximum value of γj such that γj ·

d−∑Oij∈Jj
wij

α
√
βi+γj
α−1

 = 0;

Proposition 2.
(i) For each i, 1 ≤ i ≤ m, the value of βi is always non-decreasing.
(ii) For each j, 1 ≤ j ≤ n, the value of γj is always non-increasing.

Theorem 2. Algorithm 2 converges to an optimal solution of the relaxed prob-
lem.

Proof. In each iteration the algorithm modifies at least one dual variable; oth-
erwise the complementary slackness conditions are satisfied and the algorithm
terminates. By Proposition 2 the modification of the dual variables is monotone,
while by Proposition 1 there are well-defined lower and upper bounds for them.
Therefore, the algorithm terminates.

In order to show that the algorithm converges in an optimal solution, we
just have to show that the solution obtained satisfies the KKT conditions. The
stationarity conditions (7) hold as for any operation Oij the assigned speed by

construction can be written as sij = α

√
βi+γj
α−1 . The complementary slackness

conditions (4) hold since after the final “non-tight-to-tight” step any processor
Mi is either tight or its βi = 0; if not then the algorithm would have executed a
new iteration. The complementary slackness conditions (5) hold since in Line 7

we force γj ·

(
d−

∑
Oij∈Jj

wij
α
√
βi+γj
α−1

)
= 0. The complementary slackness condi-

tions (6) hold since for any operation Oij we have set δij = 0. ut

5 Experimental Results

In this section we experimentally test our primal-dual algorithm towards two di-
rections. The first direction is to observe the behavior of our algorithm when the
size of the instance increases. The second direction is to compare the execution
time of the primal-dual approach against the execution time of a baseline algo-
rithm, that is a commercial solver that solves directly the corresponding convex
program.

5.1 System Specification and Benchmark Generation

Our simulations have been performed on a machine with a CPU Intel Xeon
X5650 with 8 cores, running at 2.67GHz. The operating system of the machine
is a Linux Debian 6.0. We used Matlab with cvx toolbox. The solver used for the
convex program is SeDuMi. For both our algorithm and the convex program, we
set ε = 10−7 to be the desired accuracy of the returned solution.

The instance of the problem consists of a matrix m × n that corresponds
to the work of the operations, the value of α and the deadline d. However, we
experiment with two more parameters: (i) the density p of the instance, that
is the number of non-zero work operations, and (ii) the range [1, wmax] of the
values of works.

We have considered several combinations for the parameters m, 1 ≤ m ≤ 50,
and n, 1 ≤ n ≤ 200. For each combination, we have first decided randomly with
probability p if there is a non-zero work operation in each position of the m× n
matrix. The value of p has been selected to be 0.5 or 0.75 or 1. If the created
instance did not correspond to the selected values of m and n, we rejected it and
we replaced it by another. In other words, we reject a matrix iff there exists a
line or a column in which each value is equal to zero. Then, for each operation
with non-zero work, we selected at random an integer in the range of [1, wmax].
Note here that wmax and the deadline d are strongly related. Indeed, given a
matrix of works and a deadline d, if we increase all works and the deadline by
the same factor, then the optimal solutions of the two instances will tend to have
very similar (if not the same) speeds and energy consumption. For this reason,
we have fixed the value of d = 1000 and we examined three different values for
wmax, i.e., wmax = 10, wmax = 50 and wmax = 100. These values are selected, in
general, in the direction of creating instances in which the average speed in the
optimal solution is greater than one, almost equal to one and smaller than one,
respectively. Finally, as in most applications the value of α is between two and
three, we used three different values for it, that is α = 2, α = 2.5 and α = 3.

For each combination of parameters we have repeated the experiments with
30 different matrices. All results we present below, concern the average of these
30 instances.

The benchmark as well as the code we used in our experiments are freely
available at http://todo.lamsade.dauphine.fr/spip.php?article85.

5.2 Results

The main goal of our experiments is to study the behavior of the primal-dual
algorithm when the size of the instance increases. However, during our experi-
ments we noticed that the speed of convergence strongly depends on the relation
between the number of jobs n and the number of processors m.

In Table 1, we show how the size of the instance affects the number of mod-
ifications of the dual variables made by the primal-dual algorithm. We observe
that, if n > m then the number of modifications increases linearly with the size

of the instance (see also Fig. 1). Moreover, the parameters α, wmax and p do not
play any role to the number of modifications.

