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Abstract— We study the existence and uniqueness of Nash
equilibria for a certain class of aggregative games with finite and
possibly large number of players. Sufficient conditions for these
are obtained using the theory of variational inequalities together
with the specific structure of the objective functions. We further
present an algorithm that converges to the Nash equilibrium
in a decentralized fashion with provable guarantees. The
theoretical results are applied to the problem of managing the
charging of a large fleet of plug-in electric vehicles and the
results are compared with the existing work.

I. INTRODUCTION

Technological advances in recent years have paved the way
for application of control to increasingly more complex and
large scale dynamical systems. Examples include increased
autonomy in ground and air transportation systems, multi-
agent vehicle networks, and the power grid system [1]. A
main challenge in developing control systems of the future
is to consider individual objectives of each agent while
taking into account local and global constraints and costs.
Furthermore, control algorithms need to be decentralized in
the sense that each agent should take its decision using local
information and limited partial information on the state of the
global system. Motivated by these problems, the purpose of
this paper is to analyze and design a decentralized algorithm
for a specific class of aggregative games.

Game theory is a powerful framework to capture interac-
tion of a large number of self optimizing agents with coupled
objectives or constraints, but it becomes intractable as the
number of players increases. Motivated by this shortcoming,
mean field game theory studies a simplified model obtained
by letting the number of players tend to infinity [2], [3].
Based on this approach, algorithms are derived which are
decentralized in the sense that each agent uses its local
information and the mean of the state of other agents [3].
Such algorithms ensure that the solution for finite number
of players is ε-Nash optimal, where ε approaches zero as
the number of players approach infinity. The liberalized
electricity market of the future can be modelled as a game
between a large number of profit maximizing generators or
consumers. Thus, mean field game theory is increasingly
applied in this domain [4], [5], [6].

One of the challenges for the electricity market and for
the grid operation is how to handle the introduction of plug-
in electric vehicles (PEVs) on a large scale. The problem
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of coordinating the charging of PEVs was discussed initially
in [4], [7], [8]. Here, the authors proved that the centralized
coordination of PEVs results in a solution which exhibits
charging during low-demand hours and thus, can alleviate
demand peaks. Furthermore, [4], [7] illustrated that this
solution can be obtained as the Nash equilibrium (NE) of
a game with an infinite number of homogenous players. In
the finite population size such algorithm results in ε-Nash
performance. The authors in [9] expanded this idea to show
that under a more relaxed set of assumptions, ε-Nash equilib-
ria can still be obtained. An unaddressed problem is whether
such games possess a NE for finite population size and if so,
to design a decentralized algorithm to converge to it.

In this paper, we present a new approach to address
the problems above. In particular, inspired from the recent
advances in variational inequalities [10], we show that the
aggregative games studied in [4], [9] do possess a unique
Nash equilibrium even in finite population size. Furthermore
we design a decentralized algorithm that converges to this
NE. This decentralized algorithm has the same information
structure as in the above mentioned works, in that a central
coordinator broadcasts the mean to the population but results
in Nash performance instead of ε-Nash optimality. Our
point of view is that for deterministic aggregative games,
in contrast to stochastic ones [2], [3] one can obtain desired
analysis without restoration to the mean field limit. We apply
our framework to the PEV charging problem and compare
the results with previous works along this line.

Our contributions are threefold. First, we study the
quadratic game of [9] to show existence and uniqueness of
a NE under suitable conditions. Second, we generalize the
results to a classes of nonlinear aggregative games. Third,
we provide a decentralized algorithm that converges to the
NE. In terms of application, we consider the PEV charging
problem and show how our approach eliminates the need of
an artificial quadratic term in the individual cost functions,
which was needed in the convergence proofs of [4], [9].

The paper is organized as follows. In Section II we de-
scribe the problem and use tools from variational inequalities
to study the NE. In Section III, we present decentralized
algorithms to converge to the NE. In section IV we illustrate
the application of our framework to the charging problem.
In Section V we conclude and summarize future work.

Notation

N, R denote respectively the set of natural and real
numbers; H represents the Hilbert space with inner product
〈·, ·〉 : H×H → R and norm || · ||2 :=

√
〈·, ·〉; Id : H → H



represents the identity operator. DT : Rn → Rn×n indicates
the Jacobian of the differentiable map T : Rn → Rn; ∇xg :
Rn → Rn indicates the gradient of the differentiable map
g : Rn → R; (∇xi

Ji)
N
i=1 : Rn → RnN denotes the stacked

vector of the gradients ∇xi
Ji for differentiable Ji : Rn →

R, i = 1, . . . , N . In, 1n, denote the n-dimensional identity
matrix and vector of unit entries, respectively. The operation
A ⊗ B denotes the Kronecker product of matrices A,B.
Given A ∈ Rn×n not necessarily symmetric, we denote A �
0 (� 0) ⇐⇒ x>Ax > 0 (≥ 0), ∀x 6= 0. Spec[A] represents
the multiset of eigenvalues of the matrix A counted with
multiplicity, while λmax(A), λi(A) denote respectively the
maximum and the i-th eigenvalue of the symmetric matrix
A arranged in descending order. The notation ε ∼ O(Nα)
with α ∈ R indicates that there exists finite l > 0 such that
limN→∞ εN−α = l. Given a vector [x1, . . . , xN ] ∈ RmN ,
x−i := [x1, . . . , xi−1, xi+1, . . . , xN ] ∈ Rm(N−1); given a set
K =

∏N
j=1Kj , K−i :=

∏N
j 6=iKj . The uniform distribution

on the real interval [a, b] is denoted by U([a, b]).

