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Abstract—We consider the framework of aggregative games, in
which the cost function of each agent depends on his own strategy
and on the average population strategy. As first contribution,
we investigate the relations between the concepts of Nash and
Wardrop equilibria. By exploiting a characterization of the two
equilibria as solutions of variational inequalities, we bound their
distance with a decreasing function of the population size. As
second contribution, we propose two decentralized algorithms
that converge to such equilibria and are capable of coping with
constraints coupling the strategies of different agents. Finally,
we study the applications of charging of electric vehicles and of
route choice on a road network.

I. INTRODUCTION

COMPLEX systems resulting from the interconnection of
selfish agents have attracted an increasing interest in the

scientific community over the last decade for their ubiquitous
appearance in real-life applications and the inherent mathemat-
ical challenges that they present. Among the vast literature of
non-cooperative game theory, aggregative games [1] describe
systems where each agent is not subject to a one-to-one
interaction, but is rather influenced by an aggregate quantity
depending on the strategies of the entire population. The
vast spectrum of their applications ranges from traffic [2]
or transmission networks [3] to electricity [4] or commodity
markets [5]. Extending our preliminary work [6], we focus
on aggregative games where the aggregate quantity is the
average population strategy. Specifically, we address three
aspects which are discussed in detail in the next subsections.

Nash and Wardrop equilibria

A fundamental concept in game theory is the notion of
Nash equilibrium, which is a set of strategies where no agent
can lower his cost by unilaterally altering his strategy. Note
that in aggregative games an agent can indirectly influence
his cost through his contribution to the average strategy.
However, when the population becomes large, such contri-
bution becomes negligible. This consideration motivates the
introduction of the Wardrop equilibrium, which describes a
configuration where no agent can lower his cost by altering
his strategy, under the assumption that he has no influence
on the average. While the notion of Nash equilibrium has
been applied to a large class of problems (see e.g. [5], [7] in
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economics and [3] in communication networks), the concept
of Wardrop equilibrium is typically formulated in the settings
of congestion games or routing problems (see e.g. [8] in
network congestion games, [9] in road networks, [10] in
electricity markets, [11] in economics). The overarching goal
of the first part of this manuscript is to extend the concept
of Wardrop equilibrium to generic aggregative games, and
to highlight the fundamental connections between Nash and
Wardrop equilibria within this setting. More in details, we
leverage on the theory of variational inequality [12], [13] to

- present a unifying framework to characterize both Nash
and Wardrop equilibria for generic aggregative games,

- sharpen the intuition that in large aggregative games
Nash and Wardrop strategies are close by bounding their
Euclidean distance with a decreasing function of the
population size.

We note that the relation between Nash and Wardrop equilibria
has been extensively studied in the literature, see e.g., [8], [11],
[14]–[17] and references therein. We provide a detailed com-
parison in Section IV-A, where we show that our contribution
significantly differs from the works above. Our results require
the strategy sets of the agents to be uniformly bounded, thus
excluding unlimited growth in one or more components of
the agents’ state space. This assumption is justified by real
world applications such as charging of electric vehicles or
traffic coordination, as detailed in Sections VII, VI. Therein
the charging requirement of each vehicle or its travel demand
are bounded and independent from the rest of the population.

We further note our work proceeds in a similar spirit as
in the theory of mean-field games [18], [19]. Indeed, both in
aggregative and in mean-field games the agents are influenced
only by the aggregate population behavior. Consequently, the
contribution of a single agent to the cost of the other agents
becomes negligible as the population size increases. There are
however some important differences between these two classes
of games, so that neither is a subset of the other. Specifically,
mean-field games are dynamic stochastic games, while our
setup is deterministic and static.1

Decentralized algorithms and coupling constraints

The second part of the paper focuses on coordinating the
agents to a Nash or a Wardrop equilibrium for populations of
any size (not necessarily large), in the presence of constraints

1We note that dynamic games over finite horizon can be reformulated
in terms of multi-dimensional static games. This allows us to consider
heterogeneous agents with personalized individual and coupling constraints,
which cannot be handled in the mean-field game setup. As a consequence, the
results typically derived in mean-field games cannot be applied in our setup.
We further note that these works do not investigate the Euclidean distance
between the equilibrium strategies.
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coupling the agents’ strategies. As discussed in the seminal
work [20], when the agents are subject to a coupling constraint,
one in general should expect a manifold of equilibria. Here we
focus on the specific subclass of variational equilibria [21],
which intuitively corresponds to an equal split of the coupling
constraint burden among the agents (see Section III-A).

Contrary to the classic game theoretical literature on cou-
pling constraints (see e.g. [13], [20] and references therein),
we focus here on deriving equilibrium coordination algorithms
that can be implemented in a decentralized fashion. This new
requirement is motivated by reasons of privacy as well as
computational intractability of centralized solutions in large
scale systems. Specifically, we assume that each agent only
knows its own cost function, its individual constraints and
its contribution to the coupling constraint. Coordination is
achieved by iterative communications with a central coordi-
nator, that can gather and broadcast signals to the population.
Following the recent literature on decentralized coordination
for games without coupling constraints, we consider two
different scenarios based on whether the agents respond to the
common signal by solving a minimization problem (optimal
response) as in [14], [22] or by taking a gradient step as in
[23], [24]. Differently from all the aforementioned works, we
however consider constraints coupling the agents’ decisions.
Specifically, building upon [21], we contribute as follows:

- we propose a decentralized two-level algorithm based on
optimal response, which integrates the scheme proposed
in [14] with an outer loop that updates a dual variable to
achieve a Wardrop equilibrium;

- we propose a decentralized one-level asymmetric projec-
tion algorithm based on gradient step to achieve either a
Nash or a Wardrop equilibrium.

While coupling constraints are of fundamental importance
in technical applications, such as electricity markets [25], or
communication networks [26], we are not aware of previous
decentralized coordination schemes that take them into ac-
count within the literature of aggregative games. Distributed
algorithms for generic games with coupling constraints have
been recently suggested in [27]–[29]. In the context of ag-
gregative games these algorithms however require bilateral
communications among all the agents, thus limiting their
applicability in large population games. The algorithms for the
case without coupling constraints build on the core assumption
that the strategy sets are decoupled and thus cannot be easily
adapted to handle coupling constraints. We overcome these
difficulties by introducing a dual variable associated with
the coupling constraint, which is broadcasted by the central
operator, so that each agent reacts to an extended cost function
(with an additional price to pay when the coupling constraint
is violated) but has decoupled strategy sets. We guarantee that
at convergence we reach not only an equilibrium satisfying
the coupling constraints of such extended game, as in [30],
but indeed a (generalized) equilibrium of the original game.

Outside the game theoretical framework, our algorithms
connect with those in [31] for multi-user optimization, where
however the agents do not influence the cost of the others.

Applications

Charging of Electric Vehicles: Electric-vehicles (EV) are
foreseen to significantly penetrate the market in the coming
years [32], therefore coordinating their charging schedules can
provide services beneficial to the grid operations [33]. By
assuming that the electricity price depends on the aggregate
consumption, [10], [14], [23] formulate the EV charging
problem as an aggregative game and propose decentralized
schemes based on optimal response or gradient step, in the
absence of coupling constraints. The proposed schemes steer
the population to Nash [23] or Wardrop [10], [14] equilibria.
We extend the existing literature by introducing constraints
coupling the agents’ charging profiles. Such constraints model
limits on the aggregate peak consumption or on the local
consumption of EVs connected to the same transformer. We
exploit our theoretical findings to derive results specific to the
EV game. Finally, we establish uniqueness of the dual vari-
ables associated to the violation of the coupling constraints.

Route choice on a road network: Traffic congestion is a
well-recognized issue in densely populated cities, and the
corresponding economic costs are significant [34]. Since every
driver seeks his own interest (e.g., minimizing the travel time)
and is affected by the others’ choices via congestion, a classic
approach is to model the traffic problem as a game [35].
Specializing [12, Section 1.4.5], we focus on a stationary
model that aims at capturing the basic interactions among the
vehicles flow during rush hours. Building upon our theoretical
findings, we derive results specific for the route choice game.
Moreover, we perform a realistic numerical analysis based
on the data set of the city of Oldenburg in Germany [36].
Specifically, we investigate via simulation the effect of road
access limitations, expressed as coupling constraints [37].

Organization: Sections II and III introduce game and prelimi-
nary results. Sections IV and V present our main contributions,
namely the bound on the distance between Nash and Wardrop
equilibria and the design of decentralized algorithms to achieve
them. Sections VI and VII focus on the applications.

Notation: 1n ∈ Rn and 0n ∈ Rn represent the vectors of
unit entries and zero entries, respectively; ei is the ith canonical
vector. Given A ∈ Rn×n, A � 0 (� 0) ⇔ x>Ax > 0 (≥ 0),
∀x 6= 0; ‖A‖ is the induced 2-norm of A. Given M vectors
each in Rn, [x1; . . . ;xM ] := [xi]Mi=1 := [x1>, . . . , xM

>
]> ∈

RMn and x−i := [x1; . . . ;xi−1;xi+1; . . . ;xM ] ∈ R(M−1)n.
Given a matrix A ∈ Rm×Mn, A(:,i) ∈ Rm×n is such that
A = [A(:,1), . . . , A(:,M)]. Given g(x) : Rn → Rm we
define ∇xg(x) ∈ Rn×m with [∇xg(x)]i,j :=

∂gj(x)
∂xi . Given

g(x) : R → R, we denote g′(x) = ∂g(x)
∂x . Given the sets

X 1, . . . ,XM ⊆ Rn, we denote 1
M

∑M
i=1 X i := {z ∈ Rn|z =

1
M

∑M
i=1 x

i, for some xi∈X i}.

II. PROBLEM FORMULATION

We consider a population of M agents. Each agent can
choose his strategy xi in his individual constraint set X i ⊂ Rn.
We assume that the cost function

J i(xi, σ(x)) (1)
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of agent i depends on his own strategy xi ∈ X i and on the
strategies of the other agents via the average population strategy
σ(x) := 1

M

∑M
j=1 x

j ∈ 1
M

∑M
j=1 X j , as typical of aggregative

games [1]. Besides the individual constraints, each agent has
to satisfy a coupling constraint, which involves the decision
variables of other agents. Upon defining x = [x1; . . . ;xM ] ∈
RMn, the coupling constraint can be expressed as

x ∈ C := {x ∈ RMn | g(x) ≤ 0m} ⊂ RMn, (2)

with g : RMn → Rm. The coupling constraint in (2) can
model for instance the fact that the overall usage level for a
certain commodity cannot exceed a fixed capacity. The cost
and constraints just introduced give rise to the game

G :=


agents : {1, . . . ,M}
cost of agent i : J i(xi, σ(x))

individual constraint : X i

coupling constraint : C,

(3)

which is the focus of the rest of the paper. We denote for
convenience X := X 1 × . . .×XM and define

Qi(x−i) := {xi ∈ X i | g(x) ≤ 0m}, Q := X ∩ C. (4)

A. Equilibrium definitions

We consider two notions of equilibrium for the game G in (3).
The first is a known generalization of the concept of Nash
equilibrium to games with coupling constraints [21].

