Generalized coverage problems:
approximation through game design

Dario Paccagnan

Joint work with J. R. Marden (UCSB)

ETHziirich UCLSB

Combinatorial resource allocation

> a set of resources

OO

O O

Combinatorial resource allocation

> a set of resources

> a set of agents

Combinatorial resource allocation

> a set of resources O ﬁ
@)

> a set of agents
roe

Goal: assign resources to agents to maximize a given welfare function

Combinatorial resource allocation

b

> a set of resources O /J?
O] o

> a set of agents @)
e @7

Goal: assign resources to agents to maximize a given welfare function

Q

Yo
e

T-o

Generalized Multiagent Maximum Coverage (GMMC)

Generalized Multiagent Maximum Coverage (GMMC)

®® @
ONO

resources: reR, v, >0

Generalized Multiagent Maximum Coverage (GMMC)

resources: reR, v, >0

agents: ie{l,...,n; ?Qi/ @ @ @

Generalized Multiagent Maximum Coverage (GMMC)

resources: reR, v, >0

agents: i€ {l,...,n} @\I@,\\@l

T

. |
allocations: a; € A; C 2% @/\\ ‘

Generalized Multiagent Maximum Coverage (GMMC)

resources: reR, v, >0

agents: i€ {l,...,n} @\. ,\\@l

T

. |
allocations: a; € A; C 2% @/\\ ‘

welfare: W(a) = Z vew,(lalr) w, : N — R>p

reU;ja;

Generalized Multiagent Maximum Coverage (GMMC)

resources: reR, v, >0

agents: ie{l,...,n; %/ @ . @

allocations: a; € A; C 2%

welfare: W(a) = Z vew,(lalr) w, : N — Rzo

reU;ja;

Generalized Multiagent Maximum Coverage (GMMC)

resources: reR, v, >0

agents: i€ {l,...,n} %/ ’:@_.
() |

\\
®
\
. R |
allocations: aj € A; C 2 ,
N 24

welfare: W(a) = Z vew,(lalr) w, : N — R>p

reU;ja;

System-level objective: max,c4 W(a)

Generalized Multiagent Maximum Coverage (GMMC)

resources: reR, v, >0

agents: ie{l,...,n; %/ @ . @

allocations: a; € A; C 2%

/

welfare: W(a) = Z vew,(lalr) w, : N — Rzo

reU;ja;

System-level objective: max,c4 W(a)

> no constraints on w,(j) Wr(J

Generalized Multiagent Maximum Coverage (GMMC)

resources: reR, v, >0

'/ /‘§§
. [
agents: i€ {l,...,n} \@ A2 @
~ - _l,’
. R \ ‘|
allocations: a; € A; C 2 @ . :
N 24

welfare: W(a) = Z vew,(lalr) w, : N — R>p

reU;ja;

‘System-level objective: max,c4 W(a) ‘

~—

> no constraints on w,(j) wr(U
typically concave

HNWROT
x
x
x

Generalized Multiagent Maximum Coverage (GMMC)

resources: reR, v, >0

'/ /‘§§
. [
agents: i€ {l,...,n} \@ A2 @
~ - _l,’
. R \ ‘|
allocations: a; € A; C 2 @ . :
N 24

welfare: W(a) = Z vew,(lalr) w, : N — R>p

reU;ja;

‘System-level objective: max,c4 W(a) ‘

> no constraints on w;(j) wr(j)
typically concave 2

> to ease the presentation % Lo
w,(j) = w(j) 1 -

Connection with Coverage problems

Connection with Coverage problems

GMMC problem

Connection with Coverage problems

GMMC problem
- set of weighted resources: R

Connection with Coverage problems

GMMC problem
- set of weighted resources: R

- n collections of sets: {A;}7_; C 2%

Connection with Coverage problems

GMMC problem

- set of weighted resources: R

- n collections of sets: {A;}7_; C 2%
- choose one set per collection to max

W(a) = Z vew(lalr)

reUija;

Connection with Coverage problems

GMMC problem

- set of weighted resources: R

- n collections of sets: {A;}7_; C 2%
- choose one set per collection to max

W(a) = Z vew(alr)

reUija;

Max-n-cover

Connection with Coverage problems

GMMC problem

- set of weighted resources: R

- n collections of sets: {A;}7_; C 2%
- choose one set per collection to max

W(a) = Z vew(alr)

reUija;