II. AGGREGATIVE GAMES AND VARIATIONAL
INEQUALITIES

In this section we study a certain class of aggregative
games and address existence and uniqueness of a NE.
We first present some tools from the theory of variational
inequalities and successively apply them to the specific game.

A. Game formulation

Let us consider a single shot game with N players, where
each of them aims at minimizing a cost function that depends
on its private decision and on the average decision of the
others. In particular, consider a non-cooperative game where
the payoff of each player Ji(xi, x−i) : RNm → R is

Ji(xi, x−i) = x>i Qxi + g

(
1

N

N∑

j=1

xj

)>
xi , (1)

where g : Rm → Rm is twice differentiable. The decision
variable of the i-th player is xi ∈ Ki, where Ki is a closed
and convex subset of Rm. In the above, Q ∈ Rm×m, i =
1, . . . , N. We refer to this aggregative game as GA [11]. Note
that GA includes a large class of deterministic finite horizon
dynamic games for which one is interested in open loop Nash
equilibria, such as linear quadratic games [12]. For the PEV
charging problem, this reformulation is detailed in section
IV. The function g can be interpreted as the marginal price of
electricity, which in a liberalized market is modelled through
dependence on aggregated production and consumption [4],
[6]. When Q = 0, Ji can be thought of as the price of buying
xi units of electricity and the number of players N can be
large due to participation of multiple consumers/producers.

B. Tools from Variational Inequalities

We will introduce the connection between variational
inequalities and Nash equilibria in non-cooperative games.
In Section II-C and II-D we will apply this tool to game GA.

Definition 1 (Variational Inequality): Given a subset
K ⊂ H and an operator T (·) : H → H, the Variational

Inequality (VI) problem denoted with V I(K,T ) is to find
x? ∈ K such that 〈T (x?), x− x?〉 ≥ 0 ∀x ∈ K .
This problem is connected with several areas of mathematics
such as optimization, game theory and fixed point theory. For
a discussion when H is finite dimensional see for example
[10]. Depending on the properties of T (·), one can prove
existence and uniqueness of the solution of V I(K,T ) as per
Theorem 1, see [13]. A key role is played by monotonicity.

Definition 2 (Monotone Operator): The operator T (·) :
H → H is said to be monotone (resp. strictly monotone) if
〈T (x)−T (y), x−y〉 ≥ 0 (resp. if 〈T (x)−T (y), x−y〉 > 0)
∀x 6= y ∈ H.
From now on, 〈·, ·〉 represents the usual inner product on Rn.

Theorem 1 (Existence and Uniqueness for VIs): Let T (·)
be a monotone, continuous operator from Rn into itself and
let K be a bounded closed convex subset of Rn. Then, the
set of all solutions of V I(K,T ) is a nonempty closed convex
subset of K. If furthermore T (·) is strictly monotone, then
the solution to V I(K,T ) is unique.
It can be verified that a differentiable operator T (·) : Rn →
Rn is (strictly) monotone if the Jacobian (DT (x) � 0)
DT (x) � 0 ∀x ∈ Rn, [14].

We now present the connection between NE and the theory
of variational inequalities [15].

Definition 3 (Nash Equilibrium): A point x? ∈ K is
called a Nash equilibrium of the game GA if

Ji(x
?
i , x

?
−i) ≤ Ji(xi, x?−i) ∀xi ∈ Ki ∀i = 1, . . . , N .

Theorem 2 (Nash equilibria and VIs): Suppose for the
above game GA the non empty strategy sets Ki are closed and
convex and that for every fixed x−i ∈ K−i the payoff func-
tions Ji(xi, x−i) are convex and continuously differentiable
in xi ∈ Ki. Then a point x? ∈ K is a Nash equilibrium for
GA if and only if it is a solution of the variational inequality
V I(K,T ), with K =

∏
iKi and

T (x) = (∇xi
Ji(xi, x−i))

N
i=1. (2)

C. Existence and uniqueness of NE: the affine case

Let us consider the game GA. First, we restrict our
attention to g : Rm → Rm affine. Equation (1) becomes

Ji(xi, x−i) = x>i Qxi + 2

(
C

1

N

N∑

j=1

xj + c

)>
xi , (3)

with C ∈ Rm×m, c ∈ Rm. This is the formulation in [9].
Using the theory of VIs, we prove existence and uniqueness
of the Nash equilibrium for the aggregative game GA with
Ji(xi, x−i) as in (3). Given the structure of (3), the operator
T (x) defined in (2) takes the form

T (x) = b+ (A1 +A2)x where b = 1N ⊗ 2c ,

A1 =IN ⊗
(
Q+Q> +

2C>

N

)
, A2 = (1N1>N )⊗ 2C

N
.

