
Generalized coverage problems:
approximation through game design

Dario Paccagnan
Joint work with J. R. Marden (UCSB)

Combinatorial resource allocation

. a set of resources

. a set of agents

Goal: assign resources to agents to maximize a given welfare function

About 548.000.000 results (0,59 seconds)

SponsoredShop for running shoes

Hoka One One -
Speed Goat 2 ...
CHF 99,33
€ 86,03
mrporter.com
By Google

BROOKS
Runningschuh ...
CHF 159,00
intersport.ch
Free shipping
By Google

Hoka One One -
Mach Mesh ...
CHF 99,33
€ 86,03
mrporter.com
By Google

ROA - Oblique
Rippy Mesh- ...
CHF 259,04
€ 224,35
mrporter.com
By Google

Gucci, Platform
sneakers - ...
CHF 840,00
mytheresa.com/...
Free shipping
By Google

Running Shoes - Runner's World
https://www.runnersworld.com/running-shoes/
Black Running Shoes You'll Want to Wear On the Run and Beyond. Black is always in style, and these
kicks combine top-notch performance with street-savvy ...
The Best Running Shoes · The 7 Best Running Shoes ... · Pronation, Explained

More places

Rating Hours

Och Sport
4.1 (44) · Running Store
Bahnhofstrasse 56 · 044 215 21 21
Open ⋅ Closes 7PM

On AG
3.5 (8) · Manufacturer
Pfingstweidstrasse 106 · 044 225 15 55

"Best running company in the world based in Zurich!"

Ochsner Shoes
4.3 (6) · Shoe Shop
Shoes & trainers for adults & children
Stadelhoferstrasse 8 · 044 252 50 77
Open ⋅ Closes 8PM

On | Schweizer Performance Laufschuhe & Bekleidung - On Running
https://www.on-running.com/en-ch/
Test shoes or Performance Running Gear commitment free. Love them ... Your perfect partner in the
world's lightest fully-cushioned shoe for Running Remixed.

Mens Running Shoes & Running Clothing for Men | On
https://www.on-running.com/en-ch/t/mens
Shop On's collection of men's running shoes & running clothes. Made with innovative technology for
unparalleled comfort. Free shipping & returns.

Men's Running Shoes | Running Warehouse
https://www.runningwarehouse.com/mens-running-shoes.html
Find your favorite running shoes at Running Warehouse! Huge selection and top-rated customer
service. Free 2 day shipping & free returns on all orders.

Top Men's Running Shoes | Road Runner Sports
https://www.roadrunnersports.com/rrs/mensshoes/mensshoesrunning/
Welcome to our premium collection of men's running shoes where you can browse through a selection
from the best brands and top styles available on the ...

Running | Clothing, Shoes, Trainers | Accessories, Watches ...
https://www.sportsdirect.com/running
Buy all your running kit including men's and ladies running shoes, clothes and accessories from world
leading brands like Nike and Karrimor. Order today!

616 Best Running Shoes (June 2018) | RunRepeat
https://runrepeat.com/ranking/rankings-of-running-shoes
All 618 running shoes ranked by the best – based on reviews from 2351 experts & runners. The
ultimate list. Updated June 2018!

Men's Running Shoes. Nike.com
https://store.nike.com/us/en_us/pw/mens-running-shoes/7puZ8yzZoi3
Dominate your run and find the right fit for your running style with the latest men's running shoes from
Nike. Enjoy free shipping and returns with NikePlus.

Shoe

Sneakers are shoes primarily designed for sports or other forms of
physical exercise, but which are now also often used for everyday wear.
Wikipedia

Usage: Running

Product type: Shoe

People also search for

Sneakers

View 10+ more

Shoe Boot Footwear Clothing Sandal

Feedback

All Images Maps Shopping News More Settings Tools

running shoes Sign in

running shoes - Google Search https://www.google.com/search?client=firefox-b&ei=YYojW-...