Definition 1 (Nash Equilibrium). A set of strategies xN =
[x1

N; . . . ;xMN ] ∈ RMn is an ε-Nash equilibrium of the game G
if xN ∈ Q and for all i ∈ {1, . . . ,M} and all xi∈Qi(x−iN )

J i(xiN, σ(xN))≤J i
(
xi, 1

M xi+ 1
M

∑
j 6=i x

j
N

)
+ ε . (5)

If (5) holds with ε = 0 then xN is a Nash equilibrium. �

Intuitively, a feasible set of strategies
{
xiN
}M
i=1

is a Nash
equilibrium if no agent can improve his cost by unilaterally
deviating from his strategy, assuming that the strategies of the
other agents are fixed. A Nash equilibrium for a game with
coupling constraints is usually referred to as generalized Nash
equilibrium [21]; in this paper we omit the word generalized,
even though we consider a game with coupling constraints.

Note that on the right-hand side of (5) the decision variable
xi appears in both arguments of J i(·, ·). However, as the popu-
lation size grows the contribution of agent i to σ(x) decreases.
This motivates the definition of Wardrop equilibrium.

Definition 2 (Wardrop Equilibrium). A set of strategies xW =
[x1

W; . . . ;xMW ] ∈ RMn is a Wardrop equilibrium of the game
G if xW ∈ Q and for all i ∈ {1, . . . ,M} and all xi∈Qi(x−iW )

J i(xiW, σ(xW)) ≤ J i(xi, σ(xW)).

Intuitively, a feasible set of strategies
{
xiW
}M
i=1

is a Wardrop
equilibrium if no agent can improve his cost by unilaterally
deviating from his strategy, assuming that the average strategy
is fixed. Even though the Wardrop equilibrium is a classical
concept, the existing literature on aggregative games [11], [15],
[38], [39] defines the latter equilibrium in terms of σ(x),

whereas Definition 2 is expressed in terms of the agents’
strategies x. The first glimmer of Wardrop equilibrium in terms
of strategies appears in [10], [14], where however it is not
recognized as an equilibrium concept on its own, but rather
only identified as an ε-Nash.

III. CONNECTION WITH VARIATIONAL INEQUALITIES

This section shows that some equilibria of the game G in (3)
can be obtained by solving a variational inequality. This fact is
then used to derive the results of Sections IV and V.

Definition 3 (Variational inequality [12]). Consider a set K ⊆
Rd and an operator F : K → Rd. A point x̄ ∈ K is a solution
of the variational inequality VI(K, F ) if

F (x̄)>(x− x̄) ≥ 0, ∀x ∈ K.

Let us define

FN(x) := [∇xiJ i(xi, σ(x))]Mi=1 , (6a)

FW(x) := [∇xiJ i(xi, z)|z=σ(x)]
M
i=1 , (6b)

where FN, FW : X → RMn. The operator FN is obtained
by stacking together the gradients of each agent’s cost with
respect to his decision variable. FW is obtained similarly, but
considering σ(x) as fixed when differentiating. The following
proposition provides a sufficient characterization of the equi-
libria described in Definitions 1 and 2 as solutions of two
variational inequalities, which feature the same set Q, defined
in (4), but different operators, namely FN and FW in (6). We
note that this characterization of equilibria is equivalent to the
one in terms of fixed point of the best response mappings, since
any variational inequality can be equivalently characterized as
a fixed point problem, as explained in [12, paragraph 12.1.1].

Assumption 1. For all i ∈ {1, . . . ,M}, the constraint set
X i is closed and convex. The set Q in (4) is non-empty. The
cost functions J i(xi, σ(x)) are convex in xi for any fixed
{xj ∈ X j}j 6=i. The cost functions J i(xi, z) are convex in
xi for any z ∈ 1

M

∑M
j=1 X j . The cost functions J i(z1, z2)

are continuously differentiable in [z1; z2] for any z1 ∈ X i and
z2 ∈ 1

M

∑M
j=1 X j . The function g in (2) is convex.

Proposition 1. Under Assumption 1, the following hold.
1) Any solution x̄N of VI(Q, FN) is a Nash equilibrium of

the game G in (3);
2) Any solution x̄W of VI(Q, FW) is a Wardrop equilibrium

of the game G in (3).

Proof: The proof of the first statement can be found in [40,
Theorem 2.1], we prove the second one. We rewrite the operator
FW(x) as F̃W(x, σ(x)), where F̃W(x, z) := [∇xiJ i(xi, z)]Mi=1.
Fix z̄ = σ(x̄W). By definition, if x̄W solves VI(Q, FW) then
FW(x̄W)>(x− x̄W) ≥ 0 for all x ∈ Q, i.e.

F̃W(x̄W, z̄)
>(x− x̄W) ≥ 0, ∀x ∈ Q. (7)

Consider i ∈ {1, . . . ,M}, set x−i = x̄−iW in (7) and consider
an arbitrary xi ∈ Qi(x̄−iW ); then all the summands in (7) vanish
except the ith one and (7) reads

∇xiJ i(x̄iW, z̄)
>(xi − x̄iW) ≥ 0, ∀ xi ∈ Qi(x̄−iW ). (8)
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Consider the convex function J i(·, z̄) : Qi(x̄−iW ) → R. Since
Qi(x̄−iW ) is a convex set, by (8) and [41, Proposition 3.1] we
have that x̄iW ∈ argminxi∈Qi(x̄−i

W ) J
i
(
xi, z̄

)
. Substituting z̄ =

σ(x̄W), one has J i
(
x̄iW, σ(x̄W)

)
≤ J i

(
xi, σ(x̄W)

)
for all xi ∈

Qi(x̄−iW ). Since this holds for all i ∈ {1, . . . ,M} and since
x̄W ∈ Q, it follows that x̄W is a Wardrop equilibrium of G.

Proposition 1 states that a solution of the variational inequal-
ity is an equilibrium. The converse in general does not hold due
to the presence of the coupling constraints. If on the other hand
C = RMn, then Q = X and one can show that xN solves the
VI(Q, FN) if and only if it is a Nash equilibrium of G and xW
solves the VI(Q, FW) if and only if it is a Wardrop equilibrium
of G [21, Corollary 1]. The equilibria that can be obtained as
solution of the corresponding variational inequality are called
variational equilibria [21, Definition 3] and are here denoted
with x̄N, x̄W instead of xN, xW (indicating any equilibria satis-
fying Definitions 1 and 2). We next provide sufficient conditions
for existence and uniqueness of variational equilibria.

Definition 4 (Strong monotonicity [12]). An operator F :
K ⊆ Rd → Rd is strongly monotone on the set K̂ ⊆ K with
monotonicity constant α > 0 if 2

(F (x)− F (y))>(x− y) ≥ α‖x− y‖2, ∀x, y ∈ K̂. (9)

The operator is monotone on K̂ if (9) holds for α = 0. �

Lemma 1. [12, Corollary 2.2.5, Theorem 2.3.3] Let Assump-
tion 1 hold. Then

1) If X i is bounded for all i ∈ {1, . . . ,M}, then both
VI(Q, FN) and VI(Q, FW) admit a solution3.

2) If FN is strongly monotone on Q, then VI(Q, FN) has a
unique solution. If FW is strongly monotone on Q then
VI(Q, FW) has a unique solution. �

A. Variational and normalized equilibria

The concept of games with coupling constraints has first been
introduced in the seminal work [20]. Therein the key concept
of normalized equilibria has been introduced to describe the
fact that when the agents are subject to a coupling constraint,
even under strong monotonicity conditions, one should expect a
manifold of equilibria. Formally, the vector xN is a normalized
Nash equilibrium if there exists a vector of weights r ∈ RM≥0,
with

∑M
i=1 ri = 1, such that xN solves the VI(Q, F rN) where

F rN(x) := [ri∇xiJ i(xi, σ(x))]Mi=1. It is proven in [20] that the
choice of r corresponds to a split of the burden of satisfying
the constraints among the agents. In the context of aggregative
games, however, each agent contributes equally to the aver-
age. Therefore it is typically assumed that the burden of the
constraint should also be split equally among the agents by
selecting r = 1

M 1M , see e.g., [21], [26], [40]. It is immediate
to see that the subclass of normalized equilibria for which this
property holds is the class of variational equilibria (introduced
in the previous section) and is the one on which we focus from

2When we do not specify the set K̂ this is understood to be K, i.e.
the domain of the operator. Note that in our setup strong monotonicity is
equivalent to strict diagonal convexity in [20].

3The convexity of the cost functions required by Assumption 1 is not needed
for the first statement of Lemma 1, continuity is enough.

here on. Nonetheless we note that our results could be easily
extended to normalized equilibria by using operator F rN instead
of FN. Similar arguments hold for the Wardrop equilibrium.

B. Sufficient conditions for monotonicity

To verify whether an operator is strongly monotone or mono-
tone one can exploit the following equivalent characterizations.

Lemma 2. [12, Proposition 2.3.2] A continuously differen-
tiable operator F : K ⊆ Rd → Rd is strongly monotone
with monotonicity constant α (resp. monotone) if and only if
∇xF (x) � αI (resp.∇xF (x) � 0) for all x ∈ K. Moreover, if
K is compact then there exists α > 0 such that ∇xF (x) � αI
for all x ∈ K if and only if ∇xF (x) � 0 for all x ∈ K.

The previous lemma can be used to derive sufficient con-
ditions for strong monotonicity of the operators FN and FW.
To this end, we specialize in the subsequent Lemma 3 the cost
function (1) of agent i to

J i(xi, σ(x)) := vi(xi) + p(σ(x))>xi. (10)

The cost in (10) can for example describe applications where xi

denotes the usage level of a certain commodity, whose negative
utility is modeled by vi : X i → R and whose per-unit cost
p : 1

M

∑M
i=1 X i → Rn depends on the average usage level of

the entire population [4], [10]. The operators in (6) become

FW(x) = [∇xivi(xi)]Mi=1 + [p(σ(x))]Mi=1, (11a)
FN(x) = FW(x) + 1

M [∇zp(z)|z=σ(x)x
i]Mi=1. (11b)

Lemma 3.
1) Suppose that for each agent i ∈ {1, . . . ,M} the function

vi in (10) is convex and that p is monotone; then FW is
monotone. Under the further assumption that p is affine
and strongly monotone, FN is strongly monotone.

2) Suppose that for each agent i ∈ {1, . . . ,M} the function
vi in (10) is strongly convex and that p is monotone. Then
FW is strongly monotone.