(4)

Proposition 1: If Q � 0 and C � 0 or if Q � 0 and
C � 0, the set of Nash equilibria of GA coincides with the



set of solutions of V I(K,T ) with K =
∏N
i=1Ki and T (x)

as in equation (4). Furthermore, T (x) is strictly monotone
and GA has a unique NE.

Proof: By hypothesis each Ki is closed and convex,
while for fixed x̂−i ∈ K−i the i-th player payoff reduces to
Ji(xi) = x>i (Q+ 2C>

N )xi+2(C 1
N

∑N
j 6=i x̂j+c)>xi which is

continuously differentiable and convex in xi ∈ Ki since Q+
2C>

N � 0. Indeed, using the definition of a convex function,
one can show for a generic non symmetric matrix A that A �
0 =⇒ y(x) = x>Ax+b>x convex. Here, A = Q+ 2C

N

> �
0 because x>(Q + 2C

N

>
)x = x>Qx + 2

N x
>Cx > 0 when

x 6= 0, by the hypothesis on Q, C. Thus, by Theorem 2 the
game GA is equivalent to solving the V I(K,T ) with T (x) =
(∇xi

Ji(xi, x−i))Ni=1. Given the structure of Ji(xi, x−i), one
can compute explicitly T (x) as in (4). The operator T (·)
is strictly monotone. Indeed its Jacobian is positive definite,
since DT (x) = A1+A2, and x>(A1+A2)x =

∑N
i=1 xi(Q+

Q>+ 2C>

N )x>i + (
∑n
i=1 xi)

> 2C
N (
∑n
i=1 xi) > 0 when x 6= 0

if Q � 0 and C � 0 or Q � 0 and C � 0. By Theorem 1
we conclude that the solution to V I(K,T ) is unique and so
is the Nash equilibrium for GA.

D. Existence and uniqueness of NE: the nonlinear case

Proposition 2: Assume that the function g(·) : Rm → Rm

is strictly monotone, that each component gr(·) is convex
in the argument, xi ≥ 0 and Q � 0. Then, the NE
of GA are the solutions to V I(K,T ), with K =

∏
iKi,

T (x) = (∇xiJi(xi, x−i))
N
i=1. Proof: Each strategy

set Ki is non empty, convex and closed. Furthermore, the
payoff functions Ji(xi, x−i) are continuously differentiable.
The Hessian of Ji(xi, x−i) with respect to xi is given by

Hi(xi, x−i) = Q+Q> +
1

N
Dg(σ(x))>+

+
1

N
Dg(σ(x)) +

1

N2

m∑

r=1

Hr(σ(x))xri ,
(5)

where σ(x) = 1
N

∑N
j=1 xj , Dg(σ(x)) ∈ Rm×m and

Hr(σ(x)) ∈ Rm×m are respectively the Jacobian of g and
the Hessian of gr(σ) with respect to σ. Strict monotonicity
of g(·) implies Dg(σ(x)) � 0, while gr(·) convex implies
Hr(σ(x)) � 0. Since Q � 0 by hypothesis, the Hessian
in (5) is positive definite and consequently Ji(xi, x−i) is
convex in xi ∈ Ki. Theorem 1 gives the desired result.
Uniqueness is guaranteed by Theorem 1 if DT (x) � 0.

Remark 1: The differences between this approach and
those in [4], [9] are as follows. In these previous works
the authors prove the existence of an ε-Nash with ε ∼
O(1/N). Here we prove existence and uniqueness for the
Nash equilibrium for all finite N . Furthermore, it is no longer
necessary to have an additional quadratic term Q � 0 as
in the works mentioned above to guarantee existence and
uniqueness. When Q = 0 Proposition 1 still applies with
C � 0. Similar reasoning holds for Proposition 2. Finally,
the case of C ≺ 0 or Q ≺ 0, partially studied in [9], is
not covered by this theory as in general one does not expect
uniqueness of the NE. Consider, for example the game with

costs (3), N = 2, m = 1, C = 1, Q = −1, c = 0 and
K1 = K2 = {y ∈ R | 0 ≤ y ≤ 1}. All the points (0, s) and
(s, 0) with 0 ≤ s ≤ 1 are Nash equilibria for this game.

III. ALGORITHMS

In the previous section we saw how, under suitable as-
sumptions, finding a NE of GA is equivalent to solving of a
VI. In this section, we present projection based algorithms
to solve such a variational inequality problem. We derive
conditions for their convergence and show how they can be
implemented in a decentralized fashion. Let us consider the
V I(K,T ) with T (·) strictly monotone. Projection algorithms
are known to converge in this case [10], but are slow or
unusable when N becomes large, as discussed in the fol-
lowing. Using the specific structure of game GA, we remedy
the latter issue and prove convergence in subsection III-A by
appropriately choosing the step size of the algorithm.