Note also that if n < m then the number of modifications increases linearly
with the size of the instance. In fact the two cases n > m and n < m should
be symmetric. However, the initialization step of our algorithm breaks this sym-
metry. Recall that the algorithm initializes the dual variables that correspond
to processors (βi’s) to zero and the dual variables that correspond to jobs (γj ’s)
to their upper bounds. In the case where n < m, we expect to have all jobs
tight and most of the processors non-tight in the optimal schedule of a random
instance. Hence, the number of non-zero βi’s is expected to be very small. The
initialization step helps in this direction, and this is the reason why the number
of modifications is very small if n < m.

n m = 5 m = 10 m = 15 m = 20 m = 25 m = 30 m = 40 m = 50

5 40101 1 2 2 2 2 2 2
10 151 279611 3 4 3 4 4 4
20 255 295 384 – 34 7 7 10
30 355 410 443 500 593 – 12 15
40 455 510 565 572 640 756 – 32
50 555 610 665 720 768 755 947 –
60 655 710 765 820 872 864 1040 1294
70 755 810 865 920 975 1030 1034 1250
100 1055 1110 1165 1220 1275 1330 1440 1495
150 1555 1610 1665 1720 1775 1830 1940 2050
200 2055 2110 2165 2220 2275 2330 2440 2550

Table 1. The number of modifications of the dual variables done by the primal-dual
algorithm. The values of the table correspond to α = 2, wmax = 10, p = 1. Each entry
of the table is the average over 30 instances. The empty entries correspond to cases
with m = n and take time longer than 30 minutes each and are interrupted.

However, if n = m the behavior of our algorithm completely changes. For
example, for m = 10 and n = 10 we need 279611 modifications, while for m = 10
and n = 20 we need only 295. Even more, for m = n = 20 the primal-dual
algorithm does not even converge in 30 minutes. Furthermore, if m = n then the
parameters α, wmax and p affect the convergence of the algorithm. For example,
in the case where m = 10 and n = 10, then the following table shows the number
of modifications of the dual variables performed by our algorithm when we fix
the two of the three parameters. Note that in the last line of the table, the
algorithm did not terminate within the time threshold.

Parameters Modifications

α = 2
p = 0.5 344

wmax = 10
p = 0.75 23915
p = 1 179611

wmax = 10
α = 2 279611

p = 1
α = 2.5 59785
α = 3 10716

α = 2
wmax = 10 279611

p = 1
wmax = 50 406608
wmax = 100 –

In Table 2 we give a comparison of the execution time of the primal-dual
algorithm with the execution time of solving directly the convex program using
the SeDuMi solver in Matlab. We observe again the difference between n 6= m
and n = m. In the first case, our algorithm highly outperforms the solver (see
Fig. 1). In the second case, our algorithm does not even terminate within 30
minutes if n = m = 20, while the execution time of the solver is not affected.
Note also that the solver’s execution time as well as the execution time of the
primal-dual algorithm when n = m depend on the parameters α, wmax and p.

n
m = 10 m = 20 m = 30 m = 40 m = 50

CP PD CP PD CP PD CP PD CP PD

5 0.59 0.00 0.99 0.00 1.41 0.01 1.83 0.01 2.11 0.01
10 1.22 147.93 1.26 0.01 1.81 0.01 2.42 0.01 2.59 0.01
20 1.25 0.06 3.12 – 2.57 0.02 3.11 0.02 3.92 0.03
30 1.72 0.08 2.58 0.12 5.57 – 4.36 0.03 5.30 0.04
40 2.17 0.10 3.28 0.13 4.38 0.21 8.31 – 6.48 0.05
50 2.67 0.12 4.00 0.16 5.19 0.19 6.72 0.33 11.49 –
60 3.47 0.15 4.96 0.18 6.72 0.23 8.39 0.29 9.87 0.47
70 3.86 0.16 5.99 0.21 7.73 0.26 9.84 0.28 11.42 0.40
100 5.85 0.22 8.62 0.27 11.85 0.32 13.86 0.38 17.56 0.42
150 9.31 0.31 14.34 0.38 19.30 0.47 24.66 0.52 31.10 0.56
200 12.89 0.42 19.87 0.51 28.78 0.59 36.83 0.68 46.31 0.74

Table 2. A comparison of the execution time of the primal-dual approach (PD) with
the execution time of the SeDuMi solver for convex programs (CP). The execution times
are computed in seconds. The values of the table correspond to α = 2, wmax = 10, p = 1.
Each entry of the table is the average over 30 instances. The empty entries correspond
to cases with m = n and take time longer than 30 minutes each and are interrupted.