For reasons of space, we report the proof in [42, Lemma 3].
When the price function p(σ) has diagonal structure i.e. can
be decomposed as p(σ(x)) = [pt(σt(xt))]

n
t=1, with σt(xt) =

1
N

∑M
i=1 x

i
t and xt := [x1

t , . . . , x
n
t ], it is possible to give addi-

tional sufficient conditions that guarantee strong monotonicity
of the operators. With this respect, the result in [43, Theorem
1] generalizes the reasoning presented in Corollary 1 and 2
in Sections VII, VI. It is clear from Lemma 3 that often only
one of FN and FW possesses monotonicity properties, which are
required to guarantee that an equilibrium can be achieved using
the algorithms proposed in Section V. Hence it is important to
derive results on the distance between the two equilibria, which
is the goal of the next Section IV.

IV. DISTANCE BETWEEN NASH AND WARDROP
EQUILIBRIA IN LARGE POPULATIONS

In this section we study the relations between Nash and
Wardrop equilibria in aggregative games with large populations.
Specifically, we consider a sequence of games (GM )∞M=1. For
fixed M , the game GM is played among M agents and is
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defined as in (3) with an arbitrary coupling constraint C and,
for every agent i, arbitrary J i(xi, σ(x)) and X i. For the sake of
readability, we avoid the explicit dependence on M in denoting
these quantities and in denoting xN, xW, FN, FW.

Assumption 2. There exists a convex, compact set X 0 ⊂ Rn
such that ∪Mi=1X i ⊆ X 0 for each GM in the sequence
(GM )∞M=1. For each M and i ∈ {1, . . . ,M}, the function
J i(z1, z2) is Lipschitz with respect to z2 in X 0 with Lipschitz
constant L2 independent from M , i and z1 ∈ X i.

We note that Assumption 2 implies that σ(x) ∈ X 0 for
any M and any x ∈ X 1 × · · · × XM . Moreover, under
Assumption 2 we define R := maxy∈X 0{‖y‖}. Furthermore,
if the cost function (1) takes the specific form (10), then p
being Lipschitz inX 0 with constantLp implies J i(z1, z2) being
Lipschitz with respect to z2 in X 0 with constant L2 = RLp, as

‖J i(z1, z2)− J i(z1, z
′
2)‖ = ‖(p(z2)− p(z′2))>z1‖

≤ ‖p(z2)− p(z′2)‖‖z1‖ ≤ RLp‖z2 − z′2‖.
(12)

The next proposition shows that every Wardrop equilibrium
is an ε-Nash equilibrium, with ε tending to zero as M grows.

Proposition 2. Let the sequence of games (GM )∞M=1 satisfy
Assumption 2. For each GM , every Wardrop equilibrium is an
ε-Nash equilibrium, with ε = 2RL2

M .

Proof: Consider any Wardrop equilibrium xW of GM (not
necessarily a variational one). By Definition 2, xW ∈ Q and
for each agent i

J i(xiW, σ(xW)) ≤ J i(xi, σ(xW)), for all xi ∈ Qi(x−iW ).

It follows that for each agent i and for all xi ∈ Qi(x−iW )

J i(xiW, σ(xW))− J i(xi, 1
M (xi +

∑
j 6=i x

j
W))

= J i(xiW, σ(xW))− J i(xi, σ(xW))︸ ︷︷ ︸
≤0

+

J i(xi, σ(xW))− J i(xi, 1
M (xi +

∑
j 6=i x

j
W))

≤ L2‖σ(xW)− ( 1
M (xi +

∑
j 6=i x

j
W))‖

= L2

M ‖(x
i
W +

∑
j 6=i x

j
W)− (xi +

∑
j 6=i x

j
W)‖

= L2

M ‖x
i
W − xi‖ ≤ 2RL2

M .

Hence xW is an ε-Nash equilibrium of GM .
Proposition 2 is a strong result but it provides no information

on the distance between the set of strategies constituting a Nash
and the set of strategies constituting a Wardrop equilibrium. In
the following we study this distance for variational equilibria.

Theorem 1. Let the sequence of games (GM )∞M=1 satisfy
Assumption 2, and each GM satisfy Assumption 1. Then:

1) If the operator FN relative to GM is strongly monotone
on Q with monotonicity constant α

M
> 0, then there

exists a unique variational Nash equilibrium x̄N of GM .
Moreover, for any variational Wardrop equilibrium x̄W

‖x̄N − x̄W‖ ≤
L2

α
M

√
M
. (13)

As a consequence, if α
M

√
M → ∞ as M → ∞, then

‖x̄N − x̄W‖ → 0 as M →∞.

2) If the operator FW relative to GM is strongly monotone
on Q with monotonicity constant α

M
> 0, then there

exists a unique variational Wardrop equilibrium x̄W of
GM . Moreover, for any variational Nash equilibrium x̄N

‖x̄N − x̄W‖ ≤
L2

α
M

√
M
. (14)

As a consequence, if α
M

√
M → ∞ as M → ∞, then

‖x̄N − x̄W‖ → 0 as M →∞.
3) If in each game GM the cost function J i(xi, σ(x)) takes

the form (10), with vi = 0 and p being strongly monotone
on X 0 with monotonicity constant α, then there exists
a unique σ̄ such that σ(x̄W) = σ̄ for any variational
Wardrop equilibrium x̄W of GM . Moreover, for any varia-
tional Nash equilibrium x̄N of GM and for any variational
Wardrop equilibrium4 x̄W of GM

‖σ(x̄N)− σ(x̄W)‖ ≤
√

2RL2

αM
. (15)

Hence, ‖σ(x̄N)− σ(x̄W)‖ → 0 as M →∞.

Proof: 1) We first bound the distance between the opera-
tors FN and FW in terms of M . By (6) it holds

‖FN(x)− FW(x)‖2

= ‖[∇xiJ i(xi, σ(x))]Mi=1 − [∇xiJ i(xi, z)|z=σ(x)]
M
i=1‖2

=
∑M
i=1 ‖

1
M∇zJ

i(xi, z)|z=σ(x)‖2≤ 1
M2

∑M
i=1 L

2
2 =

L2
2

M ,

where the inequality follows from the fact that J i(z1, z2) is
Lipschitz in z2 on X 0 with constant L2 by Assumption 2 and
hence the term ‖∇zJ i(xi, z)|z=σ(x)‖ is bounded by L2 by
definition of derivative. It follows that

‖FN(x)− FW(x)‖ ≤ L2√
M
. (16)

for all x ∈ X 0. We exploit (16) to bound the distance between
Nash and Wardrop strategies. Since FN is strongly monotone
on Q by assumption, VI(Q, FN) has a unique solution x̄N by
Lemma 1. Moreover, by [44, Theorem 1.14] for all solutions
x̄W of VI(Q, FW) it holds

‖x̄N − x̄W‖ ≤ 1
α

M
‖FN(x̄W)− FW(x̄W)‖.

Combining this with equation (16) yields the result.
2) As in the above, with Nash in place of Wardrop and viceversa.
3) Any solution x̄W to the VI(Q,FW) satisfies

FW(x̄W)>(x− x̄W) ≥ 0, ∀x ∈ Q⇔∑M
i=1 p(σ(x̄W))>(xi − x̄iW) ≥ 0, ∀x ∈ Q⇔

p(σ(x̄W))>(σ(x)− σ(x̄W)) ≥ 0, ∀x ∈ Q.
(17)

Any solution x̄N to the VI(Q,FN) satisfies

FN(x̄N)>(x− x̄N) ≥ 0, ∀x ∈ Q⇔
p(σ(x̄N))>(σ(x)− σ(x̄N))+

1

M2

M∑
i=1

(∇zp(z)|z=σ(x̄N)x̄
i
N)>(xi − x̄iN) ≥ 0, ∀x ∈ Q.

(18)

4If p is Lipschitz with constant Lp, then in (15) L2 can be replaced by
RLp, as by (12). This is used in the application Sections VI, VII.
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Exploiting the strong monotonicity of p on X 0, one has

α‖σ(x̄W)− σ(x̄N)‖2

≤ (p(σ(x̄W))− p(σ(x̄N)))>(σ(x̄W)− σ(x̄N))

= p(σ(x̄W))>(σ(x̄W)−σ(x̄N))− p(σ(x̄N))>(σ(x̄W)−σ(x̄N))

≤
by (17)

−p(σ(x̄N))>(σ(x̄W)− σ(x̄N))

≤
by (18)

1
M2

∑M
i=1(x̄iN)>(∇zp(z)|z=σ(x̄N))

>(x̄iW − x̄iN)

≤ 1
M2

∑M
i=1 ‖x̄iN‖‖∇zJ i(x̄iW, z)|z=σ(x̄N)‖

+ 1
M2

∑M
i=1 ‖x̄iN‖‖∇zJ i(x̄iN, z)|z=σ(x̄N)‖

≤ 2L2

M2

∑M
i=1 ‖x̄iN‖ ≤

2L2

M2

∑M
i=1R ≤

1
M 2RL2.

We conclude that ‖σ(x̄W)− σ(x̄N)‖ ≤
√

2RL2

αM .
We point out that the bounds (13) and (14) can be used to

derive a bound on the average strategies similar to (15).

A. Comparison with the literature
Proposition 2 states that, under fairly general assumptions,

any Wardrop equilibrium is an ε-Nash equilibrium. Such result
follows directly from the fact that each agent contributes only
via the average and that the cost functions are Lipschitz.
Consequently, the contribution of each agent scales linearly
with the inverse of the population size. This same idea is used
to prove similar results in many previous contributions. For
example, the case of potential games is investigated in [15],
[16], routing games are considered in [17], flow control and
routing in communication networks are discussed in [38], while
a similar argument is used in [14] for the case without coupling
constraints. Proposition 2 is a trivial extension of those works
to generic aggregative games with coupling constraints.

Our main result is to prove that, by introducing further
assumptions, one can actually go beyond Proposition 2 and
derive bounds on the Euclidean distance between Nash and
Wardrop equilibria. In Theorem 1 we consider two types of
additional assumptions: the first is strong monotonicity of either
the Nash or Wardrop operator (statements 1 and 2), the second
is a structural assumption on the cost functions (statement
3). The only previous results bounding the Euclidean distance
between the two equilibria that we are aware of are obtained
in [8]. Therein a similar bound to our result of Theorem 1-
3) is derived specific to routing/congestion games. However,
that work assumes that the population increases by means of
identical replicas of the agents. We here prove that a similar
argument as in [8] can be used to address the case of generic
new agents instead of identical copies. Moreover, the results
in Theorem 1-1) and Theorem 1-2) address a more general
class of aggregative games (i.e. not necessarily congestion
games) by employing a new type of argument, based on
a sensitivity analysis result for variational inequalities with
perturbed strongly monotone operators [44, Theorem 1.14]. We
note that the works [11], [15], [16] guarantee convergence of
Nash to Wardrop in terms of Euclidean distance, but do not
provide a bound on the convergence rate.

