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> to ease the presentation % Lo
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> GMMC subsumes max-n-cover (set w(j) =1, A; = A; for all i)

> GMMC subsumes [Che04],[Gair09]

(set w(j) =1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09
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[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part |: optimizing the performance certificates via the price of anarchy”, ArXiv 2018
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How to design f7 Maximize worst-case performance

Given instance I, fix f — game G¢ = {I,f} — NE(Gy)

i w
PoA(f)=  inf  MmeeNean W(@)
Gy : #agents <n W(aopt)

‘ PoA(f) is the approx. ratio of any equilibrium-computing algorithm
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The quantity we wish to compute: PoA(f) = inf <mma€NE(G) W(a))
G W (aopt)

- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n?) constraints

> LP involves all the components w(j) and f(j)
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‘Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to A; = {e;, o;} with e; the worst NE

= in Wie) s ui(e ui(oj, e_; ]
PoA(f) = GJg”(W(O)) t. ui(e) > ui(oj,e—i) V

2. Relax the previous program

P () = i

s.t. Z ui(e) > Z ui(oi, e_;)

i i
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Variables 0 allow to compute

W (a), ui(a) in all allocations,

e.g.

W (e1, e2)

= (0 + 02+ +02 +02)w(1)
+ (0, + 02 + g2 + 02 )w (1)

+ (Oere, + Oge, + 022, + 0212 )w(2)

ui(er, €)
= (0o + 0 + 62 + 621 w(1) (1)

+ (Oeye, + Oge, + Orc2 + 022, )W(2)f(2)

Issue: #weights is exponential!
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4. use reduced variables for W(e), W(0), > . uj(e) — uj(0;, e_;)
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4. use reduced variables for W(e), W(0), > . uj(e) — uj(0;, e_;)
— define f(a, x,b) € Rsg for 1 <a+x+b<n,a,x,be{l,...,n}

Wi(e) = Z 1{a+x21} w(a+ x)0(a, x, b)

a,x,b

W(0) = Lipixz1yw(b + x)0(a, x, b)
a,x,b

equil. = > [af (a+x)w(a+x)—bf (a+x-+1)w(a+x+1)]6(a, x, b)
a,x,b

1
The program becomes PoA(f) :9( inlf)>Om

s.t. Z u,-(e) — u;(o,-, e_,~) >0

W(e)=1



Proof Sketch - Part 4/4: Primal LP

1
W

PoA(f) =

W* — e(supb) Z Lpix>1yw(b + x)0(a, x, b)
a,x,

a,x,b
s.t.z [af (a+x)w(a+x)—bf(a+x+1)w(a+x+1)]6(a, x, b) >0
a,x,b
Y Lanenw(a+x)8(a,x,b) =1
a,x,b

0(a,x,b) >0 V(a,x,b)eT.
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Dual LP

W*=  inf 1
AERZ(), S

st Liprxonyw(b+x) — plaixsnyw(at+x)+
+A[af (a+x)w(a+x) — bf(a+x+1)w(a+x+1)] <0
V(a, x, b) € 01

> 2 decision variables, O(n?) constraints

> observe the special structure i.e. miny , u subject to > ...
> gives PoA for e.g., fov(j) = 1/, fmc(j) =1 — w(j — 1)/w())
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v ilbstract—Game theory is emerging 35 popular (ol for dis
these

e hearete ool the interactions of the autonomous  seents

in large-scale engineering systems, where a centralized con-
trol approach is undesirable or even infeasible. For example,
a centralized control approach may be impossible for the
allocation problem because of the com-

utilty function to each agent. One promising approach (o utility
design is assigning cach agent a ullty function according o the
e - This y i

‘near-optimal effciency. In this paper, we explore
e m.ummp etwsenthe Shapley valn uly desgn and e

c of both pur
Tated cquillbia: 9 tudy (ks relationship, we Intradoce  siple
class of resource allocation problems. Within this class, we derive
an explicit

we derive a bicriteria bound for this class of resource allocation
dath
rium allocation with additional agents.

o the value of an equil

plexity associated with a potentially large number of sensors,
the vastnessuncertainty of the mission space, or potential
stealth requirements that restrict communication capabilitis.
A more desirable control approach is to establish a distributed
control algorithm that allows the sensors to allocate themselves
effcively ove the mission space without e ncedfr lotl
15]. Such an algorithm would eliminate the
need for c:mnhzed communication and introduce an inherent
robustness to icationfuilures, sensor failures, and

a distributed control algorithm comes with its share of chal-
lenges. Is it possible to characterize the global behavior that
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The problem: Generalized Multiagent Maximum Coverage

The approach: Approximation through game theory
> Computing the exact price of anarchy

> Optimizing the price of anarchy

The contribution: Distributed algorithms, improved performance

Outlook: Extension to
> Coarse correlated equilibria

> More general W
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