Max-n-cover
- set of weighted resources: R

Connection with Coverage problems

GMMC problem Max-n-cover

- set of weighted resources: R - set of weighted resources: R

- n collections of sets: {A;}7_; C 27| |- one collection of sets: A C 27
- choose one set per collection to max

W(a) = Z vew(|alr)

reUija;

Connection with Coverage problems

GMMC problem

- set of weighted resources: R

- n collections of sets: {A;}7_; C 2%
- choose one set per collection to max

> viw(lalr)

reUija;

W(a) =

Max-n-cover

- set of weighted resources: R

- one collection of sets: A C 2

- choose n sets from collection to max

Connection with Coverage problems

GMMC problem

- set of weighted resources: R

- n collections of sets: {A;}7_; C 2%
- choose one set per collection to max

> viw(lalr)

reUija;

W(a) =

Max-n-cover

- set of weighted resources: R

- one collection of sets: A C 2

- choose n sets from collection to max

> GMMC subsumes max-n-cover (set w(j) =1, A; = A; for all i)

Connection with Coverage problems

GMMC problem

- set of weighted resources: R

- n collections of sets: {A;}7_; C 2%
- choose one set per collection to max

Z vew(lalr)

reUija;

W(a) =

Max-n-cover

- set of weighted resources: R

- one collection of sets: A C 2

- choose n sets from collection to max

Zw

reyU;a;

W(a) =

> GMMC subsumes max-n-cover (set w(j) =1, A; = A; for all i)

> GMMC subsumes [Che04],[Gair09]

(set w(j) =1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09

Facts: hardness and approximability

Facts: hardness and approximability

max-n-cover problem:

Facts: hardness and approximability

max-n-cover problem:

> NP-hard

Facts: hardness and approximability

max-n-cover problem:
> N'P-hard
> N'P-hard to approximate within any ratio better than 1 —1/e

Facts: hardness and approximability

max-n-cover problem:
> N'P-hard
> N'P-hard to approximate within any ratio better than 1 —1/e
> Poly-algorithms achieve 1 — 1/e

Facts: hardness and approximability

max-n-cover problem:
> N'P-hard
> N'P-hard to approximate within any ratio better than 1 —1/e
> Poly-algorithms achieve 1 — 1/e

GMMC problem:

Facts: hardness and approximability

max-n-cover problem:
> N'P-hard
> N'P-hard to approximate within any ratio better than 1 —1/e
> Poly-algorithms achieve 1 — 1/e

GMMC problem:
> N'P-hard

Facts: hardness and approximability
max-n-cover problem:
> N'P-hard
> N'P-hard to approximate within any ratio better than 1 —1/e
> Poly-algorithms achieve 1 — 1/e

GMMC problem:
> N'P-hard

> If w is concave and A; = A;, best poly-algorithm achieves 1 — c/e
and is centralized, c =1 — (w(n) — w(n — 1))

[Svirl7] M. Sviridenko, J. Vondrdk, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

Facts: hardness and approximability

max-n-cover problem:
> N'P-hard
> N'P-hard to approximate within any ratio better than 1 —1/e
> Poly-algorithms achieve 1 — 1/e

GMMC problem:
> N'P-hard

> If w is concave and A; = A;, best poly-algorithm achieves 1 — c/e
and is centralized, c =1 — (w(n) — w(n — 1))

Issues:

[Svirl7] M. Sviridenko, J. Vondrdk, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

Facts: hardness and approximability
max-n-cover problem:
> N'P-hard
> N'P-hard to approximate within any ratio better than 1 —1/e
> Poly-algorithms achieve 1 — 1/e

GMMC problem:
> N'P-hard

> If w is concave and A; = A;, best poly-algorithm achieves 1 — c/e
and is centralized, ¢ =1 — (w(n) — w(n — 1))

Issues:
- distributedness?

[Svirl7] M. Sviridenko, J. Vondrdk, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

Facts: hardness and approximability
max-n-cover problem:
> N'P-hard
> N'P-hard to approximate within any ratio better than 1 —1/e
> Poly-algorithms achieve 1 — 1/e

GMMC problem:
> NP-hard

> If w is concave and A; = A;, best poly-algorithm achieves 1 — c/e
and is centralized, c =1 — (w(n) — w(n — 1))

Issues:
- distributedness?
- best possible approximation?