Finally, our results are derived for variational equilibria. We
remark that if there are no coupling constraints, as in the pre-
vious works, then any equilibrium is a variational equilibrium.

Hence our results subsume the results above. We remark that
including coupling constraints does not increase the complexity
of the mathematical treatment of Section IV; on the contrary
the design of the algorithms in Section V is specifically tailored
to account for coupling constraints.

V. DECENTRALIZED ALGORITHMS

In this section we turn our attention to the design of algo-
rithms that achieve a Nash or a Wardrop equilibrium. Hence
we do not consider a sequence of games as in the previous
section, but rather focus on the game (3) with fixed population.
We begin with the following assumption on the constraint sets.

Assumption 3. The coupling constraint in (2) is of the form

x ∈ C := {x ∈ RMn |Ax ≤ b} ⊂ RMn, (19)

with A := [A(:,1), . . . , A(:,M)] ∈ Rm×Mn, A(:,i) ∈ Rm×n
for all i ∈ {1, . . . ,M}, b ∈ Rm. Moreover, for all i ∈
{1, . . . ,M}, the set X i can be expressed as X i = {xi ∈
Rn|gi(xi) ≤ 0}, where gi : Rn → Rpi is continuously
differentiable. The set Q, which can thus be expressed as
Q = {x ∈ RMn|gi(xi) ≤ 0, ∀i, Ax ≤ b}, satisfies Slater’s
constraint qualification as by [45, (5.27)].

We note that linearity of the coupling constraints arises in
a range of applications, as explained in [21, page 188]. We
also assume that agent i does not wish to disclose information
about his cost function J i and individual constraint set X i
and that he knows his influence on the coupling constraint,
that is, the sub-matrix A(:,i) in (19). Moreover, we assume
the presence of a central operator that is able to measure the
population average σ(x), to evaluate the quantityAx−b in (19)
and to broadcast aggregate information to the agents. Based
on this information structure, in the following we focus on
the design of decentralized algorithms to obtain a solution of
either VI(Q, FN) or VI(Q, FW). As the techniques are the same
for Nash and Wardrop equilibrium, we consider the general
problem VI(Q, F ), where F can be replaced with FN or FW.

We observe that, if F is integrable and monotone on Q, that
is, if there exists a convex function E(x) : RMn → R such that
F (x) = ∇xE(x) for all x ∈ Q, then VI(Q, F ) is equivalent to
the convex optimization problem [12, Section 1.3.1]

argmin
x∈Q

E(x). (20)

Therefore a solution of VI(Q, F ) and thus a variational equi-
librium can be found by applying any of the decentralized
optimization algorithms available in the literature [41] to prob-
lem (20); the decentralized structure arises because each agent
can evaluate ∇xiE(x) by knowing only his strategy xi and
σ(x). Equivalently, the integrability assumption guarantees that
G is a potential game with potential function E(x) [46], hence
decentralized convergence tools available for potential games
can also be employed [47], [48]. An operator F is integrable in
Q if and only if ∇xF (x) = ∇xF (x)> for all x ∈ Q [12,
Theorem 1.3.1]. We anticipate that in both applications of
Sections VI and VII the Wardrop operator FW in (11a) is
integrable but the Nash operator FN in (11b) is not.
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In the following we intend to find a solution of VI(Q, F )
when F is not necessarily integrable, so that these standard
methods cannot be applied. To propose decentralized schemes
in presence of coupling constraints, we introduce two reformu-
lations of VI(Q, F ) in an extended space [x;λ] where λ are
the dual variables relative to the coupling constraint C. These
two reformulations will then be used to propose two alternative
algorithms. Specifically, we define for any λ ∈ Rm≥0 the game

G(λ) :=


agents : {1, . . . ,M}
cost of agent i : J i(xi, σ(x))+ λ>A(:, i)xi

individual constr : X i

coupling constr : RMn.

Moreover, we introduce the extended VI(Y, T ) with

Y := X × Rm≥0 , T (x, λ) :=

[
F (x) +A>λ
−(Ax− b)

]
. (21)

The following proposition draws a connection between
VI(Q, F ), the game G(λ) and VI(Y, T ).

Proposition 3. [49, Section 4.3.2] Let Assumptions 1 and 3
hold. The following statements are equivalent.

1) The vector x̄ is a solution of VI(Q, F ).
2) There exists λ̄ ∈ Rm≥0 such that x̄ is a variational

equilibrium of G(λ̄) and 0 ≤ λ̄ ⊥ b−Ax̄ ≥ 0.
3) There exists λ̄ ∈ Rm≥0 such that the vector [x̄; λ̄] is a

solution of VI(Y, T ). �

The proof is an easy adaptation of [49, Section 4.3.2] and
we report it in [42, Proposition 3]. In subsection V-A we
exploit the equivalence between 1) and 2) to propose a two-
level algorithm based on optimal response that converges to
a Wardrop equilibrium. In subsection V-B we leverage on the
equivalence between 1) and 3) to propose a one-level algorithm
based on gradient step that converges to a Nash equilibrium.
The same one-level algorithm can be used to obtain a Wardrop
equilibrium, by using FW instead of FN.

A. Two-level algorithm based on optimal response for
Wardrop equilibrium

Based on the equivalence between 1) and 2) in Proposi-
tion 3, we here introduce Algorithm 1 to achieve a Wardrop
equilibrium. The algorithm features an outer loop, in which the
central operator broadcasts to the population the dual variables
λ(k) based on the current constraint violation, and an inner
loop, in which the agents update their strategies to the Wardrop
equilibrium of the game G(λ(k)). Since G(λ(k)) is a game
without coupling constraints, the Wardrop equilibrium can be
found via the iterative algorithm proposed in [14, Algorithm 1].
For each agent i ∈ {1, . . . ,M} we define the optimal response
to a signal z ∈ 1

M

∑M
i=1 X i and dual variables λ ∈ Rm≥0

xior(z, λ) := argmin
xi∈X i

J i(xi, z) + λ>A(:, i)xi. (22)

The inner loop in Algorithm 1 converges to a Wardrop equi-
librium of the game G(λ(k)) under the following assumption.

Algorithm 1 for Wardrop equilibrium
Initialization: Set k = 0, τ > 0, xi(0) ∈ Rn, λ(0) ∈ Rm≥0. Iterate
until convergence:

1) Strategies are updated to a Wardrop equilibrium of Gλ(k)

Initialization: Set h = 0, x̃i(0) = xi(k), z(0) ∈ Rn.
Iterate until convergence:

x̃i(h+1) ← xior(z(h), λ(k)), ∀i (23a)

σ̃(h+1) ← 1
M

∑M
j=1 x̃

j
(h+1) (23b)

z(h+1) ← (1− 1
h

)z(h) + 1
h
σ̃(h+1) (23c)

h← h+ 1

Upon convergence:

x(k+1) ← x̃(h)

2) Dual variables are updated

λ(k+1) ← ΠRm
≥0

[λ(k) − τ(b−Ax(k+1))] (24)

k ← k + 1.

Assumption 4. There exists L > 0 such that, for all i ∈
{1, . . . ,M} and λ ∈ Rm≥0, the mapping z 7→ xior(z, λ) is single
valued and Lipschitz with constant smaller than L. Moreover,
at least one of the following statements holds.

1) For each i ∈ {1, . . . ,M} and λ ∈ Rm≥0, the mapping
z 7→ xior(z, λ) is non-expansive5.

2) For each i ∈ {1, . . . ,M} and λ ∈ Rm≥0, the mapping
z 7→ z − xior(z, λ) is strongly monotone.

Sufficient conditions for Assumption 4 to hold are in [14,
Corollary 1] for vi, p in (10) respectively quadratic and affine.

Theorem 2. Suppose that the operator FW in (6b) is strongly
monotone on X with constant α, that Assumptions 1, 3, 4 hold,
and that X i is bounded for all i ∈ {1, . . . ,M}; set τ < 2α

‖A‖2
in (24). Then x(k) in Algorithm 1 converges to a variational
Wardrop equilibrium of G.

Remark 1 (Convergence rate). The convergence rate of Algo-
rithm 1 is an open question. Nonetheless, it is possible to char-
acterize the convergence rate in both of the two levels for some
special cases. Specifically, under Assumption 4-2) it is possible
to modify line (23c) with z(h+1) ← (1 − 1

µ )z(h) + 1
µ σ̃(h+1)

and guarantee geometric convergence for µ ∈ [0, 1] small
enough, see e.g. [50, Theorem 3.6 (iii)]. The outer loop on the
other hand has geometric convergence under the additional
assumption that the mapping Φ as defined in the proof of
Theorem 2 is not only co-coercive but also strongly monotone.

The proof is given in the appendix. To the best of our knowl-
edge this is the first algorithm that guarantees convergence
to a Wardrop equilibrium in games with coupling constraints
by using optimal responses. We note that, for the case of
specific cost (10) and p affine, [30] proposes a one-level optimal
response algorithm that converges to a pair (x̄, λ̄) such that x̄ is

5The mapping is non-expansive if ‖xior(z1, λ)−xior(z2, λ)‖ ≤ ‖z1− z2‖
for all z1, z2.

7



a Wardrop equilibrium of the game G(λ̄) satisfying the coupling
constraint. However such point is not a Wardrop equilibrium
because the complementarity condition 0 ≤ λ̄ ⊥ b−Ax̄ ≥ 0 is
not guaranteed. A two-level gradient-step algorithm for Nash
equilibrium with coupling constraints has been proposed in [51,
Algorithm 2] and in [52, Section 4].

B. Asymmetric projection algorithm based on gradient step
for Nash and Wardrop equilibrium

We propose here an algorithm to achieve a Nash or a Wardrop
equilibrium by making use of the equivalent reformulation of
VI(Q, F ) as the extended VI(Y, T ) given in Proposition 3.
Solving VI(Y, T ) instead of VI(Q, F ) allows the design of
a decentralized algorithm, because the set Y is the Cartesian
product X 1× . . .XM×Rm≥0, and thus the individual constraint
sets X i are decoupled.

Algorithm 2 finds a solution of VI(Y, T ), where T is as
in (21), with F = FN, and hence achieves a Nash equilibrium.
If the same algorithm is used with F = FW it achieves a
Wardrop equilibrium. At every iteration each agent computes
his new strategy xi(k+1) by taking a gradient step, based on his
previous strategy xi(k), the previous average σ(x(k)) and the
previous dual variables λ(k). Given the new coupling constraint
violation, the central operator updates the price to λ(k+1) and
broadcasts it to the agents.

