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Abstract— We analyse deterministic aggregative games, with
large but finite number of players, that are subject to both
local and coupling constraints. Firstly, we derive sufficient
conditions for the existence of a generalized Nash equilibrium,
by using the theory of variational inequalities together with
the specific structure of the objective functions and constraints.
Secondly, we present a coordination scheme, belonging to the
class of asymmetric projection algorithms, and we prove that it
converges R-linearly to a generalized Nash equilibrium. To this
end, we extend the available results on asymmetric projection
algorithms to our setting. Finally, we show that the proposed
scheme can be implemented in a decentralized fashion and it
is suitable for the analysis of large populations. Our theoretical
results are applied to the problem of charging a fleet of plug-in
electric vehicles, in the presence of capacity constraints coupling
the individual demands.

I. INTRODUCTION

Recent years have witnessed an increasing interest in
the analysis of complex systems, comprising interconnected
agents [1]. A main challenge for such systems is the de-
velopment of control algorithms that take into account the
individual objective of each agent, their local and global
constraints and, at the same time, require minimum exchange
of information among the agents and a central coordinator.

In this paper, we focus on the specific class of non-
cooperative games in which the objective of each agent
depends on the other players only via an aggregate quantity
of the agents’ decisions. Specific examples include traffic
or wireless transmission networks where travel times or
transmission rates depend on the overall congestion level [2],
[3] and Cournot electricity markets where the electricity price
depends on the aggregate demand [4]. This additional struc-
ture is formalized in the framework of aggregative games
[5] and can be exploited to analyse systems with a large
numbers of agents, referred to as a population. Distributed
algorithms that guarantee convergence to a Nash equilibrium
in aggregative games have been recently proposed in the liter-
ature, under various assumptions on the agents’ information
and communication structures. Specifically, [6], [7] suggest
the use of gradient based schemes to coordinate the strategies
of the agents to a Nash equilibrium in games with finite pop-
ulation size, nonlinear cost functions and local constraints.
In [8], [9] the use of broadcast signals, to which agents
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react optimally, is suggested for games with quadratic cost
functions and local constraints. Convergence to an ε-Nash
equilibrium is guaranteed, where ε approaches zero as the
number of agents becomes large. Similar asymptotic results
are common in the literature of mean field game theory. The
latter focus on unconstrained stochastic aggregative games
with linear dynamics and quadratic cost functions [10], as
well as with generic cost functions [11].

All the aforementioned works do not consider coupling
between the decisions of different agents. These however
arise in many important applications, such as electricity
markets, in which agents must satisfy grid and operational
constraints, or congestion games, in which agents share a
common infrastructure. Since the seminal work of [12],
a number of results have been derived for the analysis
[13] and control [14] of generalized Nash equilibria (i.e.,
Nash equilibria for games with coupling constraint) in the
case of generic non cooperative games. Attention has been
devoted to the characterization of a specific type of gen-
eralized Nash equilibria called variational equilibria [15].
The aim of the paper is twofold. First, we specialize the
variational equilibria existence results to the important case
of deterministic aggregative games. Second, we propose
decentralized algorithms and show their convergence for
any population size and in the presence of both local and
coupling constraints. The analysis is based on the theory
of Variational Inequalities (VI). As such, we focus on ag-
gregative games characterized by quadratic cost functions
and linear coupling constraints. This choice allows us to
use an algorithm belonging to the class of Asymmetric
Projection Algorithms (APAs) [13]. Specifically, we show
that by cleverly choosing the design parameter the suggested
APA can be implemented in a decentralized fashion and we
derive conditions that guarantee its convergence. To this end,
we extend the available literature results on convergence
of APAs to a new class of affine VIs. We then provide
an insight between the proposed method and alternative
distributed optimization algorithms applicable to our problem
formulation, under the additional assumption that the game
is potential [16]. Finally, to illustrate our theoretical results,
we apply our methodology to the well-studied problem of
charging a fleet of Plug-in Electric Vehicles (PEVs) [6], [17].
In contrast to past work we can include coupling constraints,
arising for example from capacity limits.

