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Abstract— We define and analyze a novel concept of equilib-
rium over a network, which we refer to as location equilibrium.
Its applications include area coverage for taxi drivers, human
migration and task assignment for a server network. In partic-
ular, we show that a specific instance of the location equilibrium
problem is equivalent to the Wardrop equilibrium problem on
a specific network. Further, we show that finding a location
equilibrium is equivalent to solving a variational inequality with
an operator which is in general not monotone. Based on the
relation to the Wardrop equilibrium, we propose the use of the
extragradient algorithm and show its convergence to a specific
location equilibrium. The findings are applied to a numerical
study of area coverage for taxi drivers in Hong Kong.

I. INTRODUCTION

In recent years there has been an increasing interest in
modeling agents that interact through a graph. Network
games emerged as a modeling language to describe non-
cooperative interactions between agents, where their mu-
tual influence is captured by an underlying network; the
works [1], [2] address the problem for finite strategy space
and [3], [4] for continuous strategy space. Applications of
this framework include social networks [4] and economic
interactions [5, Section 1.4.3], traffic networks [6] and task
allocation problems [7]. While in network games each node
represents an agent and an edge connecting node i to node
j indicates that the choice of agent i influences the utility of
agent j, our framework departs significantly from this. More
precisely, given an underlying graph, we consider a fixed
number of agents that need to distribute themselves over its
nodes. The utility that each agent perceives by selecting a
certain node depends on the total number of agents who
select that same node. Each agent can possibly improve his
utility by moving to a neighboring node at the expense of
a fixed movement cost. Within this framework, we define a
location equilibrium as a distribution of agents where none
of them has any incentive to move to any neighboring node.

An important feature of our setup is that each agent
possesses an infinitesimal mass, which has a negligible
influence on the utility of the nodes. This assumption is
the same that motivates the concept of Wardrop equilibrium
in a road network [8]. It allows us to define a location
equilibrium in terms of aggregate mass distribution rather
than considering the strategy of each specific agent. Indeed
the two equilibrium concepts have more in common: in
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Section III we show that the Wardrop equilibrium of a
parallel road network coincides with the location equilibrium
for a complete graph with zero movement costs. Nonetheless,
we argue that it is not possible in general to write one
equilibrium as a specific instance of the other or viceversa.

The concept of equilibrium that resembles the most the
location equilibrium here introduced is the migration equi-
librium of Nagurney (see [9] and references therein). In [9]
an equilibrium model of human migration is presented for
a network with zero movement costs and utilities which
depend on the mass distribution in the entire network. The
work [10] builds upon [9] to account for positive movement
costs and characterizes the migration equilibrium as the
solution of an optimization program for the case of linear
separable costs. A more general migration equilibrium model
is given in [11] and [12] where the movements costs are not
constant but rather functions of the movements across the
network, and where agents are divided into different classes.

These two features are not present in our model, which on
the other hand extends the works [9]-[12] in that we relax
the assumption of “no repeated migration”, which imposes
that each agent can move at most once with respect to an
initial agents configuration. Our main contribution consists
in characterizing the location equilibrium as the solution of
a variational inequality, which is in general not monotone,
and thus difficult to solve. We observe that such variational
inequality cannot be reduced in general to an optimization
program. We further contribute by proposing an algorithm
that is capable of finding one such equilibrium.

For the sake of completeness, we note that other works
as [13], [14], [15] have built upon [9]-[12], but the setups
and the results differ from those here presented.

Finally, the theoretical findings of this paper are used to
perform a numerical study of area coverage for taxi drivers in
the city of Hong Kong. The network data, customers spatial
distribution and trip costs are taken from [16], while the
utility functions are derived based on [17].

Organization: The paper unfolds as follows: Section II
introduces the location equilibrium. Section III character-
izes the location equilibria as solution set of a variational
inequality, shows that such set is in general not convex and
draws a connection with the Wardrop equilibrium. Section IV
proposes the use of the extragradient algorithm to achieve a
location equilibrium. Section V performs a numerical study
of taxi area coverage and Section VI draws conclusions and
future research directions.

Notation: We denote with In ∈ Rn×n the identity matrix,
with 1n ∈ Rn the vector of unit entries and with 0n ∈ Rn

the vector of zero entries. Given x ∈ Rn or A ∈ Rn×m,



x > 0 or A > 0 are meant to be entry-wise inequalities.
Given n real numbers xi, [x1; . . . ;xN ] := [xi]

N
i=1 ∈ Rn.