Algorithm 2 for Nash and Wardrop equilibria
Initialization: Set k = 0, τ > 0, xi(0) ∈ Rn, λ(0) ∈ Rm≥0.
Iterate until convergence:

σ(k) ← 1
M

∑M
i=1 x

i
(k) (25a)

xi(k+1) ←ΠX i [x
i
(k)−τ

(
∇xiJ

i(xi(k), σ(x(k)))+A>(:,i)λ(k)

)
],∀i (25b)

λ(k+1) ←ΠRm
≥0

[λ(k) − τ(b− 2Ax(k+1) +Ax(k))] (25c)

k ← k + 1.

Theorem 3. Let Assumptions 1 and 3 hold. Then
• Let FN in (6a) be strongly monotone on X with constant
α and Lipschitz on X with constant LF . Set τ > 0 s.t.

τ <
−L2

F +
√
L4

F +4α2‖A‖2
2α‖A‖2 . (26)

Then x(k) in Algorithm 2 converges to a variational Nash
equilibrium of G in (3).

• Let FW in (6b) be strongly monotone on X with con-
stant α and Lipschitz on X with constant LF , then
Algorithm 2 with ∇xiJ i(xi(k), z)|z=σ(x) in place of
∇xiJ i(xi(k), σ(x(k))) converges to a variational Wardrop
equilibrium, if τ satisfies (26). �

Remark 2 (Convergence rate). By specializing the result in
[39] we proved in [6, Proposition 1] that if the operator
F is not only monotone but also affine and the set X is a
polyhedron then for τ small enough Algorithm 2 converges
R-linearly, i.e., lim supk→∞(‖y(k) − ȳ‖)

1
k < 1.

The proof is given in the appendix and is based on the fact
that Algorithm 2 is a specific type of asymmetric projection

algorithm [12, Algorithm 12.5.1] applied to VI(Y, T ). A proof
for the case in which F is affine and symmetric is given
in [53, Propositions 2 and 4]. We briefly note that there are
other gradient based algorithms that can be implemented in a
decentralized fashion to solve VI(Y, T ). One example is the
extragradient algorithm [12, Algorithm 12.1.9]. This would
however require two updates for both x and λ at each iteration.

C. Convergence guarantees for quadratic games

In the previous subsections we have proposed two different
algorithms. We summarize in Table I the main conditions
that guarantee their convergence. To better understand the

Nash Wardrop
optimal response - FW strongly monotone

(Algorithm 1) and Assumption 4
gradient step

FN strongly monotone FW strongly monotone(Algorithm 2)

TABLE I: Range of applicability of the presented algorithms, under
Assumptions 1 and 2.

differences and the range of applicability of the two algorithms
we refine the sufficient conditions of Table I to the important
class of aggregative games with quadratic cost functions

J i(xi, σ(x)) :=
1

2
(xi)>Qxi + (Cσ(x) + ci)>xi , (27)

where Q ∈ Rn×n is symmetric, C ∈ Rn×n, ci ∈ Rn. These
cost functions have been used in [14], [19], [54]. Since the
operators FN, FW defined in (6) are obtained by differentiating
quadratic functions, their expression is given by

FW(x) =
(
IM ⊗Q+ 1

M 1M1>M ⊗ C
)
x+ c, (28a)

FN(x) = FW(x) + 1
M (IM ⊗ C>)x, (28b)

where c = [c1; . . . ; cM ]. The following lemma exploits the
characterization (28) to derive sufficient conditions for strong
monotonicity of FW, FN and for Assumption 4. These in turn
guarantee convergence of Algorithm 1 and 2 as by Table I.

Lemma 4. The following hold.
• If Q � 0, C � 0 or if Q � 0, C � 0 then FN in (28b) is

strongly monotone.
• If Q � 0, C � 0 then FW in (28a) is strongly monotone.
• If Q � 0, C = C> � 0 or if Q � 0, Q−C>Q−1C � 0

then FW in (28a) is strongly monotone and Assumption 4
is satisfied.

Proof: By Lemma 2, strong monotonicity of FW in (28a) is
equivalent to ∇xFW(x) =

(
IM ⊗Q+ 1

M 1M1>M ⊗ C
)> � 0,

which is independent from x. Similarly, strong monotonicity
of FN in (28b) is equivalent to

(
IM ⊗Q+ 1

M 1M1>M ⊗ C
)>

+
1
M (IM ⊗C>)> � 0. Building on this, the first two statements
are straightforward to prove. Regarding the last statement,
Q � 0, C = C> � 0 imply ∇xFW(x) � 0. Moreover, by [14,
Theorem 2], Assumption 4.2 is satisfied. By using Schur’s
theorem, it can be shown that Q � 0, Q−C>Q−1C � 0 imply
Q + C � 0, hence ∇xFW(x) � 0. Finally, by [14, Theorem
2], Assumption 4.1 is satisfied.
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VI. CHARGING OF ELECTRIC VEHICLES

We model the simultaneous charging of a population of
electric vehicles (EV) as a game, following the approach of
[10], [14], [23]. Compared to the existing work, our main
contributions consist in introducing the coupling constraints,
finding a Nash and a Wardrop equilibrium even for the case of
vi = 0 in (10), and studying the distance between the aggregate
strategies at the Nash and at the Wardrop equilibrium.

Constraints

We consider a population of M electric vehicles. The state
of charge of vehicle i at time t is described by the variable
sit. The time evolution of sit is specified by the discrete-time
system sit+1 = sit+b

ixit , t = 1, . . . , n, where xit is the charging
control and the parameter bi > 0 is the charging efficiency. We
assume that the charging control cannot take negative values
and that at time t it cannot exceed x̃it ≥ 0. The final state of
charge is constrained to sin+1 ≥ ηi, where ηi ≥ 0 is the desired
state of charge of agent i. Denoting xi = [xi1, . . . , x

i
n]> ∈ Rn,

the individual constraint of agent i can be expressed as

xi ∈ X i :=

{
xi ∈ Rn

∣∣∣∣ 0 ≤ xit ≤ x̃it, ∀ t = 1, . . . , n∑n
t=1 x

i
t ≥ θi

}
,

(29)
where θi := (bi)

−1
(ηi − si1), with si1 ≥ 0 the state of charge

at the beginning of the time horizon. Besides the individual
constraints xi ∈ X i, we also introduce the coupling constraint

x ∈ C := {x ∈ RMn | 1
M

∑M
i=1 x

i
t ≤ Kt, ∀ t = 1, . . . , n},

(30)
indicating that at time t the grid cannot deliver more thanM ·Kt

units of power to the vehicles. In compact form (30) reads as
(1>M ⊗ In)x ≤MK , where K := [K1, . . . ,Kn]>.

Cost function

The cost function of each vehicle represents its electricity
bill, which we model as

J i(xi, σ(x)) =
∑n
t=1 pt

(
dt+σt(x)

κt

)
xit =: p(σ(x))>xi, (31)

where we assumed that the energy price for each time interval
pt : R≥0 → R>0 depends on the ratio between total con-
sumption and total capacity (dt + σt(x))/κt, where dt and
σt(x) := 1

M

∑M
i=1 x

i
t are the non-EV and EV demand at time

t divided by M and κt is the total production capacity divided
by M as in [10, eq. (6)]. κt is in general not related to Kt.

A. Theoretical guarantees

We define the game GEV
M as in (3), with X i, C and

J i(xi, σ(x)) as in (29), (30) and (31) respectively. In the follow-
ing corollary we refine the main results of Sections III, IV, V
for the EV application.

Corollary 1. Consider a sequence of games (GEV
M )∞M=1.

Assume that there exists x̃0 such that x̃it ≤ x̃0 for all
t ∈ {1, . . . , n}, i ∈ {1, . . . ,M} and for each game GEV

M .
Moreover, assume that for each game GEV

M the set Q = C ∩X
is non-empty and that for each t the price function pt in

(31) is twice continuously differentiable, strictly increasing
and Lipschitz in [0, x̃0] with constant Lp. Moreover, assume

min
t∈{1,...,n}
z∈[0,x̃0]

(
p′t(z)−

x̃0p′′t (z)

8

)
> 0. (32)

Then:
1) A Wardrop and a Nash equilibrium exist for each game
GEV
M of the sequence. Furthermore, every Wardrop equi-

librium is an ε-Nash equilibrium with ε =
2n(x̃0)2Lp

M .
2) The function p is strongly monotone, hence for each

game GEV
M there exists a unique σ̄ such that σ(x̄W) = σ̄

for any variational Wardrop equilibrium x̄W of GEV
M .

Moreover for any variational Nash equilibrium x̄N of

GEV
M , ‖σ(x̄N) − σ(x̄W)‖ ≤ x̃0

√
2nLp

αM , where α is the
monotonicity constant of p.

3) For each game GEV
M the operator FW is monotone, hence

the extragradient algorithm [12, Algorithm 12.1.9] with
operator FW converges to a variational Wardrop equilib-
rium of GEV

M .
4) For each game GEV

M the operator FN is strongly monotone.
Hence, Algorithm 2 converges to a variational Nash
equilibrium of GEV

M .

Proof: 1) We show that Assumption 1 holds. Indeed the
sets X i in (29) are convex and compact, the function g in (2) is
affine and hence convex, and Q is non-empty by assumption.
For each z fixed, the function J i(xi, z) is linear hence convex in
xi. We prove in the last statement that FN is strongly monotone.
This is equivalent to ∇xFN(x) � 0 by Lemma 2, which
by definition of FN(x) implies ∇xi(∇xiJ i(xi, σ(x))) � 0,
which implies convexity of J i(xi, σ(x)). Finally, J i(z1, z2)
is continuously differentiable in [z1; z2] because pt is twice
continuously differentiable. Having verified Assumption 1,
Lemma 1 guarantees the existence of a Nash and of a Wardrop
equilibrium. The ε-Nash property is guaranteed by Proposi-
tion 2 upon verifying Assumption 2. This holds because: i)
∪Mi=1X i ⊆ [0, x̃0]n, ii) J i(z1, z2) is Lipschitz in z2 on [0, x̃0]n

with Lipschitz constant L2 = RLp, iii) (12) holds and iv) pt is
assumed Lipschitz in [0, x̃0] with Lipschitz constant Lp for all
t. We conclude by noting that R = x̃0

√
n.