Definition 4 (Projection Operator): The operator ProjK :
H → H, for K ⊂ H is defined as ProjK(x) :=
arg minz∈K ||x− z||2.
The following theorem guarantees convergence of the itera-
tion defined in (6) to the solution of V I(K,T ), when T is
strictly monotone and Lipschitz [10].

Theorem 3: Consider the V I(K,T ) with T : K → Rn,
where K is a closed convex subset of Rn. Furthermore
assume that T is strictly monotone and Lipschitz. Then the
iteration

xk+1 = ProjK [xk − γkT (xk)] (6)

with γk ≥ 0 , lim
k→∞

γk = 0 ,

∞∑

k=0

γk =∞ . (7)

converges to the unique solution of V I(K,T ).
We refer to this as to the variable step Projection Algorithm.
As we have seen previously, for the game GA under the
assumptions of Proposition 1, monotonicity and Lipschitz
continuity are guaranteed for T (x) in (4). Thus, (6) converges
to the solution of the V I(K,T ), i.e. the unique NE of GA.

Condition (7) requires γk → 0 as k →∞ and may prevent
to take a sufficiently large step size γk when the iteration
number k increases. Thus, (6) may be slow to converge. For
an example of this, see subsection IV-C.

A. Fixed step Projection Algorithm

In an attempt to avoid the previous problem, we consider
the fixed step Projection Algorithm i.e. algorithm (6) with
constant step size γ. The choice of γ is crucial for the
convergence. For a strictly monotone and Lipschitz operator
T (x), (6) converges when γ is chosen to be sufficiently
small, 0 < γ < γ̄, see [10, Theorem 12.1.2]. A direct
application of this theorem results in γ̄ ∼ O(1/N), and thus
is of little use when N is large, for example in the case of
electricity markets, with a large number of participants. In
the following, using the specific structure of the quadratic
game of subsection II-C, we show convergence for the
fixed step Projection Algorithm with improved upper bound
γ̄ ∼ O(1) when N →∞. In the derivation below we prove
convergence for the affine cost (3). For simplicity assume



that Q and C are symmetric. Let us introduce the definition
of a contractive operator and a useful lemma.

Definition 5 (Contractive Operator): The operator T (·) :
H → H is said to be contractive (resp. non expansive) if
||T (x) − T (y)||2 ≤ L||x − y||2 with L < 1 (resp. L ≤ 1)
∀x, y ∈ H.

Lemma 1: Given C ∈ Rm×m symmetric, i = 1, . . . ,m,

Spec[(IN+1N1>N )⊗C] = {(N+1)λi(C), λi(C), . . . , λi(C)︸ ︷︷ ︸
N−1 copies

} ,

Proof: Using the properties of the eigenvalues for
Kronecker products, we know that Spec[(IN+1N1>N )⊗C] =
{µjλi(C)} i = 1, . . . ,m, j = 1, . . . , N , where µj are the
eigenvalues of IN + 1N1>N counted with multiplicity. It is
easy to see that

Spec[IN + 1N1>N ] = {N + 1, 1, . . . , 1︸ ︷︷ ︸
N−1 copies

} .

Combining the two, one gets the desired result.
Proposition 3 (Improved convergence): Under the same

hypothesis of Proposition 1, further assume Q, C ∈ Rm×m

symmetric. The fixed step Projection Algorithm

xk+1 = ProjK [xk − γT (xk)] (8)

converges to the unique solution of V I(K,T ) provided that
0 < γ < (λmax(Q) + N+1

N λmax(C))−1.
Proof: Finding a solution to the variational inequality

V I(K,T ) is equivalent to finding a fixed point of the
following map H(x) = ProjK [x−γT (x)] : K → K ⊂ RNm

[10]. We intend to show that H(·) is a contraction with
respect to the euclidean || · ||2 norm. The map H(·) is a
composition of two operators: the ProjK(·) operator and the
operator G(·) .

= Id−γT (·). Since projection is non expansive
with respect to the 2-norm [14], it suffices to find γ that
renders G(·) contractive in the same norm.
In this case, the operator T (x) = (B1+B2)x+b is linear with
B1 = 2 IN ⊗Q, B2 = 2

N (IN + 1N1>N )⊗C, b = 1N ⊗ 2c,
and thus also G(x) = Bx− γb, B = (ImN − γ(B1 +B2))
is linear. As a consequence, the contractivity of G(·) is
guaranteed when LG = ||DG||2 = ||B||2 < 1. The matrix
norm ||B||2 is given by the square root of the maximum
singular value of B, which reduces to the spectral radius
ρ(G) = maxi |λi(G)|, thanks to symmetry of Q, C. We
intend to find the values of γ that make maxi |λi(G)| < 1,
which is guaranteed if |λi(G)| < 1, ∀i or equivalently iff