The paper is organized as follows. In Section II we
introduce linear quadratic aggregative games with coupling
constraints. In Section III we derive conditions on existence
of generalized Nash equilibria and uniqueness of the vari-



ational equilibrium. In Section IV we propose a distributed
algorithm to find the variational equilibria. In Section V we
discuss potential games. In section VI we analyse the PEVs
charging problem.

Notation: The standard inner product on Rn is denoted
by 〈·, ·〉 : Rn × Rn → R; In the n-dimensional identity
matrix and 1n the vector of unit entries. Given A ∈ Rn×n not
necessarily symmetric, A � 0 (� 0) ⇔ x>Ax > 0 (≥ 0),

∀x 6= 0; As := A+A>

2 . A⊗B denotes the Kronecker product.
Given N vectors xi ∈ Rn, [x1; . . . ;xN ] := [xi]Ni=1 :=

[x1
>
, . . . , xN

>
]>; x−i := [x1, . . . , xi−1, xi+1, . . . , xN ] ∈

Rn(N−1); Given A ∈ Rm×Nn, we define A(:,i) ∈ Rm×n such
that A = [A(:,1), . . . , A(:,N)]. Given a function g(x) : Rn →
Rm we define the matrix ∇xg(x) ∈ Rn×m component-
wise as [∇xg(x)]i,j :=

∂gj(x)
∂xi . Given N matrices {Ci ∈

Rn×n}Ni=1, diag(Ci) ∈ RNn×Nn is a block diagonal matrix
with Ci as blocks. U [a, b] represents the uniform distribution
on the real interval [a, b].

II. PROBLEM FORMULATION

Let us consider a single shot aggregative game charac-
terized by a population of N agents. Each agent i aims at
minimizing a quadratic cost function J i(xi, x−i) : RNn → R
depending on its own strategy and on the average strategy

J i(xi, x−i) := xi>Qixi + (Ciσ(x) + ci)>xi , (1)
where Qi ∈ Rn×n, Ci ∈ Rn×n, ci ∈ Rn and σ(x) :=
1
N

∑N
j=1 x

j . Note that the cost of each agent depends on
the other players’ strategies only via the interaction function
f i(σ(x)) := Ciσ(x) + ci. This type of dependence arises
in all those applications where xi denotes the usage level
of a commodity whose per unit cost f i(·) depends on the
average usage level of the whole population. We assume that
the decision variable of the i-th player is locally constrained
to xi ∈ X i ⊂ Rn, and that the stacked vector of strategies,
x = [x1; . . . ;xN ], has to satisfy m linear global constraints

x ∈ C := {x ∈ RNn |Ax ≤ b} ⊂ RNn,

with A ∈ Rm×Nn, b ∈ Rm. These constraints could model,
for example, the fact that each agent has a feasible range for
its usage level and the overall usage level cannot exceed a
global capacity constraint. We denote by Qi(x−i) := {xi ∈
X i |Ax ≤ b} the set of admissible strategies for player i,
given x−i. To sum up, each agent aims at minimizing its
cost function according to the game

G :=

{
min
xi∈Rn

J i(xi, x−i)

s.t. xi ∈ Qi(x−i)
∀i ∈ Z[1, N ], (2)

where the cost functions J i have the aggregate structure of
(1). In the following, we refer to such game as G.

Definition 1 (Generalized Nash Equilibrium (GNE)): A
point x? ∈ RNn is called a generalized Nash equilibrium of
the game G in (2) if xi? ∈ X i, x? ∈ C and ∀i ∈ Z[1, N ]

J i(xi?, x−i?) ≤ J i(xi, x−i?), ∀xi ∈ Qi(x−i?). �
Intuitively, a set of strategies

{
xi?
}N
i=1

is a GNE if it satisfies
the local and global constraints and no agent can profit from
unilaterally deviating from its own strategy. We denote the
set of generalized Nash equilibria of the game G as GNE(G).

Remark 1 (Discrete-time finite-horizon dynamic games):
The class of games described so far includes, for instance,
the deterministic discrete-time finite-horizon dynamic games
analysed in [8]. An example is given in Section VI.