II. THE LOCATION EQUILIBRIUM

We consider a directed weighted graph G = (V,E,C),
where V = {1, . . . , n} is the node set, E ⊆ V × V is the
set of directed edges, and C = {ci,j}(i,j)∈E is the set of
non-negative weights. We assume that (i, i) ∈ E and cii = 0
for all i ∈ {1, . . . , n}. Moreover, consider n utility functions
{ui : R≥0 → R}ni=1 and a constant γ > 0 which we refer to
as total mass. Given such setup, we intend to spread a total
mass γ over the nodes to reach an equilibrium, according to
the following definition.

Definition 1 (Location equilibrium). A vector x ∈ Rn
≥0 is

a location equilibrium if
∑n

i=1 xi = γ and for each i ∈
{1, . . . , n} such that xi > 0 it holds

ui(xi) + cij ≥ uj(xj), ∀ j ∈ N out
i .

The quantity xi is the mass at node i which enjoys utility
ui(xi). The weight cij is to be interpreted as the cost of a
movement from i to j. In words, a mass distribution x which
sums to γ is a location equilibrium if each node i with non-
zero mass xi sees no attractive neighbor; a node j ∈ N out

i

is an attractive neighbor for i if the marginal utility that an
infinitesimal amount of mass would encounter by moving
from i to j is larger than the movement cost cij . Clearly, if
j is attractive for i then i is not attractive for j.

We conveniently define the simplex set as

S :=
{
x ∈ Rn

≥0 s.t.
n∑

i=1

xi = γ
}
⊂ Rn. (1)

and the set of out-neighbors of i as N out
i := {j ∈

{1, . . . , n} s.t. (i, j) ∈ E}. Moreover, given a distribution
x ∈ S, for each node i such that xi > 0 we define the envy
set of i as

Eout
i (x) :=

{
j ∈ N out

i s.t. ui(xi) + cij < uj(xj)
}
⊆ N out

i .

If instead xi = 0 we define Eout
i (x) = ∅. For any i ∈

{1, . . . , n}, we define E in
i (x) = {j ∈ N in

i s.t. i ∈ Eout
j }.

Using this notation

x̄ is a location equilibrium ⇔
x̄ ∈ S and Eout

i (x̄) = ∅, ∀ i ∈ {1, . . . , n}.

Definition 2 (Envy graph). Given x ∈ S and 0 < τ < 1,
we define the envy graph Genvy(x) as the directed weighted
graph (V,E(x) ⊆ E,C(x)) with
• (i, j) ∈ E(x) if and only if i = j or j ∈ Eout

i (x);
• C(x) is such that, for all i ∈ {1, . . . , n}

– if Eout
i (x) = ∅ then cii = 1, otherwise cii = 1− τ ;

– for all j 6= i, if j ∈ Eout
i (x) then cij = τ/|Eout

i (x)|,
otherwise cij = 0.

We also introduce the weighted adjacency matrix A(x)
relative to Genvy(x) as in [18]. Note that for all x ∈ S ,
the adjacency matrix is row-stochastic, i.e. A(x) 1n = 1n.

By construction, the envy-graph Genvy(x) has no edges
(other than the self-loops) if and only x is a location
equilibrium. If instead x is not a location equilibrium, then
Genvy(x) has a self-loop at every node and an edge from i
to j 6= i if i is envious of j, i.e. if ui(xi) + cij < uj(xj).

Lemma 1. Given x ∈ S , there exists i ∈ {1, . . . , n} such
that Eout

i (x) = ∅.

Proof. We conduct the proof by contradiction. Assume that
Eout
i (x) 6= ∅ for each node i ∈ {1, . . . , n}. Then each node

in Genvy(x) has at least one out-going edge, hence Genvy(x)
contains a cycle. Without loss of generality, we assume that
the vertexes in this cycle are (1, . . . ,m). Then

ui(xi)− ui+1(xi+1) + ci,i+1 < 0, i = {1, . . . ,m− 1},
um(xm)− u1(x1) + cm,1 < 0.

Summing up the m equations above results in c12 + · · · +
cm1 < 0, which is a contradiction.

III. REFORMULATION AS VARIATIONAL INEQUALITY
AND CONNECTION WITH WARDROP EQUILIBRIUM

We show that the set of location equilibria coincides with
the solutions of a certain variational inequality.