1 of 2 15.06.18, 11:45

2

Combinatorial resource allocation

. a set of resources

. a set of agents

Goal: assign resources to agents to maximize a given welfare function

About 548.000.000 results (0,59 seconds)

SponsoredShop for running shoes

Hoka One One -
Speed Goat 2 ...
CHF 99,33
€ 86,03
mrporter.com
By Google

BROOKS
Runningschuh ...
CHF 159,00
intersport.ch
Free shipping
By Google

Hoka One One -
Mach Mesh ...
CHF 99,33
€ 86,03
mrporter.com
By Google

ROA - Oblique
Rippy Mesh- ...
CHF 259,04
€ 224,35
mrporter.com
By Google

Gucci, Platform
sneakers - ...
CHF 840,00
mytheresa.com/...
Free shipping
By Google

Running Shoes - Runner's World
https://www.runnersworld.com/running-shoes/
Black Running Shoes You'll Want to Wear On the Run and Beyond. Black is always in style, and these
kicks combine top-notch performance with street-savvy ...
The Best Running Shoes · The 7 Best Running Shoes ... · Pronation, Explained

More places

Rating Hours

Och Sport
4.1 (44) · Running Store
Bahnhofstrasse 56 · 044 215 21 21
Open ⋅ Closes 7PM

On AG
3.5 (8) · Manufacturer
Pfingstweidstrasse 106 · 044 225 15 55

"Best running company in the world based in Zurich!"

Ochsner Shoes
4.3 (6) · Shoe Shop
Shoes & trainers for adults & children
Stadelhoferstrasse 8 · 044 252 50 77
Open ⋅ Closes 8PM

On | Schweizer Performance Laufschuhe & Bekleidung - On Running
https://www.on-running.com/en-ch/
Test shoes or Performance Running Gear commitment free. Love them ... Your perfect partner in the
world's lightest fully-cushioned shoe for Running Remixed.

Mens Running Shoes & Running Clothing for Men | On
https://www.on-running.com/en-ch/t/mens
Shop On's collection of men's running shoes & running clothes. Made with innovative technology for
unparalleled comfort. Free shipping & returns.

Men's Running Shoes | Running Warehouse
https://www.runningwarehouse.com/mens-running-shoes.html
Find your favorite running shoes at Running Warehouse! Huge selection and top-rated customer
service. Free 2 day shipping & free returns on all orders.

Top Men's Running Shoes | Road Runner Sports
https://www.roadrunnersports.com/rrs/mensshoes/mensshoesrunning/
Welcome to our premium collection of men's running shoes where you can browse through a selection
from the best brands and top styles available on the ...

Running | Clothing, Shoes, Trainers | Accessories, Watches ...
https://www.sportsdirect.com/running
Buy all your running kit including men's and ladies running shoes, clothes and accessories from world
leading brands like Nike and Karrimor. Order today!

616 Best Running Shoes (June 2018) | RunRepeat
https://runrepeat.com/ranking/rankings-of-running-shoes
All 618 running shoes ranked by the best – based on reviews from 2351 experts & runners. The
ultimate list. Updated June 2018!

Men's Running Shoes. Nike.com
https://store.nike.com/us/en_us/pw/mens-running-shoes/7puZ8yzZoi3
Dominate your run and find the right fit for your running style with the latest men's running shoes from
Nike. Enjoy free shipping and returns with NikePlus.

Shoe

Sneakers are shoes primarily designed for sports or other forms of
physical exercise, but which are now also often used for everyday wear.
Wikipedia

Usage: Running

Product type: Shoe

People also search for

Sneakers

View 10+ more

Shoe Boot Footwear Clothing Sandal

Feedback

All Images Maps Shopping News More Settings Tools

running shoes Sign in

running shoes - Google Search https://www.google.com/search?client=firefox-b&ei=YYojW-...

1 of 2 15.06.18, 11:45

2

Combinatorial resource allocation

. a set of resources

. a set of agents

Goal: assign resources to agents to maximize a given welfare function

About 548.000.000 results (0,59 seconds)

SponsoredShop for running shoes

Hoka One One -
Speed Goat 2 ...
CHF 99,33
€ 86,03
mrporter.com
By Google

BROOKS
Runningschuh ...
CHF 159,00
intersport.ch
Free shipping
By Google

Hoka One One -
Mach Mesh ...
CHF 99,33
€ 86,03
mrporter.com
By Google

ROA - Oblique
Rippy Mesh- ...
CHF 259,04
€ 224,35
mrporter.com
By Google

Gucci, Platform
sneakers - ...
CHF 840,00
mytheresa.com/...
Free shipping
By Google