III. CONNECTION WITH VARIATIONAL INEQUALITIES

In this section we present a reformulation of the GNE
problem as an extended variational inequality, see Figure 1
for a conceptual scheme of the following results.

A. GNE and variational equilibria

The solution of GNE problems is related to the solution of
certain Variational Inequalities (VI). We follow this direction
to address the existence of a GNE for the game G in (2).

Definition 2 (Variational inequality): Consider an opera-
tor T (·) : Rd → Rd and a set Y ⊆ Rd. A solution to the
variational inequality problem VI(Y, T ) is a vector y? ∈ Y
such that 〈T (y?), y − y?〉 ≥ 0,∀y ∈ Y .
We denote the set of solutions to the VI(Y, T ) as SOL(Y, T ).
Let us define the operator F (·) : RNn → RNn obtained by
stacking together the gradient of the cost function of each
player, with respect to its own strategy, that is

F (x) := [∇xiJ
i(xi, x−i)]Ni=1 = F̃ x+ f (3)

F̃ := diag

(
Qi+Qi>+

Ci>

N

)
+

1

N

C
1

...
CN

(1>N ⊗ In), f :=

 c
1

...
cN

.
Moreover, let us define the sets
X := X 1 × . . .×XN ⊂ RNn and Q := C ∩ X ⊂ RNn

and introduce the following assumptions.
Assumption 1: The cost functions J i(xi, x−i) are convex

in xi for all feasible x−i. The local constraint sets X i are
non-empty, compact, convex and can be represented as X i :=
{xi ∈ Rn | gi(xi) ≤ 0} for some continuously differentiable
function gi : Rn → Rmi , ∀i ∈ Z [1, N ]. The global constraint
set Q is non-empty.

Remark 2: The cost functions J i(xi, x−i) are convex in
xi for fixed x−i if and only if Qi + Ci

N � 0.
Assumption 2: (Slater’s constraint qualification): The

sets X i, i ∈ Z[1, N ] and Q satisfy the Slater’s constraint
qualification [18, (5.27)].

The next lemma presents the connection between the
GNE(G) and SOL(Q, F ).

Lemma 1: (VI reformulation [15, Theorem 5]): Sup-
pose Assumption 1 holds. Let x? ∈ RNn. Then x? ∈
SOL(Q, F )⇒ x? ∈ GNE(G).
The previous lemma guarantees that SOL(Q, F ) is a subset
of GNE(G). In game theory these particular equilibria are
called variational equilibria, see [15]. Depending on the
properties of the operator F (·), one can prove existence
and uniqueness for SOL(Q, F ), see [13]. Here, we focus
on monotone (MON) and strongly monotone (SMON) oper-
ators, as defined in the following.

Definition 3 (Monotone operator): The operator T (·) :
Rd → Rd is monotone (resp. strongly monotone) if 〈T (z)−
T (y), z−y〉 ≥ 0 (resp. if ∃c > 0 s.t. 〈T (z)−T (y), z−y〉 ≥
c‖z − y‖2), ∀z, y ∈ Rd.



Assumption 3: The operator F : RNn → RNn introduced
in (3) is strongly monotone.

Remark 3: The affine operator F (x) in (3) is strongly
monotone if and only if F̃s := F̃+F̃>

2 � 0 (see e.g. [8]). Con-
sequently, Assumption 3 implies the convexity of J i(xi, x−i)
in xi for fixed x−i, which is part of Assumption 1. When
Ci = C = C>, the condition F̃s � 0 is satisfied if Qi � 0
and C � 0 or if Qi � 0 and C � 0.

Lemma 2 (Existence & uniqueness): Under Assumptions
1 and 3, the VI(Q, F ) has a unique solution.

Proof: Due to Assumption 1 the set Q is closed and
convex and F is continuous. Assumption 3 guarantees strong
monotonicity of F . The result follows from the theorem on
existence and uniqueness for VIs, [13, Theorem 2.3.3].

Lemmas 1 and 2 guarantee existence and uniqueness of
the variational equilibrium of the game G, and thus ensure
existence (only) of the GNE for the game G.