Definition 3 (Variational inequality). Consider a set K ⊆ Rn

and an operator F : K → Rn. A point x̄ ∈ K is a solution
of the variational inequality VI(K, F ) if

F (x̄)>(x− x̄) ≥ 0, ∀x ∈ K.

Let us define the operator F : S → Rn
≥0 as follows

F (x) = [Fi(x)]ni=1,

Fi(x) = max
j∈N out

i ∪{i}
(uj(xj)− ui(xi)− cij), (2)

where we remind that (i, i) ∈ E and cii = 0 for all i ∈
{1, . . . , n}. As a consequence, for all i ∈ {1, . . . , n} it holds
Fi(x) ≥ 0 and Fi(x) = 0 if and only if i does not envy any
of its neighbors, i.e. Eout

i (x) = ∅.

Theorem 1. A vector x̄ ∈ Rn is a location equilibrium if
and only if it is a solution of VI(S, F ).

Proof. Take x̄ location equilibrium. By Definition 1, for each
i ∈ {1, . . . , n} at least one of the following holds

x̄i = 0, or (3a)
ui(x̄i) + cij ≥ uj(x̄j), ∀j ∈ N out

i . (3b)

Condition (3a) implies

x̄i = 0⇒ Fi(x̄) · (xi − x̄i) = Fi(x̄)︸ ︷︷ ︸
≥0

· xi︸︷︷︸
≥0

≥ 0, ∀x ∈ S.

Condition (3b) implies

Fi(x̄) = 0⇒ Fi(x̄)(xi − x̄i) = 0, ∀x ∈ S.

We can conclude that

F (x̄)>(x− x̄) =

n∑
i=1

Fi(x̄)(xi − x̄i)︸ ︷︷ ︸
≥0

≥ 0,



hence x̄ solves VI(S, F ).
Take x̄ solving VI(S, F ). Since the set S satisfies Slater’s

constraint qualification, VI(S, F ) is equivalent to its KKT
system, [5, Proposition 1.3.4a]:

F (x̄) + µ1n − λ = 0n (4a)
x̄ ∈ S (4b)
λ ≥ 0 (4c)

λ>x̄ = 0, (4d)

where µ ∈ R is the dual variable corresponding to the
constraint 1>n x̄ = γ and λ ∈ Rn is the dual variable
corresponding to the constraint x̄ ≥ 0. Making use of (1) and
substituting the expression of λ from (4a) into (4c) and (4d)
results in the system

0 ≤ µ1n + F (x̄) ⊥ x̄ ≥ 0, (5a)

1>n x̄ = γ. (5b)

Lemma 1 ensures the existence of i ∈ {1, . . . , n} such that
Fi(x̄) = 0. Then µ < 0 is not possible, otherwise the non-
negativity condition on µ1n + F (x̄) is violated. Moreover,
since F (x̄) ≥ 0, µ > 0 is not possible, as this would imply
x̄ = 0n thus violating (5b). We can conclude that

0 ≤ F (x̄) ⊥ x̄ ≥ 0, (6a)

1>n x̄ = γ. (6b)

Clearly x̄ ∈ S and

x̄i > 0 ⇒
(6a)

Fi(x̄) = 0⇔ Eout
i (x̄) = ∅,

hence x̄ is a location equilibrium by Definition 1.

Corollary 1. For any directed weighted graph G =
(V,E,C), continuous utility functions {ui : R≥0 → R}ni=1

and total mass γ > 0, there exists a location equilibrium.

Proof. By [5, Corollary 2.2.6], VI(S,F ) admits at least one
solution because S is closed, convex and F is continuous,
as it is the maximum of continuous functions.

Non-monotonicity of the operator F

In this subsection we show that the operator F is in general
not monotone.

Definition 4 (Monotone operator). An operator F : K ⊆
Rn → Rn is monotone on the set K if

(F (x)− F (y))>(x− y) ≥ 0, ∀x, y ∈ K.

Monotonicity of an operator plays a fundamental role in
the study of the corresponding VI. In particular, it is a suffi-
cient condition to guarantee convergence towards a solution
of the VI of a plethora of algorithms, as described in [5,
Chapter 12]. To study monotonicity of the operator F in (2),
we give an equivalent characterization of monotonicity.