Running Shoes - Runner's World
https://www.runnersworld.com/running-shoes/
Black Running Shoes You'll Want to Wear On the Run and Beyond. Black is always in style, and these
kicks combine top-notch performance with street-savvy ...
The Best Running Shoes · The 7 Best Running Shoes ... · Pronation, Explained

More places

Rating Hours

Och Sport
4.1 (44) · Running Store
Bahnhofstrasse 56 · 044 215 21 21
Open ⋅ Closes 7PM

On AG
3.5 (8) · Manufacturer
Pfingstweidstrasse 106 · 044 225 15 55

"Best running company in the world based in Zurich!"

Ochsner Shoes
4.3 (6) · Shoe Shop
Shoes & trainers for adults & children
Stadelhoferstrasse 8 · 044 252 50 77
Open ⋅ Closes 8PM

On | Schweizer Performance Laufschuhe & Bekleidung - On Running
https://www.on-running.com/en-ch/
Test shoes or Performance Running Gear commitment free. Love them ... Your perfect partner in the
world's lightest fully-cushioned shoe for Running Remixed.

Mens Running Shoes & Running Clothing for Men | On
https://www.on-running.com/en-ch/t/mens
Shop On's collection of men's running shoes & running clothes. Made with innovative technology for
unparalleled comfort. Free shipping & returns.

Men's Running Shoes | Running Warehouse
https://www.runningwarehouse.com/mens-running-shoes.html
Find your favorite running shoes at Running Warehouse! Huge selection and top-rated customer
service. Free 2 day shipping & free returns on all orders.

Top Men's Running Shoes | Road Runner Sports
https://www.roadrunnersports.com/rrs/mensshoes/mensshoesrunning/
Welcome to our premium collection of men's running shoes where you can browse through a selection
from the best brands and top styles available on the ...

Running | Clothing, Shoes, Trainers | Accessories, Watches ...
https://www.sportsdirect.com/running
Buy all your running kit including men's and ladies running shoes, clothes and accessories from world
leading brands like Nike and Karrimor. Order today!

616 Best Running Shoes (June 2018) | RunRepeat
https://runrepeat.com/ranking/rankings-of-running-shoes
All 618 running shoes ranked by the best – based on reviews from 2351 experts & runners. The
ultimate list. Updated June 2018!

Men's Running Shoes. Nike.com
https://store.nike.com/us/en_us/pw/mens-running-shoes/7puZ8yzZoi3
Dominate your run and find the right fit for your running style with the latest men's running shoes from
Nike. Enjoy free shipping and returns with NikePlus.

Shoe

Sneakers are shoes primarily designed for sports or other forms of
physical exercise, but which are now also often used for everyday wear.
Wikipedia

Usage: Running

Product type: Shoe

People also search for

Sneakers

View 10+ more

Shoe Boot Footwear Clothing Sandal

Feedback

All Images Maps Shopping News More Settings Tools

running shoes Sign in

running shoes - Google Search https://www.google.com/search?client=firefox-b&ei=YYojW-...

1 of 2 15.06.18, 11:45

2

Combinatorial resource allocation

. a set of resources

. a set of agents

Goal: assign resources to agents to maximize a given welfare function

About 548.000.000 results (0,59 seconds)

SponsoredShop for running shoes

Hoka One One -
Speed Goat 2 ...
CHF 99,33
€ 86,03
mrporter.com
By Google

BROOKS
Runningschuh ...
CHF 159,00
intersport.ch
Free shipping
By Google

Hoka One One -
Mach Mesh ...
CHF 99,33
€ 86,03
mrporter.com
By Google

ROA - Oblique
Rippy Mesh- ...
CHF 259,04
€ 224,35
mrporter.com
By Google

Gucci, Platform
sneakers - ...
CHF 840,00
mytheresa.com/...
Free shipping
By Google

Running Shoes - Runner's World
https://www.runnersworld.com/running-shoes/
Black Running Shoes You'll Want to Wear On the Run and Beyond. Black is always in style, and these
kicks combine top-notch performance with street-savvy ...
The Best Running Shoes · The 7 Best Running Shoes ... · Pronation, Explained

More places

Rating Hours

Och Sport
4.1 (44) · Running Store
Bahnhofstrasse 56 · 044 215 21 21
Open ⋅ Closes 7PM

On AG
3.5 (8) · Manufacturer
Pfingstweidstrasse 106 · 044 225 15 55

"Best running company in the world based in Zurich!"