2) The fact that each pt is strictly increasing in [0, x̃0]
implies that ∇zp(z) � 0 in [0, x̃0]n, where p(z) :=[
p1(d1+z1

κ ), . . . , pn(dn+zn
κ )

]>
. In turn∇zp(z) � 0 guarantees

strong monotonicity of p in [0, x̃0]n by Lemma 2. This, together
with Assumptions 1 and 2 verified above, allows us to use the
third result in Theorem 1.
3) Since X is closed and convex, [12, Theorem 12.1.11]
guarantees that the extragradient algorithm converges to a
Wardrop equilibrium if FW is monotone, which follows from
the first statement of Lemma 3.
4) Assumption 1, which has been shown to hold in the first state-
ment, and Assumption 3, which trivially holds, allow us to use
Theorem 3, upon showing strong monotonicity of FN. We have
proven in the third statement that FW is monotone. According
to (11b), to show strong monotonicity of FN it is sufficient to
show that under condition (32) the term [∇zp(z)|z=σ(x)x

i]Mi=1

is strongly monotone for all x ∈ X , which is equivalent to

9



∇x[∇zp(z)|z=σ(x)x
i]Mi=1 � 0 for all x ∈ X by Lemma 2. We

have

∇x[∇zp(z)|z=σ(x)x
i]Mi=1 =

IM ⊗∇zp(z)|z=σ(x) +
1

M
1M ⊗

(
[diag{p′′t (σt)x

i
t}nt=1]Mi=1

)>
,

(33)
where diag{p′′t (σt)x

i
t}nt=1 is the diagonal matrix whose entry

in position (t, t) is p′′t (σt)x
i
t. The permutation matrix P =

[[e>t+(i−1)n]Mi=1]nt=1 permutes (33) into block-diagonal form

P∇x[∇zp(z)|z=σ(x)x
i]Mi=1P

> = (34)p′1(σ1)IM
. . .
p′n(σn)IM

+
1

M

p′′1 (σ1)x11>M
. . .
p′′n(σn)xn1>M


where xt = [xit]

M
i=1. It suffices to show p′t(σt)IM +

1
M p′′t (σt)xt1>M � 0 for all t. By Lemma 5 in Appendix,
λmin

(
xt1>M + 1Mx>t

)
/2 ≥ − x̃

0M
8 , which ends the proof6.

The average population strategy plays an important role in
the EV application: indeed, [10, Theorem 6.1] shows in the
same game setup that the average population strategy relative
to a Nash equilibrium presents desirable properties for the grid
operator. Nonetheless, if condition (32) is not satisfied, a Nash
equilibrium cannot be achieved; it is instead possible to achieve
a Wardrop equilibrium with the extragradient algorithm. The
second statement of Corollary 1 then provides guarantees on
the distance between the average population strategies at the
Nash and at the Wardrop equilibrium.

Uniqueness of dual variables.

Corollary 1 shows that under condition (32) the operator FN
of GEV

M is strongly monotone, hence the game GEV
M admits a

unique variational Nash equilibrium (Lemma 1). We study here
the uniqueness of the associated dual variables λ̄N introduced
in Proposition 3. Guaranteeing unique dual variables might
be important to convince the vehicle owners to participate
in the proposed scheme, as the dual variables represent the
penalty price associated to the coupling constraint. Define
Rtight ⊆ {1, . . . , n} as the set of instants in which the coupling
constraint C is active. We provide a sufficient condition for
uniqueness of the dual variables which relies on a modification
of the linear-independence constraint qualification [55].

Proposition 4. Assume that condition (32) holds and consider
the unique variational Nash equilibrium x̄N of GEV

M . If there
exists a vehicle i such that
• x̄iN,t /∈ {0, x̃it} for all t ∈ Rtight and
• x̄iN,t′ /∈ {0, x̃it′} for some t′ /∈ Rtight,

then the dual variables λ̄N associated to the coupling con-
straint (30) are unique.

6The work [28] studies an aggregative game and in [28, Lemma 3] it
exploits expression (34) to give conditions for ∇xFN(x) to be a P -matrix,
which in turn guarantees uniqueness of the Nash equilibrium in absence of
coupling constraints. It is interesting to note that uniqueness in [28] holds
assuming p′t > 0, p′′t > 0, whereas for us it suffices p′t > 0, p′′t < 0.

For reasons of space, we report the proof in [42, Proposition
4]. We note that the sufficient condition of Proposition 4 is
to be verified a-posteriori; in other words, it depends on the
primal solution x̄N. In the numerical analysis presented in the
following such sufficient condition always holds. Uniqueness
of the dual variables associated to the coupling constraint of
an aggregative game has been studied also in [28, Theorem
4], where the conditions in the bullets of Proposition 4 are not
required but p is restricted to be affine.

B. Numerical analysis

The numerical study is conducted on a heterogeneous pop-
ulation of agents. We set the price function to pt(zt) =
0.15

√
(dt + σt(x))/κt and n = 24. The agents differ in θi,

randomly chosen according to U [0.5, 1.5]; they also differ in x̃it,
which is chosen such that the charge is allowed in a connected
interval, with left and right endpoints uniformly randomly
chosen: within the interval, x̃it is constant and randomly chosen
for each agent, according to U [1, 5]; outside this interval,
x̃it = 0. The demand dt is taken as the typical (non-EV) base
demand over a summer day in the United States [10, Figure
1]; κt = 12 kW for all t, and the upper bound Kt = 0.55
kW is chosen such that the coupling constraint (30) is active
in the middle of the night. Note that with these choices all
the assumptions of Corollary 1 are met. In particular, for the
given choice of p condition (32) holds because p′′t (z) < 0 for
all z and all t. Figure 1 presents the aggregate consumption
at the Nash equilibrium found by Algorithm 2, with stop-
ping criterion ‖(x(k+1), λ(k+1)) − (x(k), λ(k))‖∞ ≤ 10−4.
Note that without the coupling constraint the quantity σ̄ + d
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Fig. 1: Aggregate EV demand σ(x̄N) and dual variables λ̄N for M =
100, subject to σ(x) ≤ 0.55 kW. The region below the dashed line
corresponds to σ(x) + d ≤ 0.55 kW+d.

would be constant overnight, as shown in [10]. Figure 2

illustrates the bound ‖σ(x̄N) − σ(x̄W)‖ ≤ x̃0
√

2nLp

αM of the
second statement of Corollary 1. The Wardrop equilibrium
is computed with the extragradient algorithm with stopping
criterion ‖(x(k+1), λ(k+1)) − (x(k), λ(k))‖∞ ≤ 10−4. The ε-
Nash property of the Wardrop equilibrium in Proposition 2 can
also be illustrated; a plot is omitted here for reasons of space.
The framework introduced above can also be used to enforce
local coupling constraints, i.e. constraints on a subset of all
the vehicles. These can for instance be used to model capacity
limits for local substations. We refer the reader to [6, Section
VI] for a more detailed analysis.
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Fig. 2: Distance between the aggregates σ(x̄N) and σ(x̄W) at the
Nash and Wardrop equilibrium (solid line). Corollary 1 ensure that
such distance is upper bounded by K/

√
M for K = x̃0

√
2nLp/α.

The dotted line shows 1/
√
M proving that our bound has the right

trend, while the constant K is, in this case, conservative.

Quadratic cost function
Different works in the EV literature [14], [56] use the

quadratic cost (27), with Q � 0 and C � 0, diagonal.
Existence of a Nash and of a Wardrop equilibrium is guaranteed
by Lemma 1, while Proposition 2 gives the ε-Nash property.
Further, Lemma 4 shows that the resulting operators FN and
FW are strongly monotone with monotonicity constant inde-
pendent from M . Theorem 1 ensures then that ‖x̄N − x̄W‖ ≤
L2/(α

√
M), with L2 = R · λmax(C). A Nash equilibrium can

be found using Algorithm 2, while a Wardrop equilibrium can
be achieved using both Algorithm 1 and 2. Figure 3 presents
a comparison between the two algorithms in terms of iteration
count, where Q = 0.1In, C = In, ci = d for all i. Figure 3
(top) represents the number of strategy updates required to
converge, i.e. the number of times (23) or (25b) is used. Figure 3
(bottom) depicts the number of dual variables updates, i.e. the
number of times (24) or (25c) is used. For both algorithms
the number of iterations does not seem to increase with the
population size. Algorithm 2 requires fewer primal iterations,
while Algorithm 1 needs much fewer dual iterations.
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Fig. 3: Primal (top) and dual (bottom) updates required to converge;
mean and standard deviation for 10 repetitions. As each step of
Algorithm 2 performs one primal and one dual update, the two black
lines (top and bottom) coincide.

VII. ROUTE CHOICE IN A ROAD NETWORK

As second application we study a population of drivers
interacting in a road network. Our model differs from [57] in

the cost function (37), where we introduce a term penalizing
the deviation from a preferred route. We assume that the travel
time on each road depends only on the traffic on that road,
whereas [35] considers also upstream and downstream influ-
ence. While most traffic literature focuses solely on the Wardrop
equilibrium [35], [57], we also study the Nash equilibrium and
illustrate the distance between the two.

We consider a strongly-connected directed graph (V, E)
with vertex set V = {1, . . . , V }, representing geographical
locations, and directed edge set E = {1, . . . , E} ⊆ V × V ,
representing roads connecting the locations. Each agent i ∈
{1, . . . ,M} represents a driver who wants to drive from his
origin oi ∈ V to his destination di ∈ V .

Constraints

Let us introduce the vector xi ∈ [0, 1]E to describe the
strategy (route choice) of agent i, with [xi]e representing the
probability that agent i transits on edge e [58]. To guarantee
that agent i leaves his origin and reaches his destination with
probability 1, the strategy xi has to satisfy

∑
e∈in(v)

[xi]e −
∑

e∈out(v)

[xi]e =


−1 if v = oi

1 if v = di

0 otherwise,
∀ v ∈ V,

where in(v) and out(v) represent the set of in-edges and the set
of out-edges of node v. We denote the graph incidence matrix
by B ∈ RV×E , so that [B]ve = 1 if edge e points to vertex v,
[B]ve = −1 if edge e exits vertex v and [B]ve = 0 otherwise.
The individual constraint set of agent i is then

X i := {x ∈ [0, 1]E : Bx = bi}, (35)

where bi ∈ RV is such that [bi]v = −1 if v = oi, [bi]v = 1 if
v = di and [bi]v = 0 otherwise. We introduce the constraint

x ∈ C := {x ∈ RME | 1
M

∑M
i=1 x

i
e ≤ Ke, ∀ e = 1, . . . , E},

(36)
expressing the fact that the number of vehicles on edge e cannot
exceed MKe. Such coupling constraint can be imposed by
authorities to decrease the congestion in a specific road or
neighborhood, with the goal of reducing noise or pollution.

Cost function

We assume that each driver i ∈ {1, . . . ,M} wants to
minimize his travel time and, at the same time, does not want
to deviate too much from a preferred route x̃i ∈ X i. We model
this objective with the following cost function

J i(xi, σ(x)) =
γi

2
‖xi − x̃i‖2 +

E∑
e=1

te(σe(xe))x
i
e, (37)

with γi ≥ 0 a weighting factor, xe := [x1
e, . . . , x

M
e ]>, σe(xe) =

1
M

∑M
i=1 x

i
e and te(σe(xe)) the travel time on edge e.

