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Theme of this talk: take decision based on data and
quantify their risk

decision making
process

data solution

if decision making = optimization problem =⇒ - scenario approach
- robust optimization
- ...

[Borelli, Calafiore, Campi, Esfahani, Garatti, Goulart, Kuhn, Lygeros, Margellos,

Prandini, Ramponi, Sutter, Tempo, . . . ]

What if decision making is not an optimization problem?

in this talk: decision making process = variational inequality
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Why variational inequalities?

“[...] a multitude of interesting connections to numerous disciplines, and
a wide range of important applications in engineering and economics”

F. Facchinei, J-S Pang

transportation networks contact problems

demand-response markets option pricing
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OVERVIEW

1. Interconnected dynamics and stability analysis

2. Projected gradient f ow on the power f ow manifold

3. Numerical experiments

8

ROADMAP

1. Robust variational inequalities + scenario approach
 probabilistic bounds on the risk

 extension to quasi variational inequalities

2. Uncertain and robust games
 how likely that a Nash equilibrium remains such?

 application to demand-response

3. Outlook and opportunities

4



Variational inequalities

Definition (VI): given set X ⊂ Rn and operator F : X → Rn,
find x̄ ∈ X s.t. F (x̄)>(x − x̄) ≥ 0, ∀ x ∈ X

. convex optimization as a special case:

x̄ solution of min
x∈X

g(x) ⇐⇒ ∇g(x̄)>(x − x̄) ≥ 0 ∀x ∈ X

5
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Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set X , operator F : X ×∆→ Rn

find x̄ ∈ X s.t. F (x̄ , δ)>(x − x̄) ≥ 0 ∀x ∈ X , ∀δ ∈ ∆

 has a solution only exceptionally

literature: 1. expected-value formulation
find x̄ ∈ X s.t. Eδ∼P[F (x̄ , δ)]>(x − x̄) ≥ 0 ∀x ∈ X
[Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, . . . ]

2. expected residual formulation
find x̄ ∈ X s.t. x̄ ∈ arg minx∈X Eδ∼P[Φ(x , δ)]
[Chen, Fukushima, Lin, Shanbhag, Wets, Zhang, . . . ]

this talk: robust VI, i.e., F : Rn → Rn, (∆,F ,P), sets {Xδ}δ∈∆

find xR ∈ ∩δ∈∆Xδ s.t. F (xR)>(x − xR) ≥ 0 ∀x ∈ ∩δ∈∆Xδ

6
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Robust and sampled VI, risk

RVI: find xR ∈ ∩δ∈∆Xδ s.t. F (xR)>(x − xR) ≥ 0 ∀x ∈ ∩δ∈∆Xδ

S-RVI: find xS ∈ ∩Ni=1Xδi s.t. F (xS)>(x − xS) ≥ 0 ∀x ∈ ∩Ni=1Xδi

δi iid ∼ P

Q: How “likely” is a solution to S-RVI to be a solution of RVI?

 notion of risk: the risk V (x) associated to x ∈ Rn is
V (x) = P{δ ∈ ∆ s.t. x /∈ Xδ}

Sampled RVI(δ1, . . . , δN)
solution xS
risk V (xS)

 assume: existence & uniqueness of solution xS for all {δi}Ni=1

7
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First result
For any β ∈ (0, 1), k ∈ {0, . . . ,N − 1}, let ε(k) be the unique solution of

β

N + 1

N∑
l=k

(
l
k

)
(1− ε)l−k −

(
N
k

)
(1− ε)N−k = 0.

For any β ∈ (0, 1), k ≥ N, let ε(k) = 1.

Theorem: assume existence + uniqueness & non-degeneracy

. a-priori bound on risk: PN [V (xS) ≤ ε(n)] ≥ 1− β

. a-posteriori bound on risk: PN [V (xS) ≤ ε(s)] ≥ 1− β
where s is the number of support constraints

“with high probability (larger than 1− β), the risk is small (below ε)”

0 0.2 0.4 0.6 0.8 1

·10−2
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0.2

0.4

0.6

0.8
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The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map X : Rn ⇒ 2R
n

and F : Rn → Rn,
find x̄ ∈ X (x̄) s.t. F (x̄)>(x − x̄) ≥ 0, ∀ x ∈ X (x̄)

. informal: a VI where the feasible set depends on the point x

. we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: F : Rn → Rn, (∆,F ,P), set val. maps {Xδ}δ∈∆

RQVI: find xR ∈ ∩δ∈∆Xδ(xR) s.t. F (xR)>(x − xR) ≥ 0 ∀x ∈∩δ∈∆Xδ(xR)

S-RQVI: find xS ∈ ∩Ni=1Xδi (xS) s.t. F (xS)>(x − xS) ≥ 0 ∀x ∈ ∩Ni=1Xδi (xS)

δi iid ∼ P

Risk: the risk associated to x ∈ Rn is V (x) = P{δ ∈ ∆ s.t. x /∈ Xδ(x)}

Theorem (informal): the same bounds on the risk hold for QVI.

9
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find x̄ ∈ X (x̄) s.t. F (x̄)>(x − x̄) ≥ 0, ∀ x ∈ X (x̄)

. informal: a VI where the feasible set depends on the point x

. we will use QVI to describe games with uncertain costs
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Uncertain games
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Uncertain games

- M agents

- each agent’s decision x j ∈ X j ⊆ Rn, let X = X 1 × · · · × XM

- each agents’ cost function C j(x j , x−j ; δ) : X ×∆→ R

Robust NE ([Aghassi and Berstimas]): xR ∈ X is a robust NE if

max
δ∈∆

C j(xR ; δ) ≤ max
δ∈∆

C j(x j , x−jR ; δ) ∀x j ∈ X j , ∀j

. often agents have access to past realizations δi from (∆,F ,P)

Sampled robust NE: {δi}Ni=1 iid ∼ P, xS ∈ X is a sampled robust NE if

max
i

C j(xS ; δi ) ≤ max
i

C j(x j , x−jS ; δi ) ∀x j ∈ X j , ∀j
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Risk associated to sampled robust NE

Setup: samples {δi}i∈N are known to the agents, which decide to play xS .

Sampled robust Nash(δ1, . . . , δN) solution xS

Q: how likely is each agent to incur a higher cost than what predicted?
i.e., higher than maxi C

j(xS ; δi )?

Answer: an application of the previous theory.

Let agent’s j risk be

V j(x) = P{δ ∈ ∆ s.t. C j(x ; δ) ≥ max
i

C j(x ; δi )}

Theorem: existence, uniqueness, non-degeneracy =⇒
. a-priori bound on risk: PN [V j(xS) ≤ ε(nM + M)] ≥ 1− β
. a-posteriori bound on risk: PN [V j(xS) ≤ ε(s)] ≥ 1− β
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Robust Charging games
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- A fleet of EVs to recharge

- Each vehicle min bill in [1, n]

- Charging requirements

- Past non-EV demand

players: j ∈ {1, . . . ,M}

cost of j : p(
∑
j

x j + d)>x j

constr: x j ∈ X j

samples: {di}Ni=1

literature: d known in advance [Callaway, Chen, Grammatico, Hiskens, Ma, . . . ]

Q: What guarantees can we provide the users without this assumption?
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Numerical experiments
Charging profile coordinated to a sampled-robust NE  prob. guarantees

. How “likely” are users to pay more than “expected”? Little

. How “likely” are user to deviate from agreed charging? Little
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