−1 < 1− γλi(B1 +B2) < 1 ∀i . (9)

Given that B1+B2 � 0, the right hand inequality is satisfied
for any γ > 0. The inequality on the left hand side requires
γλi(B1 +B2) < 2, which is guaranteed if

γ(λmax(B1) + λmax(B2)) < 2 . (10)

Indeed λi(B1 + B2) ≤ λmax(B1 + B2) ≤ (λmax(B1) +
λmax(B2)), where the last inequality is known as the Weyl’s
inequality [16], and thus (10) =⇒ γλi(B1 +B2) < 2 which
implies the left hand side of (9) is satisfied. It follows that

0 < γ < 2(λmax(B1) + λmax(B2))−1 =⇒ LG < 1 ,
(11)

and the operator H(x) is a contraction. As a consequence
the Picard-Banach iteration (8) converges to the unique
fixed point x? of H(x) [14], which is the solution to
V I(K,T ) as previously discussed. It is trivial to see that
λmax(B1) = 2λmax(Q), while using Lemma 1 one finds
λmax(B2) = 2N+1

N λmax(C). Condition (11) reduces to
0 < γ < γM =

(
λmax(Q) + N+1

N λmax(C)
)−1

and thus
concludes the proof.
With the same tools, one can prove a similar convergence
result in the nonlinear case (1).

Remark 2: The value of γM found here does not go to
zero as N → ∞. Thus, the result provides a convergence
argument for any finite and arbitrary large N .

Remark 3: When Q,C are symmetric GA is a potential
game, i.e. a minimizer of P (x) = 1

2x
>(A1 +A2)x+ b>x is

a NE of GA [11]. Only in this case, distributed optimization
algorithms can also be implemented, see for example [17].

B. Decentralized implementation of projection algorithms

When the number of players, N , is large, it becomes cru-
cial to devise a decentralized implementation of projection
algorithms. Let us consider the variable step algorithm and
the cost function (3), as similar reasonings hold in the other
cases. Given the explicit formula for T (x) in (4), and that
K is a product space, equation (6) can be rewritten as

xk+1
i = ProjKi

[
xki−γk

((
Q+Q>+

2C

N

>)
xki +2C

N∑

j=1

xkj
N

+c

)]
,

(12)
where xki represents the k-th iteration of the decision variable
of the i-th player. The algorithm is implemented with the
help of a central aggregator as follows. At the initial step,
each player initializes x0i , sends it to an aggregator which
computes z0 =

∑N
i=1

x0
i/N and broadcasts it to the players.

Agents update xki according to (12) and the procedure iterates
until convergence. The scheme is presented in the following
table. Every player needs to know N , while γk has to be
the same across the population. This can be achieved, for
instance, communicating the information at the initial step.
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where xk
i represents the k-th iteration of the decision variable

of the i-th player.
The algorithm is implemented with the help of a central

aggregator as follows. At the initial step, each player ini-
tializes x0

i , sends it to an aggregator which computes the
average z0 =

�N
i=1

x0
i/N and broadcasts it to all the players.

Each agent updates xk
i according to the previous equation

and the procedure iterates until convergence. The scheme
is presented in the following table. Note that each player
needs to know N , while �k has to be the same across the
population. This can be achieved, for instance, coordinating
information before the initialization of the algorithm.

Algorithm 1 Decentralized algorithm for computation of NE

Initialization. Set k = 0, each agent selects x0
i and

communicates it to the aggregator;
while not converged do

set zk =
�N

i=1
xk

i/N;
broadcast zk to the players;
�i compute xk+1

i as by (12);
communicate xk+1

i to the aggregator;
k � k + 1;

end

Some appealing title
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thanks to simmetry of Q, C. We intend to find the values
of � that make maxi |�i(G)| < 1, which is guaranteed if
|�i(G)| < 1, �i or equivalently iff

� 1 < 1 � ��i(B1 + B2) < 1 �i . (4)

Given that B1+B2 � 0, the right hand inequality is satisfied
for any � > 0. The inequality on the left hand side requires
��i(B1 + B2) < 2, which is guaranteed if

�(�max(B1) + �max(B2)) < 2 . (5)

Indeed one has that ��i(B1 + B2) � ��max(B1 + B2) �
�(�max(B1) + �max(B2)) (where the last inequality is
known as the Weyl’s inequality [9]) and thus (5) =�
��i(B1 + B2) < 2 which implies the left hand side of (4)
is satisfied. Thus when

0 < � < 2(�max(B1) + �max(B2))
�1 , (6)

LG < 1 and consequently the operator H(x) is a con-
traction. As a consequence the Pichard-Banach iteration
(FPA) converges to the unique fixed point x� of H(x)
[8, Theorem 1.48], which is the solution to V I(K, T ) as
previously discussed. It is trivial to see that �max(B1) =
2�max(Q), while using Lemma 3 one finds �max(B2) =
2N+1

N �max(C). Condition (6) than reduces to 0 < � <
�M := (�max(Q) + N+1

N �max(C))�1 and thus concludes
the proof.
Note that the value of �M found here does not go to
zero as N increases. Thus the previous lemma provides a
convergence argument for finite but also large N .