11



Travel time

This subsection is devoted to the derivation of the analytical
expression of the travel time te(σe(xe)). The reader not inter-
ested in the technical details of the derivation can jump to the
expression of te(σe(xe)) in (40), which is illustrated in Figure 4.
We introduce the quantity De(xe) =

∑M
i=1 x

i
e to describe the

total demand on edge e. We consider a rush-hour interval [0, h]
and we assume that the instantaneous demand equalsDe(xe)/h
at any time t ∈ [0, h] and zero for t > h. We assume that edge e
can support a maximum flow Fe (vehicles per unit of time) and
features a free-flow travel time te,free. As we are interested in
comparing populations of different sizes, we further assume that
the peak hour duration h is independent from the population
size M and that the road maximum capacity flow Fe scales
linearly with the population size, i.e. Fe(M) = fe ·M , with
fe constant in M . The consideration underpinning this last
assumption is that the road infrastructure scales with the number
of vehicles to accommodate the increasing demand, similarly
as what assumed in [10] for the energy infrastructure.

If De(xe)/h ≤ Fe then every car has instantaneous access
to edge e and no queue accumulates, hence the travel time
equals te,free. We focus in the rest of this paragraph on the case
De(xe)/h > Fe. An increasing queue forms in the interval
[0, h] and decreases at rate Fe for t > h. The number of vehicles
qe(t) queuing on edge e at time t obeys then the dynamics

q̇e(t) =

{
De(xe)
h · 1[0,h](t)− Fe if qe(t) ≥ 0

0 otherwise,
qe(0) = 0,

(38)
where 1[0,h] is the indicator function of [0, h]. The solution
qe(t) to (38) is hence

qe(t) =


(
De(xe)−Feh

h

)
t if 0 ≤ t ≤ h

De(xe)− Fe t if h ≤ t ≤ De(xe)/Fe

0 if t ≥ De(xe)/Fe.

(39)

As a consequence, the total queuing time at edge e (i.e, the
queuing times summed over all vehicles) is the integral of qe(t),
which equals De(xe)(De(xe)−Feh)/(2Fe); the queuing time
is then (De(xe)− Feh)/(2Fe).

Since σe(xe)= 1
M

∑M
i=1 x

i
e= 1

MDe(xe), the travel time is

tPWA
e (σe(xe)) =

{
te,free if σe(xe) ≤ feh
te,free + σe(xe)−feh

2fe
otherwise,

and is reported in Figure 4. Note that tPWA
e is a continuous and

piece-wise affine function of σe(xe), but it is not continuously
differentiable, hence Assumption 1 would not hold. Therefore,
we define te appearing in (37) as the smoothed version of tPWA

e

te(σe(xe))=


te,free if σe(xe) ≤ feh−∆e

te,free + σe(xe)−feh
2fe

if σe(xe) ≥ feh+ ∆e

aσe(xe)
2+bσe(xe)+c otherwise,

(40)
where the values of ∆e, a, b, c are such that te is continuously
differentiable7, as illustrated in Figure 4. We note that the

7The values are ∆e = 0.5(
√

(feh)2 + 4feh − feh), a = 1/(8fe∆e),
b = 1/(4fe)−h/(4∆e), c = te,free+(feh)2/(8fe∆e)−h/4−(∆e)/(8fe).

feh−∆e feh feh+ ∆e

tfree

tPWA
e (σe(xe))

te(σe(xe))

Fig. 4: Piece-wise affine travel time tPWA
e (σe(xe)) and its smooth

approximation te(σe(xe)) as functions of σe(xe).

function te(σe(xe)) is used within a stationary traffic model
but includes the average queuing time which is based on the
dynamic function (39). A thorough analysis of a dynamic traffic
model is subject of future work.

Finally, we remark that a travel time with similar mono-
tonicity properties can be derived from the piecewise affine
fundamental diagram of traffic [59, Figure 7], but te(σe(xe))
would present a vertical asymptote which is absent here.

A. Theoretical guarantees

We define the route-choice game GRC
M as in (3), with X i as

in (35), C as in (36) and J i(xi, σ(x)) as in (37), (40). In the
following we apply the main results of Sections III, IV, V to
the route choice game.

Corollary 2. Consider the sequence of games (GRC
M )∞M=1.

Assume that for each game GRC
M the set Q = C ∩ X is non-

empty, that h > 0 and te,free, fe > 0 for each e ∈ E . Moreover,
assume that there exists γ̂ > 0 such that γi ≥ γ̂ for all
i ∈ {1, . . . ,M}, for all M . Then:

1) The operator FW is strongly monotone, hence each game
GRC
M admits a unique variational Wardrop equilibrium.

For every M satisfying

M > max
e∈E

1

32fe∆eγ̂
(41)

the operator FN is strongly monotone, hence each game
GRC
M admits a unique variational Nash equilibrium. Every

Wardrop equilibrium is an ε-Nash equilibrium with ε =
E

Mfmin
, where fmin = mine∈E fe.

2) For any variational Nash equilibrium x̄N of GRC
M , the

unique variational Wardrop equilibrium x̄W of GRC
M sat-

isfies

‖x̄N − x̄W‖ ≤
√
E

2fminγ̂
√
M
.

3) For any M , Algorithm 2 with operator FW converges
to a variational Wardrop equilibrium of GRC

M . For M
satisfying (41), Algorithm 2 with operator FN converges
to a variational Nash equilibrium of GRC

M .

Proof: 1) Assumption 1 and the consequent existence of a
variational Nash and of a variational Wardrop equilibrium for
any M can be shown as in Corollary 1. The operator FW for
the cost (37) reads

FW(x) = [γi(xi − x̂i) + t(σ(x))]Mi=1.
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where t(σ(x)) := [te(σe(xe))]
E
e=1. Since te(σe(xe)) in (40)

is a monotone function of σe(xe), the operator t(σ(x)) is
monotone. Then FW is strongly monotone with constant γ̂
because it is the sum of a monotone and a strongly monotone
operator with constant γ̂. As a consequence, each GRC

M admits
a unique variational Wardrop equilibrium.

To prove strong monotonicity of FN we use the result
of Lemma 28. We first note that each te only depends on
the corresponding σe, hence ∇xFN(x) can be permuted into
diagonal form similarly to what done in (34). It then suffices
to show γ̂IM + 1

M t′e(σe)IM + 1
M2 t

′′
e (σe)xe1>M � 0 for all

σe and for all e. This matrix is indeed positive definite if
σe(xe) /∈ [feh − ∆e, feh + ∆e], because then t′e(σe) ≥ 0
and t′′e (σe) = 0 by (40). For σe(xe) ∈ [feh −∆e, feh + ∆e]
it suffices to show γ̂IM + 1

M24fe∆e
xe1>M � 0, because

t′e(σe) ≥ 0 and t′′e (σe) = 1
4fe∆e

. By Lemma 5 in the Appendix,
λmin

(
xe1>M + 1Mx>e

)
/2 ≥ −M8 , which proves strong mono-

tonicity of FN under (41). Consequently, ifM satisfies (41) then
GRC
M admits a unique variational Nash equilibrium. Finally, we

verify Assumption 2 in order to use Proposition 2. We have
X 0 = [0, 1]E and t is continuously differentiable and hence
Lipschitz in X 0, with constant Lp = 1/(2fmin). Moreover,
R :=maxy∈X 0{‖y‖} =

√
E. Using (12) concludes the proof.

2) Since all the assumptions of Theorem 1 have just been
verified, it is a direct consequence of its second statement.

3) As Assumption 3 holds trivially (the others have already
been verified), we apply Theorem 3 and conclude the proof.

B. Numerical analysis

For the numerical analysis we use the data set of the city
of Oldenburg [36], whose graph features 175 nodes and 213
undirected edges9 and is reported in Figure 5. For each agent
i the origin oi and the destination di are chosen uniformly at
random. Regarding the cost (37), te,free is computed as the ratio
between the road length, which is provided in the data set, and
the free-flow speed. Based on the road topology, we divide the
roads into main roads, where the free-flow speed is 50 km/h,
and secondary roads, where the free-flow speed is 30 km/h.
Moreover, we assume a peak hour duration h of 2 hours, and
for all e ∈ E , we set fe = 4 · 10−3 vehicles per second, which
corresponds to 1 vehicle every 4 seconds for a population of
M = 60 vehicles. Finally, the parameter γi is picked uniformly
at random in [0.5, 3.5] and x̃i is such that x̃ie = 1 if e belongs
to the shortest path from oi to di, while x̃ie = 0 otherwise. The
shortest path is computed based on {te,free}Ee=1. Note that with
the above values the bound (41) becomes M > 16.14, which
is satisfied also for small-size populations.

We compute the Wardrop equilibrium with Algorithm 2
relatively to a population of M = 60 drivers without coupling

8Lemma 2 requires FN to be continuously differentiable, which is not the
case here. The more general result [60, Proposition 2.1] extends the statement
of Lemma 2 to operators which are not continuously differentiable. It then
suffices to show ∇xFN(x) � 0 for σ(x) in each of the three intervals defined
by (40), because in each of them FN is continuously differentiable.

9The graph in the original data set features 6105 vertexes and 7035
undirected edges. We reduce it by excluding all the nodes that are outside the
rectangle [3619, 4081]× [3542, 4158] and all the edges that do not connect
two nodes in the rectangle. The resulting graph is strongly connected.

constraint, i.e. with Ke = 1 for all e ∈ E . We report in Figure 5
the corresponding queuing time te(σe(xe))− te,free as by (40).
We illustrate in Figure 6 the change in the queuing time of
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Fig. 5: The queuing time reported in green-red color scale. Note that
this pattern changes if one modifies the pairs origin-destination.

an entire neighborhood when introducing a coupling constraint
that upper bounds the total number of cars on a single edge,
relatively to a Wardrop equilibrium with M = 60.
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Fig. 6: On the left, the queuing time in a neighborhood without any
coupling constraints; 10% of the population transits on edge 95, and
the queuing time is 7.28 minutes. On the right, the queuing time in
presence of a coupling constraint allowing at most 3% of the entire
population on edge 95; the queuing time is reduced to 1.42 minutes,
but it visibly increases on the edges of the alternative route.

Finally, we illustrate the second statement of Corollary 2
by reporting in Figure 7 the distance between the unique
variational Wardrop equilibrium and the variational Nash equi-
librium found by Algorithm 2. The ε-Nash property of the
Wardrop equilibrium in Proposition 2 can also be illustrated,
but a plot is omitted here for reasons of space.
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Fig. 7: Distance between Nash and Wardrop variational equilibria.
As in Fig. 2, 1/

√
M illustrates the trend of the bound derived in

Corollary 2 and not the specific constant.