Lemma 2. [19, Proposition 2.1] An operator F is monotone
on S ⊆ Rn if and only if for every x ∈ S each subgradient
A ∈ ∂F (x) is positive semidefinite.
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Fig. 1: We report in black the equilibrium set for Example 1,
obtained by gridding the space and verifying for every point
whether it satisfies Definition 1 or not. The set is visibly non-
convex. In dashed line we indicate the simplex boundary. We
only report x1 and x2, as the third mass can be computed
as x3 = 1 − x2 − x3. In addition, the red line represents
one trajectory of Algorithm 1, introduced in the following
Section. The circle identifies the location equilibrium of G0.

In the previous lemma we gave a characterization of
monotonicity in terms of the subgradients of the operator
F . A formal definition of these can be found in [19].

To show that the operator F in (2) is not necessarily
monotone, we give an example on a three-node network.

Example 1. Consider the complete three-node network de-
scribed by the edge weights

C =

 0 0.4 0.9
0.8 0 1
0.3 0.6 0


and utility functions:

u1(x1) = −2.5x21 − 0.51x1,

u2(x2) = −3.75x22 − 0.33x2,

u3(x3) = −0.5x23 − 0.42x3

which are decreasing in [0, 1]. The total mass is γ = 1,
that is, S = {x ∈ R3

≥0 s.t. x1 + x2 + x3 = 1}. One can
easily verify that the operator F is differentiable at the point
x̂ = [0.25, 0.5, 0.25]> ∈ S, so that the subgradient reduces
to the gradient and reads as

∇xF (x̂) =

 0 0 0
−1.75 4.1 0

0 0 0

 . (7)

The symmetric part of the matrix in (7) is indefinite, hence
by Lemma 2 F is not monotone in S.

The result in [5, Theorem 2.3.5] states that monotonicity
of an operator guarantees convexity of the solution set of
the corresponding VI. Figure 1 reports the set of location
equilibria (which coincides with the set of solutions of the
equivalent VI) for Example 1, which is not convex.



Connection with Wardrop equilibrium

In this subsection we show that a specific instance of the
location equilibrium in Definition 1 coincides with a specific
instance of the Wardrop equilibrium for a traffic network [8],
[20]. We note that such equivalence has already been shown
in [9]. Nonetheless, stating the equivalence within the setup
of this paper is useful to derive the results of the next
Section IV.

Using the formalism of [6], we consider a road network
with one origin O, one destination D and n parallel arcs
joining O and D as by Figure 2. Each arc i features a travel
time equal to Ti(xi), which is a non-decreasing function of
the amount of vehicles xi ≥ 0 on arc i. The total number of
vehicles across all arcs is γ.
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Fig. 2: Illustration of a parallel arc network.

In words [8], a configuration x̄ = [x̄i]
n
i=1 is a Wardrop

equilibrium if and only if all the arcs used (i.e. where x̄i >
0) have the same travel time Tmin and such travel time is
minimal. The work [6] formalized this concept by making
use of a variational inequality.

Definition 5. A point x̄ ∈ S is a Wardrop equilibrium for
the parallel arc network if it is a solution of VI(S,T ), with
T = [Ti]

n
i=1.

Next let us consider the location equilibrium of Defini-
tion 1 over a complete graph, that is, a graph with (i, j) ∈ E
for all i, j ∈ {1, . . . , n}. We consider a zero-cost graph, in
the sense that cij = 0 for all i, j ∈ {1, . . . , n}. A complete
zero-cost graph is denoted with G0 = (V, V × V,0n2).

Proposition 1. A vector x̄ is a Wardrop equilibrium of the
parallel arc network with travel times [Ti]

n
i=1 and total num-

ber of vehicles γ > 0 if and only if x̄ is a location equilibrium
for the complete zero-cost graph G0 = (V, V ×V,0n2) with
utility functions [ui = −Ti]ni=1 and total mass γ.

Proof. The point x̄ is a solution of VI(S,T ) if and only if it
solves its KKT system [5, Proposition 1.3.4a]

0 ≤ µ1n + T (x̄) ⊥ x̄ ≥ 0, (8a)

1>n x̄ = γ, (8b)

where µ ∈ R is the dual variable corresponding to the
constraint 1>n x̄ = γ and where we already performed the
same simplification that led from (4) to (5). We now argue
that it must hold

µ = −Tmin(x̄) := − min
i∈{1,...,n}

Ti(x̄i)

with an argument very similar to the one we used after
system (5). Indeed, if µ > −Tmin(x̄) then µ1n + T (x̄) >
0, hence by the orthogonality condition x̄ = 0 which
violates (8b). If instead µ < −Tmin(x̄) then µ1n +T (x̄) ≥ 0
does not hold. We can conclude that (8) reads as

0 ≤ −Tmin(x̄)1n + T (x̄) ⊥ x̄ ≥ 0,

1>n x̄ = γ.