B. A game with N + 1 players

In the previous section we tackled the issue of existence of
GNE for the game G. The reformulation as a VI(Q, F ) does
not readily allow us to determine the variational equilibrium
with a distributed algorithm. To this end, we rewrite the
VI(Q, F ) equivalently as a single shot game with N + 1
players, but no coupling constraints

Gext=





min
xi∈X i

J i(xi, x−i) + (A(:,i)x
i)>λ ∀i ∈ Z[1, N ]

min
λ∈Rm≥0

− λ>(Ax− b) i = N + 1.

The cost function of each player i ∈ Z[1, N ] in the game
Gext is composed of two terms: the original cost function,
as in G, and an additional term that depends on the strategy
λ of player N + 1 and on the influence of agent i in the
coupling constraint. The connection between the solutions
of Gext and of G is presented in the next lemma.

Lemma 3 (Extended game reformulation): Suppose As-
sumptions 1 and 2 hold. Then (x?, λ?) ∈ RNn × Rm is
a Nash equilibrium (NE) of the game Gext if and only if
x? ∈ RNn is a solution of the VI(Q, F ) with multiplier λ?.

Proof: By Assumptions 1 and 2 the game Gext is
equivalent to the KKT systems [13]{
∇xiJ

i(xi, x−i)+A>(:,i)λ+∇xigi(x
i)µi = 0

0 ≤ µi ⊥ −gi(xi) ≥ 0
∀i,

{
−(Ax− b)=η
0 ≤η⊥λ≥ 0

.

(4)
Moreover Q satisfies the Slater’s constraint qualification, by
Assumption 2, and therefore, by [13, Proposition 1.3.4], x ∈
SOL(Q, F ) if and only if there exist λ, {µi}Ni=1 such that



∇xiJ
i(xi, x−i) +∇xi (Ax− b)λ+

∑N
j=1∇xigj(x

j)µj = 0, ∀i

0 ≤ µi ⊥ −gi(xi) ≥ 0, ∀i
0 ≤ λ ⊥ −(Ax− b) ≥ 0.

(5)
It is clear by inspection that x solves (5) with multipliers λ
and {µi}Ni=1 if and only if (x, λ) solves (4) with multipliers
{µi}Ni=1 and η = −(Ax− b).
With the previous statement we moved the problem of
solving the original game to the problem of solving an
extended Nash equilibrium problem without coupling

constraints, namely Gext. The next lemma shows that the
Nash equilibria of Gext coincide with the solutions of a
second VI, defined on the extended space [x;λ].

Lemma 4: (Extended VI reformulation [15, Corollary 1]):
Suppose Assumption 1 holds. A point (x?, λ?)∈ RNn ×Rm

is a Nash equilibrium for Gext if and only if it is a solution
of the VI(Y, T ), with Y := X × Rm≥0 and affine operator

T (x, λ) : =

[
[∇xiJ i(xi, x−i) +∇xi(A(:,i)x

i)λ]Ni=1

−(Ax− b)

]

=

[
F̃ A>

−A 0

] [
x
λ

]
+

[
f
b

]
=: T̃ y + t. (6)

C. A unifying picture

We recap the previous results with the following theorem.
Theorem 1: Under Assumptions 1, 2 and 3 the game G

in (2) has a unique variational equilibrium x?. If (x̄; λ̄) is a
solution of VI(Y, T ), as defined in Lemma 4, then x̄ = x?.

Proof: This result follows from Lemmas 1, 2, 3 and 4.
See Figure 1 for a conceptual scheme.
Under Assumption 3 the operator T (x, λ) is MON, as proven
in the next lemma, therefore the solutions of VI(Y, T ) can
be found using algorithms for VIs with MON operator.

Lemma 5: Under Assumption 3, T (x, λ) defined in (6) is
MON and Lipschitz.

Proof: T (y) := T̃ y+ t is an affine operator hence it is
Lipschitz with Lipschitz constant LT := ‖T̃‖. Moreover, it
is MON if and only if T̃s =

[
F̃s 0
0 0

]
� 0, which holds true

thanks to Assumption 3.