[Svirl7] M. Sviridenko, J. Vondrdk, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

Facts: hardness and approximability
max-n-cover problem:
> N'P-hard
> N'P-hard to approximate within any ratio better than 1 —1/e
> Poly-algorithms achieve 1 — 1/e

GMMC problem:
> NP-hard

> If wis concave and A; = A;, best poly-algorithm achieves 1 — c/e
and is centralized, c =1 — (w(n) — w(n — 1))

Issues:
- distributedness?
- best possible approximation? A; # A;, w not concave?

[Svirl7] M. Sviridenko, J. Vondrdk, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

Main result

Main result

Game theory can be used to produce algorithms that are:

Main result

Game theory can be used to produce algorithms that are:
distributed

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match /improve existing approximations

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match /improve existing approximations

Example: - # agents < 40
- w(j) = j9, d varies in [0,1]

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match /improve existing approximations

Example: - # agents < 40

- w(j) = j9, d varies in [0,1]

w(j) = j9, 40 agents

1
09|
0.8
0.7
0.6 |-
0.5

approx.

d

| | | |
0 02 04 06 08 1

Main result

Game theory can be used to produce algorithms that are:

distributed, efficient, match /improve existing approximations

Example: - # agents < 40

- w(j) = j9, d varies in [0,1]

w(j) = j9, 40 agents

1
09|
0.8
0.7
0.6 |-
0.5

approx.

d

| | | |
0 02 04 06 08 1

—1—c/e

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match /improve existing approximations

Example: - # agents < 40

- w(j) = j9, d varies in [0,1]

w(j) = j9, 40 agents

1
09|
0.8
0.7
0.6 |-
0.5

approx.

d

| | | |
0 02 04 06 08 1

—— GT-approach
— 1—c¢/e

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match /improve existing approximations

Example: - # agents < 40
- w(j) = j9, d varies in [0,1]

w(j) = j9, 40 agents

1 T T T T

—— GT-approach
0.9 PP

— 1—c¢/e

0.8
0.7

0.6
AN max-n-cover

05 | | | |
0 02 04 06 08 1

d

approx.

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match /improve existing approximations

Example: - # agents < 40
- w(j) = j9, d varies in [0,1]

w(j) = j9, 40 agents

1 T T T T

—— GT-approach
0.9 PP

— 1—c¢/e

0.8
0.7
777777777777777 11

0.6
AN max-n-cover

05 | | | |
0 02 04 06 08 1

d

approx.

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match /improve existing approximations

Example: - # agents < 40
- w(j) = j9, d varies in [0,1]

. w(j) = j9, 40 agents
T T T T

0.9 a
0.8 A

0.7 ~
777777777777777 11
0.6 ™ max-n-cover | €
0‘5 | | | |
0 02 04 06 08 1
d

—— GT-approach
— 1l-—c/e

approx.

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part |: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Outline

2. Game-design approach

3. Characterizing the price of anarchy

4. Optimizing the price of anarchy

5. Conclusions and Outlook

The game-theoretic approach

The game-theoretic approach

max W(a)
> Distributed algorithm
> Good approximation

> Polytime

The game-theoretic approach

Game design

max W(a)
> Distributed algorithm
> Good approximation

> Polytime

The game-theoretic approach

Game design

max W(a)
> Distributed algorithm

> Good approximation

> Polytime

The game-theoretic approach

Game design

Design a game

(agents, constraints, utilities)
max W(a)

> Distributed algorithm

> Good approximation

> Polytime

The game-theoretic approach

Game design

Design a game

(agents, constraints, utilities)
max W(a)

> Distributed algorithm

> Good approximation

> Polytime

utilities
—_— —

The game-theoretic approach

Game design

Design a game

(agents, constraints, utilities)
max W(a)

> Distributed algorithm

> Good approximation

> Polytime

utilities
— > game —>

The game-theoretic approach

Game design

Design a game

(agents, constraints, utilities)
max W(a)

> Distributed algorithm

> Good approximation

> Polytime

utilities equilibria
— > game —>

The game-theoretic approach

Game design

Design a game
(agents, constraints, utilities)

max W/(a) Requirement:
> Distributed algorithm equilibria have high welfare

> Good approximation

> Polytime

utilities equilibria
— > game —>

The game-theoretic approach

max W(a)
> Distributed algorithm
> Good approximation

> Polytime

Game design

Design a game
(agents, constraints, utilities)

Requirement:
equilibria have high welfare

Use existing algorithms to
find an equilibrium

utilities equilibria
— > game —>

The game-theoretic approach

max W(a)
> Distributed algorithm
> Good approximation

> Polytime

Game design

Design a game
(agents, constraints, utilities)