A. Decentralized implementation of Projection Algorithms

In this section we discuss how the Projection Algorithms
previously introduced can be implemented in a decentralized
fashion when applied to the game GA. Let us consider the
variable steplength algorithm, as similar reasonings hold
when the steplength is fixed. Given the explicit formula for
T (x), and the fact that K is a product space, equation (VPA)
can be rewritten splitting up xk into xk

i as

xk+1
i = ProjKi

[xk
i � �kT (xk)] =

= ProjKi

�
xk

i � �k

�
(Q + Q� +

2C

N

�
)xk

i + 2C
N�

j=1

xk
j

N
+ c

��
,

(7)

where xk
i represents the k-th iteration of the decision variable

of the i-th player. Thus each agent initializes x0
i and sends

it to an aggregator which computes the average z0 .
=�N

i=1
x0

i/N and broadcast it to all the players. Each agent
can then take the first step according to the previous equation
and the procedure iterates until convergence. The scheme is
presented in Algorithm 1. Note that each player needs to
know N , while �k has to be the same across the population.
This can be achieved, for instance, coordinating information
before the initialization of the algorithm.

Algorithm 1 Variable steplength Projection Algorithm
Initialization. Set k = 0, each agent selects x0

i and
communicates it to the aggregator;
while not converged do

set zk =
�N

i=1
xk

i/N;
broadcast zk to the players;
�i compute xk+1

i as by (7);
communicate xk+1

i to the aggregator;
k � k + 1;

end

IV. NON LINEAR?

V. CHARGING A FLEET OF PEVS

A. Formulation of the problem

Let us consider the problem of managing the charge of
a fleet of N PEV, as first formulated in [5]. Each vehicle
is fitted with a battery whose dynamics is assumed to be
discrete and take the form

st+1
i = st

i + aiu
t
i , i = 1, . . . , N , t = 0, . . . , T � 1 ,

where si
t � [0, 1] and ai > 0 represents the state of charge

(SOC) at time t and the charging efficiency of the i-th
PEV’s battery, respectively; T indicates the length of the
horizon. The initial SOC s0

i is known; while the final state
of charge sT

i is dictated ahead of time by the particualar
needs of the owner of each PEV. Consequently, at every time
step, each vehicle can choose how much charge to store in
its battery by selecting ui

t � [0, 1], with the constraint2 of
matching sT

i . The decision variable ui := [u0
i , . . . , u

T�1
i ] is

then constrained by ui � �i, where

�i :=

�
ui � [0, 1]T | ai

T�1�

t=0

ut
i = sT

i � s0
i

�
. (8)

We assume a variable marginal price for the electricity,
p := [p0, . . . , pT�1], where pt depends on the ratio, at the
same time t, between production and overall demand of
electricity, i.e. the sum of the inflexible plus the aggregated
PEVs’ demand. Consequently, see [5], the marginal price can
be written as

pt = p

�
1

�

N�

j=1

ut
j

N
+

dt

�

�
,

where dt, � > 0 represent respectively the inflexible demand
at time t (supposed to be known) and the total produc-
tion capacity, both divided by N . Each PEV is assumed
rational and thus willing to find the charging sequence ui

that minimizes its total electricity cost, while ensuring the
constraint ui � �i. Given the coupling of the agents through

2More elaborate and realistic contraints can be implemented in this
formulation, but we decided for simplicity to stick with the original
formulation of [5].
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IV. CHARGING A FLEET OF PEVS

A. Formulation of the problem

Let us consider the problem of managing the charge of
a fleet of N plug-in electric vehicles [4]. Each vehicle is
equipped with a battery whose dynamics is assumed to be
discrete and takes the form

st+1
i = st

i + aiu
t
i , i = 1, . . . , N , t = 0, . . . , � � 1 ,

where si
t � [0, 1] represents the state of charge (SOC) at

time t. The constant ai describes the ratio between charging
efficiency and battery size for the i-th PEV; � � N indicates
the length of the horizon. The initial SOC s0

i is known; while
the final state of charge s�i is dictated ahead of time by the
particular needs of the owner of each PEV. Consequently, at
every time step, each vehicle can choose how much charge
to store in its battery by selecting ui

t � [0, 1], with the
constraint of matching s�i . More realistic constraints could
be implemented [9]. For simplicity, we use the formulation

of [4]. The decision variable ui := [u0
i , . . . , u

��1
i ] is then

constrained by ui � �i, where

�i :=

�
ui � [0, 1]� | ai

��1�

t=0

ut
i = s�i � s0

i

�
. (13)

We assume a variable marginal price for the electricity,
p := [p0, . . . , p��1], where pt depends on the ratio between
production and overall demand of electricity, at the same time
t. This captures the fact that in future liberalized markets, the
consumers can be given a price function that depends on the
demand of the power system. The total demand is considered
to be the sum of the inflexible plus the aggregated PEVs’
demand. Consequently, see [4], the marginal price can be
written as

pt = p

�
1

�

N�

j=1

ut
j

N
+

dt

�

�
,

where dt, � > 0 represent respectively the inflexible demand
at time t, assumed to be known, and the total production
capacity, both divided by N .