Fig. 1: Conceptual scheme for Theorem 1.

IV. TOWARDS A DISTRIBUTED CALCULATION OF GNE

The main advantage of the reformulation given in
Theorem 1 is that the set Y decouples in the Cartesian
product of local constraint sets, so that projection operations
can be computed locally by each agent. Additionally, for
each agent the gradients of the first and second term of the
cost function in Gext depend only on the local strategy xi

and on the aggregate quantity σ(x), that is,

∇xiJ i(xi, x−i) =

(
Qi+Qi>+

Ci
>

N

)
xi+Ciσ(x)+ci

=: F i(xi, σ(x)) ∈ Rn

∇xi(A(:,i)x
i) = A>(:,i) ∈ Rn×m.

With this notation the operator T (x, λ) can be rewritten as

T (x, λ) :=

[
[F i(xi, σ(x)) +A>(:,i)λ]Ni=1

−(Ax− b)

]
.



The fact that both gradient and projection operations can be
computed locally by the agents is the fundamental feature
that allows us to present a decentralized scheme for the
solution of VI(Y, T ), thus guaranteeing decentralized con-
vergence to the variational equilibrium of G.

A. The asymmetric projection algorithm

In this section we propose a new algorithm to find a
solution (x̄, λ̄) of the VI(Y, T ). The proposed algorithm
alternates updates in the primal (x) and dual variables (λ).
We assume the presence of a central operator that broadcasts
a tentative price λ(k) at every step k of the algorithm. Based
on this price and on the aggregate of the strategies at the
previous step, each agent locally computes xi(k+1). Based on
the global constraint violation, the central operator updates
the price to λ(k+1). The proposed scheme differs from the

Algorithm 1 Asymmetric projection algorithm (APA)
Initialization: Set k ← 0. Each agent i has initial state xi(0),
the central operator sets λ(0) ∈ Rm≥0, τ > 0.
Iterate:
Central: average update

σ(k) ← 1
N

∑N
i=1 x

i
(k);

Local: Strategy update

xi(k+1) ← ΠX i [x
i
(k) − τ

(
F i(xi(k), σ(k)) +A>(:,i)λ(k)

)
];

Central: multiplier update
λ(k+1) ← ΠRm≥0

[λ(k) − τ(b− 2Ax(k+1) +Ax(k))].

standard gradient projection algorithm, which is not guaran-
teed to converge in the presence of coupling constraints [13,
Algorithm 12.1.1], since the λ-update depends not only on
Ax(k) but also on Ax(k+1). Algorithm 1 belongs to the class
of Asymmetric Projection Algorithms (APA) [13, Algorithm
12.5.1]. The convergence properties of these algorithms have
been previously characterized in the literature for the case
of a VI(K,M) with convex domain K and affine operator
M(y) =

[
P R
−R> Q

]
y+
[ p
q

]
, where P = P> � 0, Q = Q> �

0 [13, Proposition 12.5.3 (b)]. The operator T (y) that we
are considering, however, does not belong to this class since
T̃ =

[
F̃ A>

−A 0

]
, but in general F̃ 6= F̃>. We show in the next

theorem that the condition F̃ � 0 guarantees convergence of
Algorithm 1 for this new class of affine VIs. We note that the
missing assumption F̃ = F̃>, even if seemingly mild, greatly
simplifies the analysis because it turns the game in (2) into
a potential game, as further discussed in Section V.

Theorem 2: Suppose Assumptions 1, 2 and 3 hold. Let
y(k) := [x(k);λ(k)] be the extended state of the population
at iteration k obtained by Algorithm 1. Let

κF :=
σ2
max(F̃ )

σmin(F̃s)
, 0 < τ <

(
κF +

√
κ2F + 4‖A>A‖

2

)−1
.

Then y(k)
k→∞−−−−→ ȳ := [x̄; λ̄] where ȳ is a solution of the

VI(Y, T ), with T (x, λ) defined in (6), and hence x̄ is the
variational equilibrium of the game G in (2). �

Due to space limitation, the proof of Theorem 2 and the
proof of the next proposition are in [19].