Ochsner Shoes
4.3 (6) · Shoe Shop
Shoes & trainers for adults & children
Stadelhoferstrasse 8 · 044 252 50 77
Open ⋅ Closes 8PM

On | Schweizer Performance Laufschuhe & Bekleidung - On Running
https://www.on-running.com/en-ch/
Test shoes or Performance Running Gear commitment free. Love them ... Your perfect partner in the
world's lightest fully-cushioned shoe for Running Remixed.

Mens Running Shoes & Running Clothing for Men | On
https://www.on-running.com/en-ch/t/mens
Shop On's collection of men's running shoes & running clothes. Made with innovative technology for
unparalleled comfort. Free shipping & returns.

Men's Running Shoes | Running Warehouse
https://www.runningwarehouse.com/mens-running-shoes.html
Find your favorite running shoes at Running Warehouse! Huge selection and top-rated customer
service. Free 2 day shipping & free returns on all orders.

Top Men's Running Shoes | Road Runner Sports
https://www.roadrunnersports.com/rrs/mensshoes/mensshoesrunning/
Welcome to our premium collection of men's running shoes where you can browse through a selection
from the best brands and top styles available on the ...

Running | Clothing, Shoes, Trainers | Accessories, Watches ...
https://www.sportsdirect.com/running
Buy all your running kit including men's and ladies running shoes, clothes and accessories from world
leading brands like Nike and Karrimor. Order today!

616 Best Running Shoes (June 2018) | RunRepeat
https://runrepeat.com/ranking/rankings-of-running-shoes
All 618 running shoes ranked by the best – based on reviews from 2351 experts & runners. The
ultimate list. Updated June 2018!

Men's Running Shoes. Nike.com
https://store.nike.com/us/en_us/pw/mens-running-shoes/7puZ8yzZoi3
Dominate your run and find the right fit for your running style with the latest men's running shoes from
Nike. Enjoy free shipping and returns with NikePlus.

Shoe

Sneakers are shoes primarily designed for sports or other forms of
physical exercise, but which are now also often used for everyday wear.
Wikipedia

Usage: Running

Product type: Shoe

People also search for

Sneakers

View 10+ more

Shoe Boot Footwear Clothing Sandal

Feedback

All Images Maps Shopping News More Settings Tools

running shoes Sign in

running shoes - Google Search https://www.google.com/search?client=firefox-b&ei=YYojW-...

1 of 2 15.06.18, 11:45

2

Generalized Multiagent Maximum Coverage (GMMC)

resources: r ∈ R, vr ≥ 0

agents: i ∈ {1, . . . , n}

allocations: ai ∈ Ai ⊆ 2R

welfare: W (a) =
∑

r∈∪iai

vrwr (|a|r) wr : N→ R≥0

System-level objective: maxa∈AW (a)

1 2 3 4 5

1
2
3
4
5

j

wr (j)

3

Generalized Multiagent Maximum Coverage (GMMC)

resources: r ∈ R, vr ≥ 0

agents: i ∈ {1, . . . , n}

allocations: ai ∈ Ai ⊆ 2R

welfare: W (a) =
∑

r∈∪iai

vrwr (|a|r) wr : N→ R≥0

System-level objective: maxa∈AW (a)

1 2 3 4 5

1
2
3
4
5

j

wr (j)

3

v1

v2

v3

v4

v5

Generalized Multiagent Maximum Coverage (GMMC)

resources: r ∈ R, vr ≥ 0

agents: i ∈ {1, . . . , n}

allocations: ai ∈ Ai ⊆ 2R

welfare: W (a) =
∑

r∈∪iai

vrwr (|a|r) wr : N→ R≥0

System-level objective: maxa∈AW (a)

1 2 3 4 5

1
2
3
4
5

j

wr (j)

