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Atomic congestion games

- Set of resources R

- Resource costs `r (·)

- Set of players {1, . . . ,N}

- Player i feasible set Ai ⊆ 2R

- Player i cost Ci (a) =
∑

r∈ai `r (|a|r )

System cost: SC(a) =
∑

i
Ci (a)

Applications: routing, sensor allocation, scheduling, minimum power, . . .
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Hardness of approximation – related work

MinSC : min
a∈A

SC(a)

* MinSC is NP-hard [Meyers/Schulz, Networks’12]

* MinSC is NP-hard if latencies are linear [Castiglioni/Celli/Marchesi/Gatti, ArXiv’20]

* If latencies are polynomial of degree ≤ d , then MinSC is NP-hard to
approx within a factor (βd) d

2 , for some β > 0 [Roughgarden, FOCS’12]

Take-away: so far no tight computational lower bound
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Hardness of approximation – main result

Theorem: In congestion games with resource costs identical to b(·)

,
MinSC is NP-hard to approximate within any factor smaller than

ρb = sup
x∈N

EP∼Poi(x)[Pb(P)]
xb(x)

Extension to resource costs produced by non-negative combinations of
functions b1, . . . , bm obtained replacing ρb with maxj ρbj

Corollary: In polynomial congestion games of max degree d

max
j
ρbj = (d + 1)’st Bell number

For example d = 1 corresponds to B(d + 1) = 2
d = 2 corresponds to B(d + 1) = 5

...
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Proof Ideas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM’98; Dudyciz/Manurangsi/Marcinkowski/Sornat IJCAI’20]

- bi-partite graph

- palette of colors

- set of constraints

Partitioning system generalizes [Feige, JACM’98], used in [Barman/Fawzi/Fermé, STACS’21]

- resources R, cost b(·)

- subsets Pi ,j ⊆ R

- SC(row), SC(scr) satisfy
SC(scr)
SC(row) ≈ ρb
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- resources R, cost b(·)

- subsets Pi ,j ⊆ R

- SC(row), SC(scr) satisfy
SC(scr)
SC(row) ≈ ρb

7



Proof Ideas
Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM’98; Dudyciz/Manurangsi/Marcinkowski/Sornat IJCAI’20]

- bi-partite graph

- palette of colors

- set of constraints

Partitioning system generalizes [Feige, JACM’98], used in [Barman/Fawzi/Fermé, STACS’21]
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Poly-time algorithm based on taxes

Background:
– price of anarchy measures equilibrium quality, e.g., SC(aNE)/SC(aOPT)

[Koutsoupias/Papadimitriou STACS’99; Christodoulou/Koutsoupias STOC’05;
Aland/Dumrauf/Gairing/Monien/Schoppmann, STACS’06; Roughgarden JACM’15]

– efficient computation of CE/CCE
[Papadimitriou/Roughgarden, JACM’08; Xin Jiang/Leyton-Brown, GEB’15;
Hart/Mas-Colell, Econometrica’00; Blum/Hajiaghayi/Ligett/Roth, STOC’08]

Price of anarchy as approximation ratio
 Q: How to improve PoA?

* coordination mechanisms: [Christodolou/Koutsoupias/Nanavati, ICALP’04 . . . ]
* Stackelberg strategies: [Fotakis, ESA’04; Swamy, SODA’07 . . . ]
* information provision: [Bhaskar/Cheng/Kun Ko/Swamy, EC’16; Nachbar/Xu ArXiv’20 . . . ]
* cost sharing: [Gkatzelis/Kollias/Roughgarden, WINE’14; Chen/Roughgarden/Valiant, J Comput’10 . . . ]
* taxes: [Caragiannis/Kaklamanis/Kannellopoulos, Trans Alg’10; Bilò/Vinci, EC’16 . . . ]
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Polynomial time algorithms – related work

* Best-known approx (LP + rounding) [Makarychev/Sviridenko, JACM’18]

sup
x∈R>0

EP∼Poi(1)[(xP)b(xP)]
xb(x) ≥ NP-hardness factor

* For polynomial costs, taxes achieve PoA = B(d + 1)
[Caragiannis/Kaklamanis/Kannellopoulos, Trans Alg’10; Bilò/Vinci, EC’16]

Take-away: so far no matching approx in general
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Matching polynomial time algorithm – main result

Theorem: Consider congestion games where all resource costs are equal
to b(·), positive, non-decreasing, semi-convex. For any ε > 0, it is
possible to efficiently compute a taxation mechanism so that

PoACCE ≤ ρb + ε

Extends to resource costs obtained by non-negative combo of b1, . . . , bm

Corollary: For any ε > 0, there exists a polynomial time algorithm
producing an allocation a∗ with cost

SC(a∗) ≤ (max
j
ρbj + ε) · OPT
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Matching polynomial time algorithm - Proof Ideas

SC(a) =
∑
r∈a
|a|r b(|a|r ) SCP(a) =

∑
r∈a

EP∼Poi(|a|r )[Pb(P)]

b(x) b̄(x ; |v̄ |r )→

Key ingredients:

P1: b̄(x ; v) solves crucial recursion
P2: v̄ solves continuous relaxation of min SCP(a)

SC(aNE)
P1
≤ SCP(v̄)

P2
≤ SCP(aOPT)

def ρb
≤ ρbSC(aOPT)
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Conclusion and open questions

Problem: minimum social cost in atomic congestion games
Main result I: tight NP-hardness of approximation
Main result II: taxes achieve matching approximation

=⇒ first poly algo optimal approx

Remarks:
* Competitive decision making + incentives = best-centralized
* Surprising that “taxes are enough”

* Poly-time algo requires centralized solution of cvx opt

If undesirable  optimal local tax [Paccagnan/Chandan/Ferguson/Marden, TEAC’21]

very little performance loss, e.g., 2.012 vs 2 for affine

* Main result II extends to network CG
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“Judiciously designed taxes achieve optimal
approximation, and no other tractable

intervention can improve upon this result”
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