Let us now substitute Ti(x̄i) = −ui(x̄i) which holds by
assumption, to rewrite (9) as

0 ≤ umax(x̄)1n − u(x̄) ⊥ x̄ ≥ 0, (10a)

1>n x̄ = γ. (10b)

where we denoted u(x̄) = [ui(x̄i)]
n
i=1 and umax(x̄) =

max
i∈{1,...,n}

ui(x̄i). Then (10) is equivalent to (6), because for

a complete zero-cost graph the ith component of F in (2)
reads

Fi(x̄) = umax(x̄)− ui(x̄i).

We showed in the proof of Theorem 1 that (6) is equivalent
to VI(S,F ), which by Theorem 1 coincides with the set of
location equilibria.

We note that as a consequence of the above proof it holds

x̄ location equilibrium for G0 with utilities u⇔
x̄ solves VI(S, T )⇔ x̄ solves VI(S,−u).

(11)

We want to point out that it is generally not possible to
express the Wardrop equilibrium of a generic road network
as a location equilibrium, and it is not possible to express
the location equilibrium with generic graph and costs as a
Wardrop equilibrium.

IV. THE EXTRAGRADIENT ALGORITHM

Lemma 3. Consider a weighted directed graph G =
(V,E,C) and the corresponding complete zero-cost graph
G0 = (V, V × V,0n2). If x̄ is a location equilibrium for G0

then it is a location equilibrium for G.

Proof. If x̄ is a location equilibrium for G0 then for all i ∈
{1, . . . , n}

x̄i = 0 or ui(x̄i) ≥ uj(x̄j), ∀ j ∈ {1, . . . , n}.

Then x̄ also satisfies for all i ∈ {1, . . . , n}

x̄i = 0 or ui(x̄i) + cij ≥ uj(x̄j), ∀ j ∈ N out
i .

where N out
i is the set of out neighbors of i in G.

We now introduce the extragradient algorithm [5, Al-
gorithm 12.1.9] to achieve a location equilibrium for the
complete zero-cost graph G0 = (V, V × V,0n2).

Algorithm 1 Extragradient algorithm
Initialization: Set k = 0, x(0) ∈ S, ρ > 0.
Iterate: x̃(k + 1) = Proj

S
[x(k) + ρ u(x(k))],

x(k + 1) = Proj
S

[x(k) + ρ u(x̃(k))],

k = k + 1.



Note that Algorithm 1 has a centralized structure, because
the projection onto the simplex set S can be computed only
with information about all the agents.

Assumption 1. For each i ∈ {1, . . . , n}, the utility function
ui is non-increasing and Lipschitz with constant Li.

Under Assumption 1 we define

Lmax := max
i∈{1,...,n}

Li.

Proposition 2. Consider the weighted directed graph G =
(V,E,C). If Assumption 1 holds and ρ < 1/Lmax, then
Algorithm 1 converges to a location equilibrium for the
graph G.

Proof. We just need to show that Algorithm 1 converges
to a location equilibrium for G0, because then Lemma 3
guarantees that this is a location equilibrium for G. To this
end, we recall that the set of location equilibria for G0

coincides with the solutions of VI(S,−u) as by (11). Since
Algorithm 1 is the extragradient algorithm [5, Algorithm
12.1.9] applied to VI(S,−u), we verify the sufficient condi-
tions of [5, Theorem 12.1.11] that guarantee its convergence
to a solution of VI(S,−u). The set S is closed and convex.
The operator −u is monotone, because

(−u(x) + u(y))>(x− y) =
n∑

i=1

(−ui(xi) + ui(yi)) · (xi − yi)︸ ︷︷ ︸
≥0 because ui non-increasing

≥ 0.

Having verified all the assumptions of [5, Theorem 12.1.11],
we conclude the proof.