Each PEV is assumed rational and thus willing to find the
charging sequence ui that minimizes its total electricity cost,
while ensuring the constraint ui � �i. Given the coupling
of the players through the marginal cost, this results in the
following game

min
ui

��1�

t=0

ptu
t
i , s.t. ui � �i , i = 1, . . . , N .

Our objective is to find a NE for the given game. The interest
in Nash equilibria is twofold: first it describes the natural
situation in which rational players minimize their electricity
bill; second it has been shown in [4], that for N � �
and homogenous population, the NE also minimizes the
total cost associated with delivering the system demand and
consequently posses the valley filling property.

B. Linear and nonlinear marginal price p

We consider two price models: p(r) = �r� [$/KWh], � =
0.15, � = 1.5, proposed in [4] and the linear approximation
p(r) = �r [$/KWh], � > 0. Let us focus on the latter case,
and note that the game takes the form

min
ui

2

�
C

1

N

N�

j=1

uj + c

��
ui , s.t. ui � �i ,

where C = �
2�INT � RN��N� and c = �

2� [d0, . . . , d��1].
Recall that the constraint set �i of (13) is a closed and convex
subset of R� . Consequently this problem falls into the more
general aggregative game GA introduced in section II-A, by
selecting Q = 0 in equation (3). As a consequence, since
C = �

2�IN� � 0, Proposition 1 guarantees the existence
and uniqueness of a Nash equilibrium for any finite N . Fur-
thermore, the variable step Projection Algorithm of equation
(6) converges as Theorem 3 certifies. The convergence is
guaranteed also for the fixed step Projection Algorithm of
equation (8), by choosing 0 < � < 2 N

N+1
�
� , see Proposition

3. This is in contrast to [4] where an artificial quadratic term
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IV. CHARGING A FLEET OF PEVS

A. Formulation of the problem

Let us consider the problem of managing the charge of
a fleet of N plug-in electric vehicles [4]. Each vehicle is
equipped with a battery whose dynamics is taken to be

st+1
i = sti + aiu

t
i , i = 1, . . . , N , t = 0, . . . , τ − 1 ,



where sti ∈ [0, 1] represents the state of charge (SOC) at
time t. The constant ai describes the ratio between charging
efficiency and battery size for the i-th PEV; τ ∈ N indicates
the length of the horizon. The initial SOC s0i is known; while
the final state of charge sτi is dictated ahead of time by the
particular needs of the owner of each PEV. Consequently,
at every time step, each vehicle can choose how much
charge to store in its battery by selecting uit ≥ 0, with the
constraint of matching sτi . More realistic constraints could be
implemented [8], but for simplicity, we use the formulation
of [4]. The decision variable ui = [u0i , . . . , u

τ−1
i ] is then

constrained by ui ∈ χi, where

χi =

{
ui ≥ 0 | ai

τ−1∑

t=0

uti = sτi − s0i
}
. (13)

We assume a time varying marginal price for the electricity,
p = [p0, . . . , pτ−1], where pt depends on the ratio between
production and overall demand of electricity, at the same time
t. This captures the fact that in future liberalized markets, the
consumers can be given a price that depends on the demand
of the power at that time. The total demand is considered
to be the sum of the inflexible plus the aggregated PEVs’
demand. The marginal price can be written as

pt = p

(
1

κ

N∑

j=1

utj
N

+
dt
κ

)
,

where p : R → R and dt, κ > 0 represent respectively the
inflexible demand at time t, assumed to be known, and the
total production capacity, both divided by N , see [4].

Each PEV is assumed rational and thus willing to find the
sequence ui that minimizes its total electricity cost, while
ensuring ui ∈ χi. Given the coupling of the players through
the marginal cost, this results in the following game

min
ui

τ−1∑

t=0

ptu
t
i , s.t. ui ∈ χi , i = 1, . . . , N .

Our objective is to find a NE for the given game. The interest
in Nash equilibria is twofold: first, it describes the natural
situation in which rational players minimize their electricity
bill; second, it has been shown in [4], that for N →∞ and
homogenous population, the NE also minimizes the total cost
of delivering the system demand and consequently posses
the desired valley filling property. This means that the PEVs
would maximize charging during the intervals in which the
inelastic demand and therefore the price are lower.