Proposition 1: (Rate of convergence) Define B =

D
−1/2
s (D−Ds)D

−1/2
s with D :=

[
1
τ INn 0

−2A 1
τ Im

]
and assume

that ‖B‖ < 1 and that X is a polyhedron. Under the as-
sumptions of Theorem 2, Algorithm 1 converges R-linearly:

0 < lim sup
k→∞

(||y(k) − ȳ||)1/k < 1.

Remark 4: The condition ‖B‖ < 1 can be satisfied by
choosing τ sufficiently small. In fact D−Ds does not depend
on τ and D−1/2s = O(τ1/2) [13, Proposition 12.5.4].
Finally, in the interest of completeness, we note that since
the operator T is MON, there are other algorithms available
in the literature to find a solution of VI(Y, T ), e.g. the
extragradient method [13, Algorithm 12.1.9]. A comparison
between these two algorithms is given in Section VI.

V. CONNECTION WITH POTENTIAL GAMES

The objective of this section is to show how the previous
analysis simplifies under the symmetry assumption F̃ = F̃>

and to provide a link between game theory and single
objective optimization. To this end, we start by recalling the
definition of generalized potential games.

Definition 4 (Generalized potential game [16]): G is said
to be a generalized potential game if there exists a function
P (x1, . . . , xN ) : RNn → R, such that ∀i ∈ Z[1, N ] and ∀x−i
such that Qi(x−i) is non empty, it holds ∀ yi, zi ∈ Qi(x−i)
J i(yi, x−i)− J i(zi, x−i) = P (yi, x−i)− P (zi, x−i). �

In words, a game is potential if the difference that each
player encounters by unilaterally changing its strategy can be
captured by the difference of a single scalar function P (·),
called the potential. When the cost function of each player
depends only on his decision variable, the game is potential
with P (x) the sum of all the players costs, see [20], [21].
Under the following assumption it can be shown that the
game in (2) is a generalized potential game.

Assumption 4: For each agent i, Ci = C = C>. �
Proposition 2: Under Assumption 4, G is potential with

P (x) =
1

2
x>F̃ x+ f>x , (7)

where F̃ and f are as in (3).
Proof: For each agent i and fixed strategies x−i it holds

∇xiP (xi, x−i)=∇xiJ i(xi, x−i)=F i(xi, σ(x)),∀xi. (8)
The fundamental theorem of calculus implies that, for fixed
x−i, the difference in cost that agent i encounters playing zi

instead of yi is the same in the individual cost J i(yi, x−i)−
J i(zi, x−i) as in the potential P (yi, x−i)− P (zi, x−i).
One of the main features of potential games is that their vari-
ational equilibria are related to the minima of the potential
function, thus simplifying the analysis.

Theorem 3 (Optimization problem reformulation): Under
Assumptions 1, 3 and 4, x? is the variational equilibrium
of G if and only if it is the unique minimizer of P (x) in
(7) over the set Q = X ∩ C. �

Proof: Lemmas 1 and 2 ensure that the variational
equilibrium exists and is the unique solution to VI(Q,F ).
Assumptions 1 and 3 imply that P (x) is strongly convex and



that Q is convex and compact. This guarantees uniqueness
of the minimizer of P (x) in Q. The point x is the minimizer
of P (x) on Q if and only if 〈∇xP (x), y − x〉 ≥ 0 for all
y ∈ Q [18, (4.21)]. By (3) and (8), the latter coincides with
〈F (x), y − x〉 ≥ 0 for all y ∈ Q, i.e. x ∈ SOL(Q, F ).

Remark 5: The previous theorem clarifies how a GNE
of G can be found solving a single objective optimization
problem. We direct the reader to [22] for a comprehensive
review of distributed optimization methods.

