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2 Laboratory for Information and Decision Systems, MIT, USA



Outline

- Aggregative games

- Convergence between Nash and Wardrop

- Efficiency of equilibria

2



Motivation

Analysis and control of large scale competitive systems

3



Motivation

Analysis and control of large scale competitive systems

3



Aggregative games

players: i ∈ {1, . . . ,M}

constraints: x i ∈ X i ⊆ Rn

cost: J i (x i , )

σ(x) =
1

M

M∑
i=1

x i

x̂ Nash equilibrium

J i (x̂ i , σ(x̂)) ≤ J i (x i , σ(x i , x̂−i ))

x̄ Wardrop equilibrium

J i (x̄ i , σ(x̄)) ≤ J i (x i , σ(x̄))

= x i

M + 1
M

∑
j 6=i x̂

j = 1
M

∑
j x̄

j

What is the relation between x̂ and x̄?
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Related works

- Wardrop eq. coincides with deterministic mean field/ aggregative eq.

- Wardrop is ε-Nash: J i (x̄ i , σ(x̄)) ≤ J i (x i , σ(x i , x̄−i )) + ε

E. Altman and L. Wynter. “Equilibrium, games, and pricing in transportation and
telecommunication networks”. Networks and Spatial Economics, 2004.

Z. Ma, D. Callaway and I. Hiskens. “Decentralized charging control of large
populations of plug-in electric vehicles”. IEEE Transactions on Control Systems
Technology, 2013.

S. Grammatico, F. Parise, M. Colombino and J. Lygeros. “Decentralized
convergence to Nash equilibria in constrained deterministic mean field control”.
IEEE Transactions on Automatic Control, 2017.

. . .

- distance “between strategies” at Nash x̂ and Wardrop x̄

A. Haurie and P. Marcotte. “On the relationship between Nash-Cournot and
Wardrop equilibria”. Networks, 1985.
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Main result I

Nash operator

F̂ (x) = [∇x i J
i (x i , σ(x))]Mi=1

Wardrop operator

F̄ (x) = [∇x i J
i (x i , z)|z=σ(x)]Mi=1

Theorem (Convergence for large M)

J i Lipschitz, X i convex and bounded, ∇x F̂ (x) � αI or ∇x F̄ (x) � αI ,

||x̂ − x̄ || ≤ const/
√
M

0 100 200 300 400 500 600 700 800
0

0.03

0.06

0.09

0.12

0.15

Population size M

Distance

‖σ(x̂)− σ(x̄)‖
1/
√
M
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Proof sketch

Step 1: x̂ is a Nash equilibrium ⇐⇒ F̂ (x̂)>(x − x̂) ≥ 0 ∀ x ∈ X

x̄ is a Wardrop equilibrium ⇐⇒ F̄ (x̄)>(x − x̄) ≥ 0 ∀ x ∈ X

Recall F̂ (x) = [∇x i J
i (x i , σ(x))]Mi=1

Recall F̄ (x) = [∇x i J
i (x i , z)|z=σ(x)]Mi=1

Step 2: F̂ is close to F̄ for large M, i.e., for all x ∈ X

||F̂ (x)− F̄ (x)|| ≤ const′√
M

Step 3: When operators are close, solutions are close

||x̂ − x̄ || ≤ const′′||F̂ (x̄)− F̄ (x̄)||

7
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Consequences of ||x̂ − x̄ || ≤ const√
M

equilibrium computation

equilibrium efficiency
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Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge

- Each vehicle min bill in [1, n]

- Charging requirements

players: i ∈ {1, . . . ,M}

cost of i : p(σ(x) + d)>x i

constr: x i ∈ X i

System level objective

- Minimize congestion min
x∈X

Js(x) = p(σ(x)+d)>(σ(x)+d)

How much does selfish behaviour degrade the performance?

PoA =
maxx∈NE(G) Js(x)

minx∈X Js(x)

≥ 1

9

x i1 x i2 x in−1 x
i
n
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minx∈X Js(x)
≥ 1

9

x i1 x i2 x in−1 x
i
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Main result II

Theorem (Equilibrium efficiency)

Assume regularity + price at time t depends on consumption at time t

p(z + d) = [g(z1 + d1); . . . ; g(zn + dn)], g : R≥0 → R≥0

. If g is a pure monomial

=⇒ WE are efficient for any M
=⇒ NE are efficient for large M

1 ≤ PoA ≤ 1 + const/
√
M

. If g is not a pure monomial =⇒ there exists inefficient instances
(both NE/WE)

[L-CSS18] includes p(z + d) = [g1(z1 + d1); . . . ; gn(zn + dn)] time dep.
includes p(z + d) = C (z + d) linear
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Numerics validate the result
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Proof sketch

Step 1: x̄ is a Wardrop equilibrium ⇐⇒ F̄ (x̄)>(x − x̄) ≥ 0 ∀ x ∈ X

x? is a social optimizer ⇐⇒ F ?(x?)>(x − x?) ≥ 0 ∀ x ∈ X

Where F̄ (σ) = [p(σ + d)]Mi=1

Where F ?(σ) = [p(σ + d) +∇σp(σ + d)>(σ + d)]Mi=1

Step 2: x̄ coincides with x? (for any instance) iff in every point

F̄ (σ) ‖ F ?(σ) ⇐⇒ F̄ (σ) = β(σ)F ?(σ), β(σ) > 0

⇐⇒ p(σ) pure monomial componentwise

Step 3: previous convergence result σ̂ → σ̄ as M →∞.

Thus Js(σ̂)→ Js(σ̄) as M →∞

so that Nash equilibria become efficient for large M.
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Thank you
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