B. Linear and nonlinear marginal price p

We consider two price models: p(r) = βrδ [$/kWh], β =
0.15, δ = 1.5, proposed in [4] and its linear approximation
p(r) = αr [$/kWh], α > 0. Let us first focus on the latter
case, and note that the game takes the form

min
ui

2

(
C

1

N

N∑

j=1

uj + c

)>
ui , s.t. ui ∈ χi ,

where C = α
2κINT ∈ RNτ×Nτ and c = α

2κ [d0, . . . , dτ−1].
Recall that the constraint set χi of (13) is a closed and
convex subset of Rτ . Consequently this problem falls into
the more general aggregative game GA introduced in section
II-A, by selecting Q = 0 in equation (3). As a consequence,
since C = α

2κINτ � 0, Proposition 1 guarantees the
existence and uniqueness of a Nash equilibrium for any
finite N . Furthermore, the variable step Projection Algo-
rithm of equation (6) converges as Theorem 3 certifies. The
convergence is guaranteed also for the fixed step Projection
Algorithm of equation (8), by choosing 0 < γ < 2 N

N+1
κ
α ,

see Proposition 3. This is in contrast to [4], [9] where an
artificial quadratic term is introduced to show convergence
to an ε-Nash equilibrium. In the case of p(r) = 0.15r1.5, the
game reduces to (1) with gl(z) = 0.15( 1

κ

∑N
j=1

ul
j

N + dl
κ )1.5

for l = 1, . . . , τ and Q = 0. The conditions of Proposition
2 are satisfied and with N sufficiently large, as for the
following simulations, the associated VI is strictly monotone,
thus ensuring existence and uniqueness of the NE.

C. Simulation results

In this section we present various numerical results, with
the objective of comparing algorithms (6) and (8), for differ-
ent populations of electric vehicles. We first consider the case
of a homogeneous population i.e. a population of identical
PEVs both in terms of battery dynamics and in terms of
SOC requirements. The parameters of the simulations are
taken from [4] and listed in the following table for reference.
The inflexible demand dt (see Figure 2) shows the typical
load of a summer day in 2007 of the Midwest USA ISO
region. The number of vehicles is chosen as N = 107. This
corresponds to a penetration of approximately 30% of PEVs
in the area. The charging period is taken to be 24 hours,
starting from 12:00 pm. The linear marginal price function
pL(r) = 0.12r is considered as a good approximation of
pN (r) = 0.15r1.5 and used in the following simulations. The
resulting upper bound on the step becomes γM = 20 N

N+1 .
The initial condition x0i is randomly chosen for every vehicle.

Parameter N κ s0i sTi ai
Value 107 12 kW 0.15 1 0.085 (kWh)−1

Figure 1 presents the convergence profile of z =
1
N

∑N
j=1 uj for fixed and variable step Projection Algorithm

with γ = 17 and γk = 17k−0.5. The NE is identified by z?.
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Fig. 1: Convergence profile for (8) and (6).



The convergence for (8) is monotonic and exponential, in
agreement with Proposition 3, while the convergence profile
of (6) depends considerably on the choice of the sequence
{γk}∞k=0. Since by condition (7) when k → ∞ the step γk
converges to zero, this may result in a slower algorithm as
the number of iteration increases. We have observed faster
convergence when γk was taken of the form γk ∼ O(k−β)
for small values of β, but this results in a step that is almost
constant between iterations thus reducing (6) to (8). Con-
vergence to the Nash equilibrium is guaranteed using much
fewer iterations if compared to the previous work of [4] and
[9], where they prove convergence to an ε-Nash equilibrium,
with ε ∼ O(1/N). At each iteration the players communicate
xki to the aggregator and the aggregator returns 1

N

∑N
j=1 x

k
j .

Faster convergence results in less communication.
Figure 2 details the convergence history of (8) with γ = 17

for the homogenous scenario just introduced. The dashed
curve represents the initial condition, while successive itera-
tions are presented in blue. The last iteration corresponding
to the NE is drawn with round markers and has the property
of being valley filling, in accordance with [4].
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Fig. 2: Convergence history for (8). The inflexible demand
dt is shown in red.

Figure 3 presents the comparison of the convergence speed
for the homogeneous population just discussed and the case
of heterogeneous players for both linear and non linear
marginal prices. For the latter ai ∼ U([0.08, 0.09]) and
sTi − s0i ∼ U([0.3, 0.8]), while the rest of the parameters
are left unchanged. We have selected γ = 10 to compare
these scenarios, but a different step size for each case could
perform better. In general, the convergence appears faster
for the non linear price while heterogeneity slows down the
algorithm. In all the cases the convergence is exponential.

V. CONCLUSIONS
We studied the problem of existence and uniqueness of

Nash equilibria for a certain class of aggregative games.
Leveraging on the specific structure of the player’s costs and
constraints, we derived sufficient conditions to guarantee that
a unique NE exists. The derivation was based on connecting
the set of Nash equilibria with the solutions of a certain
variational inequality. For finite and arbitrary large popula-
tion we presented two algorithms that converge to the NE in
a decentralized fashion. We concluded with an application
to charging of PEVs in a liberalized electricity market, and
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Fig. 3: Convergence profile for iteration (8), γ = 10.

showed improved convergence speed. We are extending the
algorithms to address asynchronous implementations and to
include coupling constraints. These extensions will make the
model more suitable for real world applications.
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