VI. CHARGING A FLEET OF PEV

Inspired by [17], we model the problem of charging a large
population of Plug-in Electric Vehicles (PEVs) as a game
with coupling constraints. The population is composed by
N electric vehicles; each of them fitted with a battery whose
state of charge at time t is described by sit and takes values
in [0, 1]. The time evolution of sit is specified by the discrete-
time system sit+1 = sit + bixit , t = 1, . . . , n , where xit is the
charging control for vehicle i at time t and bi is the charging
efficiency. We assume that the charging control cannot take
negative values and its magnitude is bounded from above.
The final state of charge is constrained to sin+1 = ηi, where
ηi is decided by each user. We denote with P i ⊂ Z[1, n]
the set of intervals in which vehicle i cannot charge (for
instance, because the owner is driving the car). Denoting
xi = {xi1, . . . , xin} ∈ Rn, these three constraints can be
expressed together as

xi ∈ X i :=

{
xi ∈ Rn

∣∣∣∣∣
0 ≤ xit ≤ x̄i ∀ t ∈ Z[1, n],
xit = 0 ∀ t ∈ P i,∑n

t=1 x
i
t = θi

}

where θi := (bi)
−1

(ηi − si1), with si1 being the initial state
of charge. Note that X i is compact and convex for all i.

In addition to being subject to the individual constraints
X i, the vehicles are subject to the global coupling constraint

1
N

∑N
i=1 x

i
t ≤ Kt, ∀ t ∈ Z[1, n], (9)

expressing the fact that the grid cannot deliver more than
Kt normalized units of power to the PEVs at any time t.
In compact form (9) reads as (1N ⊗ In)x ≤ NK , where
K = [K1, . . . ,Kn]. We assume Q = C ∩ X non empty.
Each vehicle seeks a strategy xi that minimizes the cost

J i(xi, x−i) :=

n∑

t=1

pi
(
dt + σt
κ

)
xit, (10)

where dt and σt are the non-PEV and PEV demand at time
t divided by N , respectively, and κ is the total production
capacity divided by N ; the price pi is then a function of (dt+
σt)/κ, that is, of the ratio between total consumption and
total capacity. The cost function (10) represents the energy
bill for agent i over the interval Z[1, n]; that is, for each
time interval t, agent i buys xit units of electric power at
the unit price pi

(
dt+σt
κ

)
. We assume in the following that

both dt and κ are known to each PEV, and that the unit
price is an affine increasing function of its argument, i.e.
pi(z) = αiz + βi with αi, βi > 0. Different price functions
pi can be due to the fact that the PEVs participate to pricing
schemes of different utilities. The cost (10) then becomes
J i(xi, x−i) = (Ciσ + ci)>xi, with Ci := (αi/κ) In � 0

and cit := αidt/κ+ βi > 0. We now define GPEV as

GPEV :=

{
min
xi

J i(xi, x−i)

s.t. xi ∈ X i, (1N ⊗ In)x ≤ NK .
∀i ∈ Z[1, N ]

(11)
The PEVs charging problem has been formulated as a game
also in [17] and [8]. The main differences between those
works and the PEVs game in (11) are: (i) we guarantee
convergence to a Nash equilibrium for any finite population
size; (ii) the cost function (10) does not include an artificial
quadratic term, required in [17] and [8]; (iii) we introduce the
coupling constraints (9). The first two novelties have already
been presented in [6]. Point (iii) has not yet been addressed
in the PEV literature, to the best of our knowledge.

A. Numerical analysis
The numerical study is conducted on a heterogeneous

population, where the agents differ in θi, x̄i, randomly
chosen according to U [0.5, 1.5] and U [1, 5], respectively;
they also differ in P i ⊂ Z[1, n] (connected interval, with left
and right endpoints uniformly randomly chosen). Moreover
αi = α = 1 and βi = β = 1 ∀i ∈ Z[1, n]. The demand
dt is taken as the typical (non-PEV) base demand over a
summer day in the United States [17, Figure 1]; κ = 1 kW,
and the upper bound Kt = 0.55 kW is chosen such that the
coupling constraint (9) is active in the middle of the night.
The GNEP (11) is a particular case of (2), hence the analysis
conducted in Sections III and IV applies. Assumption 1 holds
because α > 0, X i are convex polytopes and we assumed Q
non empty. Assumption 2 holds because all the constraints
are affine and non empty. Finally, α > 0 guarantees that
Assumption 3 is satisfied. Numerical results are in Figure 2.
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Fig. 2: Aggregate PEV demand σ? and dual variables λ? for N =
100, subject to σ? ≤ 0.55 kW. The region below the dashed line
corresponds to σ? + d ≤ 0.55 kW+d.

