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What if decision making is not an optimization problem?

in this talk: decision making process = variational inequality
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ROADMAP

1. Robust variational inequalities + scenario approach
~ probabilistic bounds on the risk

~ extension to quasi variational inequalities

2. Uncertain and robust games
~> how likely that a Nash equilibrium remains such?

~~ application to demand-response

3. Outlook and opportunities
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Definition (VI): given set X C R” and operator F : X — R”",
find x € X st. F(X)'(x—%)>0, Yx€ X

0

l

> convex optimization as a special case:

X solution of mi)r} g(x) <= Vg(x)"(x-X)>0 ¥xex
X€
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tentative: set X', operator F: X x A — R"

findx e X st F(x,0) (x—X)>0 VYxe X, VoecA
~> has a solution only exceptionally

literature: 1. expected-value formulation
find x € X s.t. Bsp[F(X,0)]T(x — %) >0 Vxec X
[Giirkan, Jiang, Nedié¢, Robinson, Shanbhag, Yousefian, ...]
2. expected residual formulation

find X € X s.t. X € argminyecx Esp[®(x, )]
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RVI:  find xg € NseaXs  s.t. F(XR)T(X —xg) >0 Vx€nNseadXs

S-RVI: find xs « NV 45 st F(xs) (x —xs) >0 VYxen x;
o iid ~ P

Q: How “likely" is a solution to S-RVI to be a solution of RVI?

~+ notion of risk: the risk V/(x) associated to x € R" is
V(x) =P{0 € A st x ¢ Xs}

solution xs

01,...,0
(61 N) — Sampled RVI risk V/(xs)

~~ assume: existence & uniqueness of solution xs for all {&;}%
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First result

1
0.8
0.6
0.4
0.2

0

n=10, N =100

0.2

0.4

0.6

0.8 1
1072



First result

L " n=10, N = 100
0.8 .

0.6 | 1
0.4} 1
0.2 —

O | | | |
0 0.2 0.4 0.6 0.8 1

8 1072

Theorem: assume existence + uniqueness & non-degeneracy



First result

L " n=10, N = 100
0.8 .

0.6 | 1
0.4} 1
0.2} —

O | | | |
0 0.2 0.4 0.6 0.8 1

8 1072

Theorem: assume existence + uniqueness & non-degeneracy

> a-priori bound on risk: PM[V(xs) <e(n)] >1- 8



First result

L " n=10, N = 100
0.8 .

0.6 1
0.4} 1
0.2} —

O | | | |
0 0.2 0.4 0.6 0.8 1

8 1072

Theorem: assume existence + uniqueness & non-degeneracy

> a-priori bound on risk: PM[V(xs) <e(n)] >1- 8

> a-posteriori bound on risk: PN[V(xs) < e(s)] > 1 -8

where s is the number of support constraints



First result

L ‘ " n=10, N = 100
0.8 .

0.6} 1
0.4} 1
0.2} —

O i | | |
0 0.2 0.4 0.6 0.8 1

8 1072

Theorem: assume existence + uniqueness & non-degeneracy

> a-priori bound on risk: PM[V(xs) <e(n)] >1- 8

> a-posteriori bound on risk: PN[V(xs) < e(s)] > 1 -8

where s is the number of support constraints

“with high probability (larger than 1 — 3), the risk is small (below ¢)”
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Definition (QVI): given set-valued map X' : R” = 2" and F : R" — R",
find x € X(%) st. F(x)T(x—%) >0, Vx € X ()

> informal: a VI where the feasible set depends on the point x
> we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: F : R" — R", (A, F,P), set val. maps {Xs}sca
RQVI: find XR € m(;eAX(;(XR) s.t. F(XR)T(X — XR) >0 Vxeﬂ(;eAX(;(xR)

S-RQVI: find xs € NY, X5.(xs) st. F(xs) (x —xs) >0 Vx e N, X5 (xs)
8; iid ~ P

Risk: the risk associated to x € R" is V(x) =P{d € A s.t. x ¢ X5(x)}

Theorem (informal): the same bounds on the risk hold for QVI.
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- M agents
- each agent's decision X/ € X/ CR", let ¥ = Xt x ... x XM

- each agents’ cost function C/(x/,x7/;0) : X x A - R

Robust NE ([Aghassi and Berstimas]): xg € X is a robust NE if

J (e §) < J(sd x=i e i v
rg1€aA><C(XR,5)_r6n€aA><C(X,XR ;0) Vx! € X7, Vj

> often agents have access to past realizations J; from (A, F,P)

Sampled robust NE: {§;}" , iid ~ P, xs € X is a sampled robust NE if

max C/(xs; 6;) < max Cj(xj,xs_j; i) Vxl € XY, Vi
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Risk associated to sampled robust NE

Setup: samples {4;}icn are known to the agents, which decide to play xs.