Remark. It is important to highlight that Algorithm 1 is cen-
tralized, because each step requires information of the utility
values perceived at all nodes and because the projection onto
the simplex set requires centralized computations. Further,
note that Algorithm 1 converges to a location equilibrium
of G0, which in general might live in the interior of the
equilibrium set of G. It is therefore possible that the proposed
algorithm forces the agents towards an equilibrium of G0,
even if they already achieved a location equilibrium of G.
The red trajectory in Figure 1 exemplifies this behavior.

V. APPLICATION: AREA COVERAGE FOR TAXI DRIVERS

In this section we apply the theory developed to the
problem of area coverage for taxi drivers. Understanding the
spatial and temporal behavior of taxi drivers has attracted the
interest of the transportation community [21], [22], because it
would allow to infer information for diverse scopes, ranging
from land-use classification [23] to the analysis of collective
behaviour of a city’s population [24].

We focus on the urban area of Hong Kong, as the
work [16] provides relevant data for our model. Indeed, [16]
divides the area into n = 18 neighborhoods, which in our
setup are the graph nodes. We note that this analysis relies
on the crucial assumption that a taxi driver in neighborhood
i enjoys the utility ui(xi) without leaving the neighborhood

during his trips. Our goal is to find an equilibrium distribu-
tion across the different neighborhoods of the urban area. We
set an edge from i to j (and from j to i) if only if the two
neighborhoods are adjacent. The cost cij is taken as the fuel
cost of a trip from i to j according to [25] and cij = cji.
The resulting graph is then undirected. The utility ui(xi) is
computed as follows

ui(xi) = αivi(xi)− (1− vi(xi))β

where αi is the average profit per trip starting from location
i (which ranges from 30 to 140 HK$ according to Figure
4 in [16]), β = 6.34 HK$ is the operational cost of the of
vacant taxi trips at the evening peak, which includes fuel
costs, rental costs and the toll charges associated with the
trips, taken from [16]. The quantity vi(xi) is the matching
function, which in our context represents the percentage of
the time a taxi is occupied and according to [17, equation
(1)] takes the form

vi(xi) = 1−
(

xi
1 + xi

)pi

,

where pi > 1 is the number of passengers requesting a taxi
at node i, which we take to be proportional to the values in
Figure 3 of [16]. Note that vi(0) = 1 and limxi→∞ vi(xi) =
0, as one would expect. Moreover, through simple algebraic
computations ui(xi) can be shown to be decreasing for xi ≥
0 and to have Lipschitz constant

Li = 4(αi − β)pi
(pi − 1)pi−1

(pi + 1)pi+1
.

We run Algorithm 1 with stopping criterion ‖x(k + 1) −
x(k)‖ ≤ 10−6 and we set ρ = 10−3, which is smaller than
1/Lmax = 1.7 · 10−3, as required by Proposition 2. Table I
reports the number of iterations needed to reach convergence.
We note that this number is high due to the small value of
ρ imposed by the theoretical bound of Proposition 2. For
this reason we perform another simulation with the value
ρ = 10−2, which provides no theoretical guarantees of
convergence. Nonetheless, Algorithm 1 converges in 1000
different repetitions with random initial conditions. The
number of iterations is also reported in Table I and it is
substantially decreased compared to the previous choice of
ρ. Figure 3 represents the equilibrium x̄ obtained using
Algorithm 1.

ρ Mean Standard deviation
10−3 690.1 21.3
10−2 79.2 2.5

TABLE I: Number of iterations needed to reach convergence;
we report mean and standard deviation for 100 repetitions
of Algorithm 1, starting from random initial conditions on
the simplex, for two different choices of ρ. Each iteration is
counted twice, as it repeats twice the projection operation.



20 30 40 50 60
km

0

10

20

30

40

km

Fig. 3: The equilibrium x̄ achieved by Algorithm 1 with
initial condition x(0) = 1n/γ. The size of node i is propor-
tional to its mass xi. The length of an edge is proportional
to the distance between the two neighborhoods it connects.

VI. CONCLUSIONS

In this paper we defined a novel concept of equilibrium
over a network and showed that the extragradient algorithm
converges to one such equilibrium. Future research directions
include extending the setup to allow for multiple classes
of agents, studying the relation with the concept of Nash
equilibrium and including time-varying movements costs.

At the end of Section IV we pointed out how the ex-
tragradient algorithm requires centralized computations and
forces the agents to move even thought they are already at
equilibrium. Future research aims at overcoming both these
shortcomings.
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[2] G. Szabó and G. Fath, “Evolutionary games on graphs,” Physics
reports, vol. 446, no. 4, pp. 97–216, 2007.