Requirement:
equilibria have high welfare

Use existing algorithms to
find an equilibrium

utilities equilibria
— > game —>

Utility design and approximation ratio

ui(ai,a—;)

Utility design and approximation ratio

uiai,ai) =Y vew(lal,)f(al,) N R.o (distributed)

rea;

Utility design and approximation ratio

uiai,ai) =Y vew(lal,)f(al,) N R.o (distributed)

rea;

How to design 7

Utility design and approximation ratio

uiai,ai) =Y vew(lal,)f(al,) N R.o (distributed)

rea;

How to design f7 Maximize worst-case performance

Utility design and approximation ratio

uiai,ai) =Y vew(lal,)f(al,) N R.o (distributed)

rea;

How to design f7 Maximize worst-case performance

Given instance I, fix f

Utility design and approximation ratio

uiai,ai) =Y vew(lal,)f(al,) N R.o (distributed)

rea;

How to design f7 Maximize worst-case performance

Given instance I, fix f — game G¢ = {I,f}

Utility design and approximation ratio

uiai,ai) =Y vew(lal,)f(al,) N R.o (distributed)

rea;

How to design f7 Maximize worst-case performance

Given instance I, fix f — game G¢ = {I,f} — NE(Gy)

Utility design and approximation ratio

uiai,ai) =Y vew(lal,)f(al,) N R.o (distributed)

rea;

How to design f7 Maximize worst-case performance

Given instance I, fix f — game G¢ = {I,f} — NE(Gy)

min,ene(G,) W(a) -1

PoA(f) = W(aon) <

Utility design and approximation ratio

uiai,ai) =Y vew(lal,)f(al,) N R.o (distributed)

rea;

How to design f7 Maximize worst-case performance

Given instance I, fix f — game G¢ = {I,f} — NE(Gy)

i w
PoA(f)= inf MmeeNean W(@)
Gy : #agents <n W(aopt)

Utility design and approximation ratio

uiai,ai) =Y vew(lal,)f(al,) N R.o (distributed)

rea;

How to design f7 Maximize worst-case performance

Given instance I, fix f — game G¢ = {I,f} — NE(Gy)

i w
PoA(f)= inf MmeeNean W(@)
Gy : #agents <n W(aopt)

‘ PoA(f) is the approx. ratio of any equilibrium-computing algorithm

Utility design reduces to

/ Given f, characterize or bound PoA(f)
Utility design reduces to

Given f, characterize or bound PoA(f)

Utility design reduces to

Find f with highest PoA(f)

Given f, characterize or bound PoA(f)|

Utility design reduces to

Find f with highest PoA(f)

Characterizing the price of anarchy

Characterizing the price of anarchy

min, Wi(a
The quantity we wish to compute: PoA(f) = Gmfg < ene(e) W)>
€

W (aopt)

Characterizing the price of anarchy

<minaeNE(G) W(a))

The quantity we wish to compute: PoA(f) = Gim‘ W (20pe)
opt

- well studied in game theory

Characterizing the price of anarchy

. . . minaene(c) W(a)
The quantity we wish to compute: PoA(f) = inf < a<
- well studied in game theory

- difficult to compute

Characterizing the price of anarchy

. . . [minaenE(G) W(a)>
The quantity we wish to compute: PoA(f) = inf 2<

quantity > ()=t T

- well studied in game theory

- difficult to compute

- bounds are available in special cases

Characterizing the price of anarchy

min, Wi(a
The quantity we wish to compute: PoA(f) = Ginf < ene(e) W)>

W (aopt)

well studied in game theory

difficult to compute

bounds are available in special cases

bounds do not explicitly depend on f

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = Ginf

()

well studied in game theory

difficult to compute

bounds are available in special cases

bounds do not explicitly depend on f

smoothness not applicable

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = Ginf

()

well studied in game theory

difficult to compute

bounds are available in special cases

bounds do not explicitly depend on f

smoothness not applicable

tightness?