(01,...,0n) — | Sampled robust Nash | — solution xs

Q: how likely is each agent to incur a higher cost than what predicted?
i.e., higher than max; C/(xs; 6;)?

Answer: an application of the previous theory. Let agent’s j risk be

VIi(x) =P{6 € A s.it. CI(x;0) > max CI(x;6;)}

Theorem: existence, uniqueness, non-degeneracy —
> a-priori bound on risk: PN[Vi(xs) < e(nM + M) >1-7
> a-posteriori bound on risk: PN[Vi(xs) < e(s)] > 13



Robust Charging games



Robust Charging games

- A fleet of EVs to recharge



Robust Charging games

- A fleet of EVs to recharge

players:

jed{l,...

?M}



Robust Charging games

- A fleet of EVs to recharge

- Each vehicle min bill in [1, n]

players:

jed{l,...

?M}



Robust Charging games

- A fleet of EVs to recharge players:  je{1,...,M}
- Each vehicle min bill in [1, n] cost of J: p(z x4+ d)"x
- J



Robust Charging games

z

<

:

é: Non-EV demand

g | | I I |

Z 12PM 04PM 08PM 12AM 04AM 08AM 12PM
- A fleet of EVs to recharge players:  je{1,...,M}
- Each vehicle min bill in [1, n] cost of J: ZXJ +d)'x

-



Robust Charging games

z
<
:
é: Non-EV demand
g | | I I |
Z 12PM 04PM 08PM 12AM 04AM 08AM 12PM
- A fleet of EVs to recharge players:  je{1,...,M}
- Each vehicle min bill in [1, n] cost of J: ZXJ +d)'x
-
X% Xp1Xn

- Charging requirements constr: xl e aJ



Robust Charging games

z
<
:
é: Non-EV demand
g | | | I |
Z 12PM 04PM 08PM 12AM 04AM 08AM 12PM
- A fleet of EVs to recharge players:  je{1,...,M}
- Each vehicle min bill in [1, n] cost of J: ZXJ +d)'x
-
X% Xp1Xn
- Charging requirements constr: xl e aJ

- Past non-EV demand samples:  {di}N,



Robust Charging games

z
<
:é: Non-EV demand
g | | | I |
Z 12PM 04PM 08PM 12AM 04AM 08AM 12PM
- A fleet of EVs to recharge players:  je{1,...,M}
- Each vehicle min bill in [1, n] cost of J: p(z x4+ d)"x
- J
X X XpoyXm
- Charging requirements constr: xl e aJ
- Past non-EV demand samples:  {di}N,

literature: d known in advance [Callaway, Chen, Grammatico, Hiskens, Ma, ...



Robust Charging games

z
<
Eﬂ: Non-EV demand
g | | | I |
Z 12PM 04PM 08PM 12AM 04AM 08AM 12PM
- A fleet of EVs to recharge players:  je{1,...,M}
- Each vehicle min bill in [1, n] cost of J: p(z x4+ d)"x
- J
X X XpoyXm
- Charging requirements constr: xl e aJ
- Past non-EV demand samples:  {d;}V;

literature: d known in advance [Callaway, Chen, Grammatico, Hiskens, Ma, ...

Q: What guarantees can we provide the users without this assumption?
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Numerical experiments
Charging profile coordinated to a sampled-robust NE ~~ prob. guarantees
> How “likely” are users to pay more than “expected”? Little

> How “likely” are user to deviate from agreed charging? Little
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Simulations with M = 100 agents, N = 500 days of history
~ a-priori bound is not useful as nM + M = 2500
~» a-posteriori bound is useful as typically 3 <s <7

with s =7, VJ(xs) <6.5% with probability larger than 1 — 10~°

~~ exact calculations reveal that 0.11% < V/(xs) < 0.16%
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