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=

Judiciously designed taxes achieve optimal approx,
and no other tractable intervention can improve
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Atomic congestion games

- Set of resources R

- Resource costs ¢,(+)

- Set of players {1,..., N}

- Player i feasible set A; C 2%

SC = 11(1) 4 £a(1) + 205(2) + La(1
- Player i cost Cj(a) =X, ¢-(lalr) (1) + £2(1) +265(2) + €a(1)

System cost: SC(a) = Z Ci(a)

Applications: routing, sensor allocation, scheduling, minimum power, ...
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* MinSC is NP-hard [Meyers/Schulz, Networks'12]

* MinSC is NP-hard if latencies are linear [Castiglioni/Celli/Marchesi/Gatti, ArXiv'20]

* If latencies are polynomial of degree < d, then MinSC is NP-hard to
d
approx within a factor (8d)2, for some 8 > 0 [Roughgarden, FOCS'12]

Take-away: so far no tight computational lower bound
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Theorem: In congestion games with resource costs identical to b(-),
MinSC is NP-hard to approximate within any factor smaller than

Ds = sUp Ep~ poi(x)[PE(P)]
xeN Xb(X)

Extension to resource costs produced by non-negative combinations of
functions by, ..., by obtained replacing pp with max; pp,

Corollary: In polynomial congestion games of max degree d

max pp; = (d 4+ 1)'st Bell number

For example d = 1 corresponds to B(d + 1) =2
d = 2 corresponds to B(d +1) =5



Proof ldeas



Proof Ideas
Reduction from Gap-label-cover to CG using partitioning system



Proof ldeas
Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat 1JCAI'20]

- bi-partite graph



Proof ldeas
Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat 1JCAI'20]

- bi-partite graph te.0}

- palette of colors



Proof ldeas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat 1JCAI'20]

- bi-partite graph te.0}

vig

- palette of colors

ROt

- set of constraints



Proof ldeas
Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat 1JCAI'20]
N {eo@}
- bi-partite graph
- palette of colors 2

- set of constraints &



Proof ldeas
Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat 1JCAI'20]

(X )
- bi-partite graph te.0}
- palette of colors 2
- set of constraints 2

Partitioning system generalizes [Feige, JACM'98], used in [Barman/Fawzi/Fermé, STACS'21]

- resources R, cost b(+)



Proof ldeas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat 1JCAI'20]

(X )
- bi-partite graph te.0}
- palette of colors 2
- set of constraints 2

Partitioning system generalizes [Feige, JACM'98], used in [Barman/Fawzi/Fermé, STACS'21]

1 2
- resources R, cost b(+)
- subsets P;; C R




Proof ldeas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat 1JCAI'20]

(X )
- bi-partite graph te.0}
- palette of colors 2
- set of constraints 2

Partitioning system generalizes [Feige, JACM'98], used in [Barman/Fawzi/Fermé, STACS'21]

1 2 - h
- resources R, cost b(+)
- subsets P;; C R

- 5C(row) Lo :




Proof ldeas
Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat 1JCAI'20]

(X )
- bi-partite graph te.0}
- palette of colors 2
- set of constraints 2

Partitioning system generalizes [Feige, JACM'98], used in [Barman/Fawzi/Fermé, STACS'21]

1 2 - h
- resources R, cost b(+)

zh
- subsets P;; C R S I2E

- 5C(row), SC(scr) P :




Proof ldeas
Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat 1JCAI'20]

(X )
- bi-partite graph te.0}
- palette of colors 2
- set of constraints 2

Partitioning system generalizes [Feige, JACM'98], used in [Barman/Fawzi/Fermé, STACS'21]

1 2 - h
- resources R, cost b(-)
bsets P;; C R =
- subsets Fjj & .
- 5C(row), SC(scr) satisfy s :
SC(scr) . Ppa| [Ppe
SC(row) ~~ Pb .
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* Best-known approx (LP + rounding) [Makarychev/Sviridenko, JACM'18]

Ep~poi(1) [(xP)b(xP)]
xeRos xb(x)

> NP-hardness factor

* For polynomial costs, taxes achieve PoA = B(d + 1)
[Caragiannis/Kaklamanis/Kannellopoulos, Trans Alg'10; Bilo/Vinci, EC'16]

Take-away: so far no matching approx in general
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Theorem: Consider congestion games where all resource costs are equal
to b(-), positive, non-decreasing, semi-convex. For any ¢ > 0, it is
possible to efficiently compute a taxation mechanism so that

PoAcce < pp +¢

Extends to resource costs obtained by non-negative combo of by, ..., by,

Corollary: For any € > 0, there exists a polynomial time algorithm
producing an allocation a* with cost

SC(a") < (maxpp, +¢)- OPT
J
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Matching polynomial time algorithm - Proof |deas

= _lalrb(lal))  SCp(a) = D Epmpoia))[PH(P)]

rea rea

b(x) —> b(x;|v

Key ingredients:

P1: b(x; v) solves crucial recursion
P2: v solves continuous relaxation of min SCp(a)

Sc(aV )< SCp(V) < SCp(a OPT) < ppSC(a°FT)
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Problem: minimum social cost in atomic congestion games
Main result I: tight NP-hardness of approximation

Main result 1l: taxes achieve matching approximation
= first poly algo optimal approx

Remarks:

* Competitive decision making + incentives = best-centralized

* Surprising that “taxes are enough”

*

Poly-time algo requires centralized solution of cvx opt
If undesirable ~~ optlmal local tax [Paccagnan/Chandan/Ferguson/Marden, TEAC'21]
very little performance loss, e.g., 2.012 vs 2 for affine

Main result Il extends to network CG



“Judiciously designed taxes achieve optimal
approximation, and no other tractable
intervention can improve upon this result”