The results presented above motivated us to further explore the case n = m.
For this reason, we performed more experiments for m = 10, 20, 30, 40, 50 and
n = m−5,m−4, . . . ,m+4,m+5. The results of these experiments are shown in
Fig. 2. The horizontal axis corresponds to the difference m−n, while the vertical

(a) (b)

Fig. 1. Parameters: α = 2, wmax = 10, p = 1. (a) The number of modifications of
the dual variables made by the primal-dual algorithm if n > m. (b) A comparison of
the execution times of the primal-dual algorithm and the SeDuMi solver for convex
programs if n > m (m = 10).

axis corresponds to the logarithm of the modifications of the dual variables made
by our algorithm.

Fig. 2. Parameters: α = 2, wmax = 10, p = 1. The vertical axis represent the logarithm
of the modifications of the dual variables made by the primal-dual algorithm.

We observe that the behavior of the primal-dual algorithm dramatically
changes when n = m, while there is a much smaller perturbation when n = m±1
and n = m± 2. In all other cases the number of modifications seems to increase
linearly with the size of the instance. The problem with the case where n = m
probably occurs because in an optimal solution of a random instance almost all
processors and jobs are tight, that is the total execution time of each processor
and each job is equal to the deadline d. In other words, all βi’s and γj ’s are
expected to be non-zero. The primal-dual algorithm, in each iteration “corrects”
first the values of βi’s and then the values of γj ’s. As all of them are expected

to be non-zero in the optimal solution the required precision plays a significant
role to the speed of the convergence of the algorithm.

6 Conclusions

We have presented a primal-dual algorithm in the general setting of convex pro-
gramming and KKT conditions and we have proved that it converges to an
optimal solution. In the direction of exploring the complexity of our algorithm,
we performed simulations to observe its behavior when the size of the instance
increases. Our experiments highlight the case in which the primal-dual algorithm
has a problematic behavior, i.e., when n = m. In all other cases, and more inter-
estingly in the case where n > m that is closer to applications, the complexity
of the algorithm seems to depend linearly on the size of the instance. An inter-
esting open question remaining is whether our algorithm has a polynomial-time
complexity. If not, the design of another algorithm based on the primal-dual
paradigm that runs in polynomial time would be a challenging direction.

References

1. S. Albers. Energy-efficient algorithms. Communications of ACM, 53:86–96, 2010.
2. S. Albers. Algorithms for dynamic speed scaling. In STACS’11, pages 1–11, 2011.
3. E. Bampis, D. Letsios, and G. Lucarelli. Green scheduling, flows and matchings.

In ISAAC’12, volume 7676 of LNCS, pages 106–115. Springer, 2012.
4. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Un. Press, 2004.
5. P. Brucker. Scheduling algorithms (4th ed.). Springer, 2004.
6. N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V. Vazirani. Market

equilibrium via a primal-dual algorithm for a convex program. Journal of the
ACM, 55(5), 2008.

7. J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
Research of the National Bureau of Standards, Section B, 69:125–130, 1965.

8. L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

9. M. X. Goemans and D. P. Williamson. The primal-dual method for approximation
algorithms and its application to network design problems, chapter 4, pages 144–
191. PWS publishing company, 1997.

10. T. Gonzalez. A note on open shop preemptive schedules. IEEE Transactions on
Computers, C-28:782–786, 1979.

11. R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Opti-
mization and approximation in deterministic sequencing and scheduling. Annals
of Discrete Mathematics, 5:287–326, 1979.

12. A. Gupta, R. Krishnaswamy, and K. Pruhs. Online primal-dual for non-linear
optimization with applications to speed scaling. CoRR, abs/1109.5931, 2011.

13. H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

14. V. V. Vazirani. Approximation algorithms, chapter 12. Springer, 2001.
15. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.

In FOCS’95, pages 374–382, 1995.