3

v1

v2

v3

v4

v5

Generalized Multiagent Maximum Coverage (GMMC)

resources: r ∈ R, vr ≥ 0

agents: i ∈ {1, . . . , n}

allocations: ai ∈ Ai ⊆ 2R

welfare: W (a) =
∑

r∈∪iai

vrwr (|a|r) wr : N→ R≥0

System-level objective: maxa∈AW (a)

1 2 3 4 5

1
2
3
4
5

j

wr (j)

3

v1

v2

v3

v4

v5

Generalized Multiagent Maximum Coverage (GMMC)

resources: r ∈ R, vr ≥ 0

agents: i ∈ {1, . . . , n}

allocations: ai ∈ Ai ⊆ 2R

welfare: W (a) =
∑

r∈∪iai

vrwr (|a|r) wr : N→ R≥0

System-level objective: maxa∈AW (a)

1 2 3 4 5

1
2
3
4
5

j

wr (j)

3

v1

v2

v3

v4

v5

Generalized Multiagent Maximum Coverage (GMMC)

resources: r ∈ R, vr ≥ 0

agents: i ∈ {1, . . . , n}

allocations: ai ∈ Ai ⊆ 2R

welfare: W (a) =
∑

r∈∪iai

vrwr (|a|r) wr : N→ R≥0

System-level objective: maxa∈AW (a)

1 2 3 4 5

1
2
3
4
5

j

wr (j)

3

v1

v2

v3

v4

v5

Generalized Multiagent Maximum Coverage (GMMC)

resources: r ∈ R, vr ≥ 0

agents: i ∈ {1, . . . , n}

allocations: ai ∈ Ai ⊆ 2R

welfare: W (a) =
∑

r∈∪iai

vrwr (|a|r) wr : N→ R≥0

System-level objective: maxa∈AW (a)

1 2 3 4 5

1
2
3
4
5

j

wr (j)

3

v1

v2

v3

v4

v5

Generalized Multiagent Maximum Coverage (GMMC)

resources: r ∈ R, vr ≥ 0

agents: i ∈ {1, . . . , n}

allocations: ai ∈ Ai ⊆ 2R

welfare: W (a) =
∑

r∈∪iai

vrwr (|a|r) wr : N→ R≥0

System-level objective: maxa∈AW (a)

1 2 3 4 5

1
2
3
4
5

j

wr (j)

3

v1

v2

v3

v4

v5

. no constraints on wr (j)

Generalized Multiagent Maximum Coverage (GMMC)

resources: r ∈ R, vr ≥ 0

agents: i ∈ {1, . . . , n}

allocations: ai ∈ Ai ⊆ 2R

welfare: W (a) =
∑

r∈∪iai

vrwr (|a|r) wr : N→ R≥0

System-level objective: maxa∈AW (a)

1 2 3 4 5

1
2
3
4
5

j

wr (j)

3

v1

v2

v3

v4

v5

. no constraints on wr (j)
typically concave

Generalized Multiagent Maximum Coverage (GMMC)

resources: r ∈ R, vr ≥ 0

agents: i ∈ {1, . . . , n}

allocations: ai ∈ Ai ⊆ 2R

welfare: W (a) =
∑

r∈∪iai

vrwr (|a|r) wr : N→ R≥0

System-level objective: maxa∈AW (a)

1 2 3 4 5

1
2
3
4
5

j

wr (j)

3

v1

v2

v3

v4

v5

. no constraints on wr (j)
typically concave

. to ease the presentation
wr (j) = w(j)

Connection with Coverage problems

GMMC problem

- set of weighted resources: R
- n collections of sets: {Ai}ni=1 ⊆ 2R

- choose one set per collection to max

W (a) =
∑

r∈∪iai

vrw(|a|r)

Max-n-cover

- set of weighted resources: R
- one collection of sets: Ā ⊆ 2R

- choose n sets from collection to max

W (a) =
∑

r∈∪iai

vr

. GMMC subsumes max-n-cover (set w(j) ≡ 1, Ai = Aj for all i , j)

. GMMC subsumes [Che04],[Gair09] (set w(j) ≡ 1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09

4

Connection with Coverage problems

GMMC problem

- set of weighted resources: R
- n collections of sets: {Ai}ni=1 ⊆ 2R

- choose one set per collection to max

W (a) =
∑

r∈∪iai

vrw(|a|r)