VIII. CONCLUSIONS

The paper considered aggregative games and established
novel results on the Euclidean distance between Nash and
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Wardrop equilibrium; moreover, it proposed two decentralized
algorithms to achieve the two equilibria in presence of coupling
constraints and investigated two relevant applications. As future
research direction, it would be interesting to design distributed
algorithms which achieve an equilibrium by means of local
communications. Moreover, by exploiting the VI reformulation
one could establish results on the proximity between Nash
equilibrium and social optimum.

APPENDIX: PROOFS

Proof of Theorem 2

We split the proof of the theorem into two parts. First we
show convergence of the inner loop and then of the outer loop.

Inner loop. Using the same approach of [14, Theorem 3 and
Corollary 1], it is possible to show that under Assumption 4 for
any λ(k) ∈ Rm≥0 the sequences of z(h) and of x̃(h) converge re-
spectively to z̄ and to x̄ such that z̄ = 1

M

∑M
i=1 x

i
or(z̄, λ(k)) =:

1
M

∑M
i=1 x̄

i = σ(x̄). In [14, Theorem 1] it is shown that the set
{x̄i}Mi=1 is an ε-Nash equilibrium for the game G(λ(k)), with
ε = O( 1

M ). In the following, we show that {x̄i}Mi=1 is actually
a Wardrop equilibrium of G(λ(k))

10. Indeed, for each agent i,
by the definition of optimal response in (22), one has

J i(x̄i, z̄) + λ>(k)A(:,i)x̄
i ≤ J i(xi, z̄) + λ>(k)A(:,i)x

i,∀xi ∈ X i .

Using the fact that z̄ = σ(x̄), we get

J i(x̄i, σ(x̄)) + λ>(k)A(:,i)x̄
i ≤ J i(xi, σ(x̄)) + λ>(k)A(:,i)x

i,

for all xi ∈ X i and for all i ∈ {1, . . . ,M}. Thus {x̄i}Mi=1 is a
Wardrop equilibrium of G(λ(k)) by Definition 2.

Outer loop. We follow the steps of the proof of [51, Proposi-
tion 8]. For each λ ∈ Rm≥0 define FW(x;λ) := FW(x) +A>λ.
Such operator is strongly monotone in x on Q with the same
constant α as FW(x). It follows by Lemma 1, that G(λ) has
a unique variational Wardrop equilibrium which we denote by
x̄W(λ). Note that the outer loop update can be written as

λ(k+1) = ΠRm
≥0

[λ(k) − τ(b−Ax̄W(λ(k)))],

which is a step of the projection algorithm [12, Algorithm
12.1.4] applied to VI(Rm≥0,Φ), with Φ(λ) := b− Ax̄W(λ). To
conclude, it suffices to show that λ(k) converges to a solution
λ̄ of such VI, because by [12, Proposition 1.1.3], λ̄ solves
VI(Rm≥0,Φ) if and only if 0 ≤ λ̄ ⊥ (b−Ax̄W(λ̄)) ≥ 0. Having
already proved convergence of the inner loop, the conclusion
then follows from the second statement of Proposition 3.

To show that the sequence λ(k) converges to a solution of the
VI(Rm≥0,Φ), we prove that the mapping Φ is co-coercive11 with
co-coercitivity constant cΦ = α/‖A‖2 and apply [12, Theorem
12.1.8] to conclude the proof. Note that [12, Theorem 12.1.8]
requires VI(Rm≥0,Φ) to have at least a solution; this is guar-
anteed by the equivalence between 1) and 2) in Proposition 3
upon noting that a solution of VI(Q,F ) exists by Lemma 1.

10This is consistent with [14, Theorem 1] thanks to Proposition 2.
11 The operator Φ : Rm → Rm is co-coercive with constant η > 0 if

(Φ(λ1)−Φ(λ2))>(λ1−λ2) ≥ η||Φ(λ1)−Φ(λ2)||2, for all λ1, λ2 ∈ Rm.

To show co-coercitivity of Φ, consider λ1, λ2 ∈ Rm≥0 and the
corresponding unique solutions x1 := x̄W(λ1) of VI(X ,FW +
A>λ1) and x2 := x̄W(λ2) of VI(X ,FW +A>λ2). By definition

(x2 − x1)>(FW(x1) +A>λ1) ≥ 0 , (42a)

(x1 − x2)>(FW(x2) +A>λ2) ≥ 0 . (42b)

Adding (42a) and (42b) we obtain (x2 − x1)>(FW(x1) −
FW(x2) +A>(λ1−λ2)) ≥ 0, i.e., (x2−x1)>A>(λ1−λ2) ≥
(x2−x1)>(FW(x2)−FW(x1)). SinceFW is strongly monotone,
it follows from the last inequality that

(Ax2 −Ax1)>(λ1 − λ2) ≥ α‖x2 − x1‖2 . (43)

Since by definition ‖A(x2 − x1)‖ ≤ ‖A‖‖x2 − x1‖, then

‖x2 − x1‖2 ≥
‖A(x2 − x1)‖2

‖A‖2
. (44)

Combining (43), (44), and adding and subtracting b, we obtain

(b−Ax2−(b−Ax1))>(λ2−λ1) ≥ α

‖A‖2
‖b−Ax2−(b−Ax1)‖2,

hence Φ is co-coercive in λ with constant cΦ = α/‖A‖2.

Proof of Theorem 3

We give the proof for a strongly monotone operator F , which
is to be interpreted as FN in the first statement and FW in
the second statement. We divide the proof into two parts: (i)
we prove that Algorithm 2 is a particular case of a class of
algorithms known as asymmetric projection algorithms (APA)
[12, Algorithm 12.5.1] applied to VI(Y, T ); (ii) we prove that
our algorithm satisfies a convergence condition for APA. It can
be shown that if τ satisfies (26) then also τ < 1/‖A‖ holds.
(i) The APA are parametrized by the choice of a matrix D � 0.
For a fixed D a step of the APA for VI(Y, T ) is

y(k+1) = solution of VI(Y, T kD), (45)

where y(k) is the state at iteration k and T kD(y) := T (y(k)) +
D(y − y(k)). Every step of the APA requires the solution of a
different variational inequality that depends on the operator T ,
on a fixed matrix D and on the previous strategies’ vector y(k).
We choose

D :=

[
1
τ IMn 0
−2A 1

τ Im

]
, (46)

which by using the Schur complement condition can be shown
to positive definite because τ < 1/‖A‖. It is shown in [12,
Section 12.5.1] that with the choice (46) the update (45)
coincides with the steps (25).
(ii) As illustrated in the previous point, Algorithm 2 is the spe-
cific APA associated with the choice ofD given in (46). Accord-
ing to [12, Proposition 12.5.2], this algorithm converges if the
mappingG(y) = D

−1/2
s T (D

−1/2
s y)−D−1/2

s (D−Ds)D
−1/2
s y

is co-coercive11 with constant 1, where Ds = (D + D>)/2

and D−1/2
s denotes the principal square root of the symmetric

positive definite matrixD−1
s and is therefore symmetric positive

14



definite. Let us renameL := D
−1/2
s andLy = [ vw ] and simplify

the expression of G(y)

G(y) = LT (Ly)− L(D −Ds)Ly

= L
([

F (v)
0

]
+
[

0 A>

−A 0

]
Ly + [ 0

b ]
)
− L

[
0 A>

−A 0

]
Ly

= L
([
F (v)

0

]
+ [ 0

b ]
)
. (47)

We now prove that G(y) is co-coercive with constant 1, i.e.

(y1 − y2)>(G(y1)−G(y2))− ‖G(y1)−G(y2)‖2 ≥ 0. (48)

Let us substitute (47) in the left-hand side of (48)

(y1− y2)>(G(y1)−G(y2))− ‖G(y1)−G(y2)‖2

= (y1− y2)>(L
[
F (v1)

0

]
− L

[
F (v2)

0

]
)−‖L

[
F (v1)

0

]
− L

[
F (v2)

0

]
‖2

= (Ly1 − Ly2)>(
[
F (v1)−F (v2)

0

]
)− ‖L

[
F (v1)−F (v2)

0

]
‖2

= (
[
v1−v2
w1−w2

]
)>(
[
F (v1)−F (v2)

0

]
)−
[
F (v1)−F (v2)

0

]>
L2 [ F (v1)−F (v2)

0

]
= (F (v1)− F (v2))>[(v1 − v2)− [L2]11(F (v1)− F (v2))]

≥ α‖v1 − v2‖2 − ‖[L2]11‖‖F (v1)− F (v2))‖2

≥
(
α− ‖[L2]11‖L2

F

)
‖v1 − v2‖2 =: K‖v1 − v2‖2,

The proof is concluded if K ≥ 0. Let us compute [L2]11 =
[D−1

s ]11. By inverting the block matrix Ds we get

[L2]11 = τ(I − τ2A>A)−1 � 0. (49)

Since τ2A>A is symmetric positive semidefinite,
λmax(τ2A>A) = τ2‖A‖2 < 1 because τ < 1/‖A‖ and
ρ(τ2A>A) < 1, i.e. the matrix is convergent. Hence, the Neu-
mann series

∑∞
k=0(τ2A>A)k converges to (I − τ2A>A)−1.

Substituting in (49) yields [L2]11 = τ
∑∞
k=0(τ2A>A)k � 0

and ‖[L2]11‖ ≤ τ
∑∞
k=0(τ2‖A‖2)k = τ

1−τ2‖A‖2 , where
we used the fact that the geometric series converges since
τ2‖A‖2 < 1. Therefore K ≥ α − τ

1−τ2‖A‖2L
2
F . By

condition (26) we get ατ2‖A‖2 + τL2
F < α and thus

K ≥ α−ατ2‖A‖2−τL2
F

1−τ2‖A‖2 > 0.

Lemma 5. For all M ∈ N, it holds

min
y∈[0,1]M

λmin
(
y1>M + 1My

>) ≥ −M
4
.

For reasons of space, we report the proof in [42, Lemma 5].
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coupled LQG problems with nonuniform agents: Individual-mass be-
havior and decentralized ε-Nash equilibria,” IEEE Transactions on
Automatic Control, vol. 52, no. 9, pp. 1560–1571, 2007.

[20] J. B. Rosen, “Existence and uniqueness of equilibrium points for concave
N-person games,” Econometrica: Journal of the Econometric Society,
pp. 520–534, 1965.

[21] F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,”
4OR, vol. 5, no. 3, pp. 173–210, 2007.

[22] F. Parise, B. Gentile, S. Grammatico, and J. Lygeros, “Network aggrega-
tive games: Distributed convergence to Nash equilibria,” in Proceedings
of the IEEE Conference on Decision and Control, 2015, pp. 2295–2300.

[23] D. Paccagnan, M. Kamgarpour, and J. Lygeros, “On aggregative and
mean field games with applications to electricity markets,” in Proceed-
ings of the IEEE European Control Conference, 2016, pp. 196–201.
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