Along with the APA (Algorithm 1), we implemented the
extragradient algorithm [13, Algorithm 12.1.9], setting as
stopping criterion ‖(x(k+1), λ(k+1))− (x(k), λ(k))‖∞ ≤ εtoll.
Figure 3 (top) shows that Algorithm 1 outperforms the
extragradient method, requiring less computations for large
populations.
B. GNE vs social optimum

We also compare numerically the variational GNE of (11)
with the optimal solution x?S of the centralized social welfare
problem, which is defined as follows
x?S := arg min

x∈RNn
S(x) s.t. xi ∈ X i, (1>N ⊗ IN )x ≤ K ,
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Fig. 3: Number of gradient computations for convergence (with
✏toll = 10�4); mean and standard deviation relative to 10 repetitions
are reported (top). Difference between the variational GNE and the
social optimum (bottom).

problem, which is defined as follows
x?

S := arg min
x2RNn

S(x) s.t. xi 2 X i, (1>
N ⌦ IN )x  K ,

where S(x) =
Pn

t=1(↵
dt+�t

 + �)(dt + �t) represents the
electricity cost for the entire city, both for PEVs and for non-
PEVs. The work [22] shows that in the case of homogeneous
population (i.e., when X i is the same for all i), x?

S tends to
x?, as the population size N goes to infinity. The numerical
analysis of Figure 3 (bottom) suggests that this is the case
also for heterogeneous players with coupling constraints.

C. Local coupling constraints
Instead of the coupling constraint (9), we consider here

m = H · n local coupling constraints of the formP
j2Nh

xj
t  Kh, 8 t 2 Z[1, n], 8h 2 Z[1, H] where

Nh ⇢ Z[1, N ] represents the subset of agents connected to
the same transformer h, which cannot provide more than
Kh units of power at any time t. Figure 4 shows how such
coupling constraint forces a coordination between different
players: player 2 charges its PEV in the first part of the night,
and only when he stops, player 1 starts to charge.
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t  0.9 kW.

VII. CONCLUSIONS

We analysed quadratic aggregative games subject to both
private and coupling constraints. We obtained sufficient con-
ditions for the existence of a generalized Nash equilibrium

and proposed a decentralized algorithm that converges to it.
Our theoretical results allow us to extend previous literature
results on the charging problem of a fleet of PEVs. When
more than one GNE exists, one could study algorithms that
can steer the population to the most favourable GNE [23].
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where S(x) =
∑n
t=1(αdt+σtκ + β)(dt + σt) represents the

electricity cost for the entire city, both for PEVs and for non-
PEVs. The work [23] shows that in the case of homogeneous
population (i.e., when X i is the same for all i), x?S tends to
x?, as the population size N goes to infinity. The numerical
analysis of Figure 3 (bottom) suggests that this is the case
also for heterogeneous players with coupling constraints.

C. Local coupling constraints

Instead of the coupling constraint (9), we consider here
m = H · n local coupling constraints of the form∑
j∈Nh x

j
t ≤ Kh, ∀ t ∈ Z[1, n], ∀h ∈ Z[1, H] where

Nh ⊂ Z[1, N ] represents the subset of agents connected to
the same transformer h, which cannot provide more than
Kh units of power at any time t. Figure 4 shows how such
coupling constraint forces a coordination between different
players: player 2 charges its PEV in the first part of the night,
and only when he stops, player 1 starts to charge.
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VII. CONCLUSIONS

We analysed quadratic aggregative games subject to both
private and coupling constraints. We obtained sufficient con-
ditions for the existence of a generalized Nash equilibrium
and proposed a decentralized algorithm that converges to it.
Our theoretical results allow us to extend previous literature

results on the charging problem of a fleet of PEVs. When
more than one GNE exists, one could study algorithms that
can steer the population to the most favourable GNE [24].
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