[3] S. Liang, P. Yi, and Y. Hong, “Distributed Nash equilibrium seek-
ing for aggregative games with coupled constraints,” arXiv preprint
arXiv:1609.02253, 2016.

[4] F. Parise, S. Grammatico, B. Gentile, and J. Lygeros, “Network
aggregative games and distributed mean field control via consensus
theory,” arXiv preprint arXiv:1506.07719, 2015.

[5] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities
and complementarity problems. Springer, 2007.

[6] S. Dafermos, “Traffic equilibrium and variational inequalities,” Trans-
portation science, vol. 14, no. 1, pp. 42–54, 1980.

[7] P. Yi and L. Pavel, “A distributed primal-dual algorithm for com-
putation of generalized Nash equilibria with shared affine cou-
pling constraints via operator splitting methods,” arXiv preprint
arXiv:1703.05388, 2017.

[8] J. G. Wardrop, “Some theoretical aspects of road traffic research,”
Proceedings of the institution of civil engineers, vol. 1, no. 3, pp.
325–362, 1952.

[9] A. Nagurney, “Migration equilibrium and variational inequalities,”
Economics letters, vol. 31, no. 1, pp. 109–112, 1989.

[10] ——, “A network model of migration equilibrium with movement
costs,” Mathematical and Computer Modelling, vol. 13, no. 5, pp.
79–88, 1990.

[11] A. Nagurney, J. Pan, and L. Zhao, “Human migration networks,”
European journal of operational research, vol. 59, no. 2, pp. 262–
274, 1992.

[12] ——, “Human migration networks with class transformations,” in
Structure and Change in the Space Economy. Springer, 1993, pp.
239–258.

[13] J. Pan and A. Nagurney, “Using markov chains to model human
migration in a network equilibrium framework,” Mathematical and
computer modelling, vol. 19, no. 11, pp. 31–39, 1994.

[14] V. Kalashnikov, N. Kalashnykova, R. L. Rojas, M. M. Muños,
C. Uranga, and A. L. Rojas, “Numerical experimentation with a human
migration model,” European Journal of Operational Research, vol.
189, no. 1, pp. 208–229, 2008.

[15] R. J. Cebula and R. K. Vedder, “A note on migration, economic
opportunity, and the quality of life,” Journal of Regional Science,
vol. 13, no. 2, pp. 205–211, 1973.

[16] R. C. P. Wong, W. Y. Szeto, S. Wong, and H. Yang, “Modelling multi-
period customer-searching behaviour of taxi drivers,” Transportmetrica
B: Transport Dynamics, vol. 2, no. 1, pp. 40–59, 2014.

[17] N. Buchholz, “Spatial equilibrium, search frictions and efficient reg-
ulation in the taxi industry,” Working paper, Tech. Rep., 2015.

[18] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[19] S. Schaible et al., “Generalized monotone nonsmooth maps,” Journal
of Convex Analysis, vol. 3, pp. 195–206, 1996.

[20] B. Gentile, F. Parise, D. Paccagnan, M. Kamgarpour, and J. Lygeros,
“Nash and wardrop equilibria in aggregative games with coupling
constraints,” arXiv preprint arXiv:1702.08789, 2017.

[21] P. S. Castro, D. Zhang, and S. Li, Urban Traffic Modelling and
Prediction Using Large Scale Taxi GPS Traces. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 57–72.

[22] B. Li, D. Zhang, L. Sun, C. Chen, S. Li, G. Qi, and Q. Yang, “Hunting
or waiting? discovering passenger-finding strategies from a large-scale
real-world taxi dataset,” in Pervasive Computing and Communications
Workshops (PERCOM Workshops), 2011 IEEE International Confer-
ence on. IEEE, 2011, pp. 63–68.

[23] G. Pan, G. Qi, Z. Wu, D. Zhang, and S. Li, “Land-use classification
using taxi gps traces,” IEEE Transactions on Intelligent Transportation
Systems, vol. 14, no. 1, pp. 113–123, 2013.

[24] P. S. Castro, D. Zhang, C. Chen, S. Li, and G. Pan, “From taxi gps
traces to social and community dynamics: A survey,” ACM Computing
Surveys (CSUR), vol. 46, no. 2, p. 17, 2013.

[25] (2017) Viamichelin. [Online]. Available: https://www.viamichelin.com