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf <mma€NE(G) W(a))
G W (aopt)

- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf <mma€NE(G) W(a))
G W (aopt)

- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n?) constraints

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf <mma€NE(G) W(a))
G W (aopt)

- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n?) constraints

> LP involves all the components w(j) and f(j)

Proof Sketch - Part 1/4

‘Idea: transform the definition of PoA itself into a LP

Proof Sketch - Part 1/4

‘Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

Proof Sketch - Part 1/4

‘ldea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations

Proof Sketch - Part 1/4

‘ldea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to A; = {e;, o;} with e; the worst NE

Proof Sketch - Part 1/4

‘ldea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to A; = {e;, o;} with e; the worst NE

<mina€NE(G) W(3)>

maxae4 W(a)

PoA(f) = inf
S

Proof Sketch - Part 1/4

‘ldea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to A; = {e;, o;} with e; the worst NE

(=)

PoA(f) = inf_
Geg

Proof Sketch - Part 1/4

‘ldea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to A; = {e;, o;} with e; the worst NE

Poa(9) = it (77(5)

Proof Sketch - Part 1/4

‘Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to A; = {e;, o;} with e; the worst NE

= in Wie) s ui(e ui(oj, e_;]
PoA(f) = GJg”(W(O)) t. ui(e) > ui(oj,e—i) V

Proof Sketch - Part 1/4

‘Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to A; = {e;, o;} with e; the worst NE

= in Wie) s ui(e ui(oj, e_;]
PoA(f) = GJg”(W(O)) t. ui(e) > ui(oj,e—i) V

2. Relax the previous program

P () = i

s.t. Z ui(e) > Z ui(oi, e_;)

i i

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;j(a) on A

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;j(a) on A

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

Variables 0 allow to compute
W (a), ui(a) in all allocations

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

Variables 0 allow to compute
W (a), ui(a) in all allocations,
e.g.

W(e1, e2)

= (0 + 02+ +02 +02)w(1)

1 (B + 69 + 02+ 629)w(1)

+ (Oere, + Oge, + 022, + 0212)w(2)

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), uj(a) on A

Variables 0 allow to compute
W (a), ui(a) in all allocations,
e.g.

W (e, e2)

= (0 + 02+ +02 +02)w(1)

+ (0, + 02 + g2 + 02)w (1)

+ (Oere, + 02le, + 08, + 0812)W(2)

u(er, &)
= (0 + 02 +02 +02)w(1)f(1)
+ (Oeye, + Oge, + Orc2 + 022,)W(2)f(2)

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W(a), u;(a) on A

Variables 0 allow to compute

W (a), ui(a) in all allocations,

e.g.

W (e1, e2)

= (0 + 02+ +02 +02)w(1)
+ (0, + 02 + g2 + 02)w (1)

+ (Oere, + Oge, + 022, + 0212)w(2)

ui(er, €)
= (0o + 0 + 62 + 621 w(1) (1)

+ (Oeye, + Oge, + Orc2 + 022,)W(2)f(2)

Issue: #weights is exponential!

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(0), > . uj(e) — uj(0;, e_;)
— define 6(a, x,b) € R>g for 1 <a+x+b<n,a,x,be{l,...,n}

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(0), > . uj(e) — uj(0;, e_;)
— define 6(a, x,b) € R>g for 1 <a+x+b<n,a,x,be{l,...,n}

W(e) - Z 1{3+X21} W(a + X)0(37 X, b)

a,x,b

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(0), > . uj(e) — uj(0;, e_;)
— define 6(a, x,b) € R>g for 1 <a+x+b<n,a,x,be{l,...,n}

W(e) - Z 1{3+X21} W(a + X)0(37 X, b)

a,x,b

W(O) = Z 1{b+x21} W(b + X)9(37X7 b)

a,x,b

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(0), > . uj(e) — uj(0;, e_;)
— define 6(a, x,b) € R>g for 1 <a+x+b<n,a,x,be{l,...,n}

W(e) - Z 1{3+X21} W(a + X)0(37 X, b)

a,x,b
W(0) = Lipixz1yw(b + x)0(a, x, b)
a,x,b

equil. = > [af (a+x)w(a+x)—bf (a+x-+1)w(a+x+1)]0(a, x, b)

a,x,b

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(0), > . uj(e) — uj(0;, e_;)
— define 6(a, x,b) € R>g for 1 <a+x+b<n,a,x,be{l,...,n}

W(e) - Z 1{3+X21} W(a + X)0(37 X, b)

a,x,b

W(0) = Lipixz1yw(b + x)0(a, x, b)
a,x,b

equil. = > [af (a+x)w(a+x)—bf (a+x-+1)w(a+x+1)]0(a, x, b)
a,x,b

The program becomes

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(0), > . uj(e) — uj(0;, e_;)
— define f(a, x,b) € Rsg for 1 <a+x+b<n,a,x,be{l,...,n}

Wi(e) = Z 1{a+x21} w(a+ x)0(a, x, b)

a,x,b

W(0) = Lipixz1yw(b + x)0(a, x, b)
a,x,b

equil. = > [af (a+x)w(a+x)—bf (a+x-+1)w(a+x+1)]6(a, x, b)
a,x,b

w
The program becomes PoA(f) :9(in£)>0 WEZ;

s.t. Z u,-(e) — u;(o,-, e_,~) >0

i

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(0), > . uj(e) — uj(0;, e_;)
— define f(a, x,b) € Rsg for 1 <a+x+b<n,a,x,be{l,...,n}

Wi(e) = Z 1{a+x21} w(a+ x)0(a, x, b)

a,x,b

W(0) = Lipixz1yw(b + x)0(a, x, b)
a,x,b

equil. = > [af (a+x)w(a+x)—bf (a+x-+1)w(a+x+1)]6(a, x, b)
a,x,b

1
The program becomes PoA(f) :9(inlf)>Om

s.t. Z u,-(e) — u;(o,-, e_,~) >0

W(e)=1

Proof Sketch - Part 4/4: Primal LP

1
W

PoA(f) =

W* — e(supb) Z Lpix>1yw(b + x)0(a, x, b)
a,x,

a,x,b
s.t.z [af (a+x)w(a+x)—bf(a+x+1)w(a+x+1)]6(a, x, b) >0
a,x,b
Y Lanenw(a+x)8(a,x,b) =1
a,x,b

0(a,x,b) >0 V(a,x,b)eT.

Dual LP

Dual LP

W* = inf L
AERZ(), S

st Liprxonyw(b+x) — plaixsnyw(at+x)+
+A[af (a+x)w(a+x) — bf(a+x+1)w(a+x+1)] <0
V(a,x,b) €T

Dual LP

W* = inf L
AERZ(), S

st Liprxonyw(b+x) — plaixsnyw(at+x)+
+A[af (a+x)w(a+x) — bf(a+x+1)w(a+x+1)] <0
V(a, x, b) € 0T

Dual LP

W*= inf 1
AERZ(), S

st Liprxonyw(b+x) — plaixsnyw(at+x)+
+A[af (a+x)w(a+x) — bf(a+x+1)w(a+x+1)] <0
V(a, x, b) € 01

> 2 decision variables, O(n?) constraints

Dual LP

W*= inf 1
AERZ(), S

st Liprxonyw(b+x) — plaixsnyw(at+x)+
+A[af (a+x)w(a+x) — bf(a+x+1)w(a+x+1)] <0
V(a, x, b) € 01

> 2 decision variables, O(n?) constraints

> observe the special structure i.e. miny , u subject to > ...

Dual LP

W*= inf 1
AERZ(), S

st Liprxonyw(b+x) — plaixsnyw(at+x)+
+A[af (a+x)w(a+x) — bf(a+x+1)w(a+x+1)] <0
V(a, x, b) € 01

> 2 decision variables, O(n?) constraints

> observe the special structure i.e. miny , u subject to > ...
> gives PoA for e.g., fov(j) = 1/, fmc(j) =1 — w(j — 1)/w())

PoA: connection with existing literature

Covering Games: Approximation through
Non-Cooperation *

Martin Gairing

Department of Computer Science, University of Liverpool, UK.
ringolivarpool.ac.uk

atrat, Wo proposs approsimtionalgrihms nder e hercic
considerations. W indroduce and study the general covering problem

weight of their union is as large as possible. In our game-theoretic sct-
ting, the choice in each collection is made by an independent player.
For covering an clement, the players receive a payofl defined by a non-
increasing utility sharing function. This function defines the fraction that
ach ovrng lye eeives r the welgt of e et
construct utlty sharing fnction sich tat every Nash
Bzmn»num ppresimatn the opma setion b a ator f 1 - . We

e Tocal search
orithan whose approsimation o s bt posible

PoA: connection

with existing literature

Covering Games: Approximation through
Non-Cooperation *

Martin Gairing

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014

Generalized Efficiency Bounds in
Distributed Resource Allocation

Jason R. Marden and Tim Roughgarden

v ilbstract—Game theory is emerging 35 popular (ol for dis
these

e hearete ool the interactions of the autonomous seents

in large-scale engineering systems, where a centralized con-
trol approach is undesirable or even infeasible. For example,
a centralized control approach may be impossible for the
allocation problem because of the com-

utilty function to each agent. One promising approach (o utility
design is assigning cach agent a ullty function according o the
e - This y i

‘near-optimal effciency. In this paper, we explore
e m.ummp etwsenthe Shapley valn uly desgn and e

c of both pur
Tated cquillbia: 9 tudy (ks relationship, we Intradoce siple
class of resource allocation problems. Within this class, we derive
an explicit

we derive a bicriteria bound for this class of resource allocation
dath
rium allocation with additional agents.

o the value of an equil

plexity associated with a potentially large number of sensors,
the vastnessuncertainty of the mission space, or potential
stealth requirements that restrict communication capabilitis.
A more desirable control approach is to establish a distributed
control algorithm that allows the sensors to allocate themselves
effcively ove the mission space without e ncedfr lotl
15]. Such an algorithm would eliminate the
need for c:mnhzed communication and introduce an inherent
robustness to icationfuilures, sensor failures, and

a distributed control algorithm comes with its share of chal-
lenges. Is it possible to characterize the global behavior that

PoA: connection with existing literature

Covering Games: Approximation through
Non-Cooperation *

Martin Gairing

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014 s

Generalized Efficiency Bounds in
Distributed Resource Allocation

Jason R. Marden and Tim Roughgarden

Optimal Appr

) for ilar and Super

Optimization with Bounded Curvature

Htps:idoLorg101287imoor 20160842
Copyright 2017 NFORMS

Maxim Sviridenko,* Jan Vondrk,? Justin Warde
#Yahoot Labs, New York, New York 10018; »Stanford University, Stanford, California 94305; ©Ecole Polytechnique Federale de Lausanne,
1015 Lausanne, Switzerland
Contct sirisy o) vy, aaeptl.ch W)
Recevd: Dcerter 30,2014 Abstract. We design new Igorithms for the pr
Revisd: ure 20,2016 modular and bject to.a constraint. Specifical
St 203 e considerthe case in which we i lo maximizea mnctone incresing submodular
Pubisn function o
et cumature <. Intutiely, the pameer ¢ sepresents how nonilnat uncion / when
s o prey € =0 15 incanwhile o ¢ = 1,/ may b an anbirry monotone increasing submod-
S0z, sy S la function, For he case ot bl maximisation with ol curvature ¢, e obtin 1
greedy a\gnnll\m ofof Contort
1984, whicl
— focters oggusteultforanarbitrary matrid coririn,

approach i basd on meifations of the continuous gredy algorithn and
noneblions ol sarch and S e o sppren imatcly maximize he sum

e, monone eriang oo Fnchon st - (posiby sesane) near
function. We show how to reduce both submodular maximization and supermodular
minimizton to s gencral problem when th cbjoctive funcion has bounded tol
cun e that the approimtion resuls we obtain ae he best possbe in
he il cracl el e n e o of oty onsrn

e et an oxension of the ntion o curvatine 10 gonerl monolone set functions
and sbow o (1)spproximation o maximison 2 1/0L-)appreimation o
minimization cases. Finally, we give two concrete applications of our results in the set-
{ings of maximum entropy sampling, and the colum-subset election problem

Given f, characterize or bound PoA(f)

Utility design reduces to

Find f with highest PoA(f)

Given f, characterize or bound PoA(f)

Utility design reduces to

Find f with highest PoA(f)

Optimal price of anarchy

Optimal price of anarchy

Corollary (Optimizing PoA) [Pacl8a], [Pacl8b]

Determining f € R%, maximizing PoA(f) is a tractable linear program

Optimal price of anarchy

Corollary (Optimizing PoA) [Pacl8a], [Pacl8b]

Determining f € R%, maximizing PoA(f) is a tractable linear program

Proof.

Optimal price of anarchy

Corollary (Optimizing PoA) [Pac18a], [Pacl8b]

Determining f € R%, maximizing PoA(f) is a tractable linear program

Proof.

w* = inf m
)\ERZ(),/.LER

st Liponyw(b+x) — pliaenw(a+ x)+
+ ANaf(a+ x)w(a+x) — bf(a+x+1)w(a+x+1)] <0
V(a,x, b) € 0T

Optimal price of anarchy

Corollary (Optimizing PoA) [Pac18a], [Pacl8b]

Determining f € R%, maximizing PoA(f) is a tractable linear program

Proof.

W* = min inf 1
fEﬂ;i'j:O AER >, nER

st Liponyw(b+x) — pliaenw(a+ x)+
+ ANaf(a+ x)w(a+x) — bf(a+x+1)w(a+x+1)] <0
V(a,x, b) € 0T

Optimal price of anarchy

Corollary (Optimizing PoA) [Pac18a], [Pacl8b]

Determining f € R%, maximizing PoA(f) is a tractable linear program

Proof.

W* = min inf 1
fEﬂ;i'j:O AER >, nER

st Liponyw(b+x) — pliaenw(a+ x)+
+ AMaf(a + x)w(a+x) — bf(a+x+ 1)w(a+x+1)] <0
V(a,x, b) € 0T

Back to the main result

Example:

- # agents < 40

Back to the main result

Example:
- # agents < 40
-w(j)=j¢ d=0

S
=W

B e e e
‘

1 2 3 4 5
J

Back to the main result

Example:
- # agents < 40
-w(j)=j¢ d=0

—NwWhOon

0.9

0.8
POA(f;)pt)

0.6 |-

Solution of LP
T T

0.5

0.2

0.4

0.6

0.8

Back to the main result

Example:

- # agents < 40

-w(j) =49, d=0.2

0.9

0.8
POA(f;)pt)

0.6 -

Solution of LP
T T

0.5

0.2

0.4

0.6

0.8

Back to the main result

Example:

- # agents < 40

-w() =49 d=04

0.9

0.8
POA(f;)pt)

0.6 |-

Solution of LP
T T

0.5

0.2

0.4

0.6

0.8

Back to the main result

Example:

- # agents < 40

-w() =49 d=06

0.9

0.8
POA(f;)pt)

0.6 -

0.5

0.2

0.4

0.6

0.8

Back to the main result

Example:

- # agents < 40

-w()=j9 d=08

0.9

0.8
POA(f;)pt)

0.6 -

0.5

0.2

0.4

0.6

0.8

Back to the main result

Example:
- # agents < 40
-w(j)=j4 d=1

1 T

0.9

0.8

POA(ﬁ)pt) x

0.6 .

Back to the main result

Example:
- # agents < 40
-w(j)=j4 d=1

0.9

0.8
POA(f;)pt)

0.6 -

Solution of LP
T T

0.5

0.2

0.4

0.6

0.8

Back to the main result

Example:
- # agents < 40
-w(j)=j4 d=1

0.9

0.8
POA(f;)pt)

0.6 -

Solution of LP
T T

0.5

0.2

0.4

0.6

0.8

Comparison with other distributions, #agents < 20

Comparison with other distributions, #agents < 20

> fsv() =}

Comparison with other distributions, #agents < 20
> fv(i) =7

> fuac() =1 - ng(;)l)

Comparison with other distributions, #agents < 20

> fv(i) =7
> fuac() =1 - Wm%)l)
1 T T
0.9 | |— PoA(fsy) |
— PoA(fuc)
0.8 |—1—c/e 3
0.7 -
0.6 -
0.5 | | | |

0 0.2 0.4 0.6 0.8 1

Conclusions and Outlook

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

The approach: Approximation through game theory

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

The approach: Approximation through game theory
> Computing the exact price of anarchy

> Optimizing the price of anarchy

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

The approach: Approximation through game theory
> Computing the exact price of anarchy

> Optimizing the price of anarchy

The contribution: Distributed algorithms, improved performance

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

The approach: Approximation through game theory
> Computing the exact price of anarchy

> Optimizing the price of anarchy

The contribution: Distributed algorithms, improved performance

Outlook: Extension to
> Coarse correlated equilibria

> More general W

Thank you

people.ee.ethz.ch/~dariop

IENS NF| ETHzurich UCSB

people.ee.ethz.ch/~dariop

Thank you

people.ee.ethz.ch/~dariop

5 NF| ETHzirich UCSB

[Pac18a] D. Paccagnan, R. Chandan and J.R. Marden. “Distributed resource allocation
through utility design - Part |: optimizing the performance certificates via the
price of anarchy”. ArXiv, 2018.

[Pac18b] D. Paccagnan and J.R. Marden. “Distributed resource allocation through utility
design - Part Il: applications to submodular, supermodular and set covering
problems”. ArXiv, 2018.

people.ee.ethz.ch/~dariop

	Introduction
	Game-design approach
	Characterizing the price of anarchy
	Optimizing the price of anarchy
	Conclusions and Outlook