Max-n-cover

- set of weighted resources: R
- one collection of sets: Ā ⊆ 2R

- choose n sets from collection to max

W (a) =
∑

r∈∪iai

vr

. GMMC subsumes max-n-cover (set w(j) ≡ 1, Ai = Aj for all i , j)

. GMMC subsumes [Che04],[Gair09] (set w(j) ≡ 1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09

4

Connection with Coverage problems

GMMC problem
- set of weighted resources: R

- n collections of sets: {Ai}ni=1 ⊆ 2R

- choose one set per collection to max

W (a) =
∑

r∈∪iai

vrw(|a|r)

Max-n-cover

- set of weighted resources: R
- one collection of sets: Ā ⊆ 2R

- choose n sets from collection to max

W (a) =
∑

r∈∪iai

vr

. GMMC subsumes max-n-cover (set w(j) ≡ 1, Ai = Aj for all i , j)

. GMMC subsumes [Che04],[Gair09] (set w(j) ≡ 1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09

4

Connection with Coverage problems

GMMC problem
- set of weighted resources: R
- n collections of sets: {Ai}ni=1 ⊆ 2R

- choose one set per collection to max

W (a) =
∑

r∈∪iai

vrw(|a|r)

Max-n-cover

- set of weighted resources: R
- one collection of sets: Ā ⊆ 2R

- choose n sets from collection to max

W (a) =
∑

r∈∪iai

vr

. GMMC subsumes max-n-cover (set w(j) ≡ 1, Ai = Aj for all i , j)

. GMMC subsumes [Che04],[Gair09] (set w(j) ≡ 1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09

4

Connection with Coverage problems

GMMC problem
- set of weighted resources: R
- n collections of sets: {Ai}ni=1 ⊆ 2R

- choose one set per collection to max

W (a) =
∑

r∈∪iai

vrw(|a|r)

Max-n-cover

- set of weighted resources: R
- one collection of sets: Ā ⊆ 2R

- choose n sets from collection to max

W (a) =
∑

r∈∪iai

vr

. GMMC subsumes max-n-cover (set w(j) ≡ 1, Ai = Aj for all i , j)

. GMMC subsumes [Che04],[Gair09] (set w(j) ≡ 1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09

4

Connection with Coverage problems

GMMC problem
- set of weighted resources: R
- n collections of sets: {Ai}ni=1 ⊆ 2R

- choose one set per collection to max

W (a) =
∑

r∈∪iai

vrw(|a|r)

Max-n-cover

- set of weighted resources: R
- one collection of sets: Ā ⊆ 2R

- choose n sets from collection to max

W (a) =
∑

r∈∪iai

vr

. GMMC subsumes max-n-cover (set w(j) ≡ 1, Ai = Aj for all i , j)

. GMMC subsumes [Che04],[Gair09] (set w(j) ≡ 1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09

4

Connection with Coverage problems

GMMC problem
- set of weighted resources: R
- n collections of sets: {Ai}ni=1 ⊆ 2R

- choose one set per collection to max

W (a) =
∑

r∈∪iai

vrw(|a|r)

Max-n-cover
- set of weighted resources: R

- one collection of sets: Ā ⊆ 2R

- choose n sets from collection to max

W (a) =
∑

r∈∪iai

vr

. GMMC subsumes max-n-cover (set w(j) ≡ 1, Ai = Aj for all i , j)

. GMMC subsumes [Che04],[Gair09] (set w(j) ≡ 1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09

4

Connection with Coverage problems

GMMC problem
- set of weighted resources: R
- n collections of sets: {Ai}ni=1 ⊆ 2R

- choose one set per collection to max

W (a) =
∑

r∈∪iai

vrw(|a|r)

Max-n-cover
- set of weighted resources: R
- one collection of sets: Ā ⊆ 2R

- choose n sets from collection to max

W (a) =
∑

r∈∪iai

vr

. GMMC subsumes max-n-cover (set w(j) ≡ 1, Ai = Aj for all i , j)

. GMMC subsumes [Che04],[Gair09] (set w(j) ≡ 1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09

4

Connection with Coverage problems

GMMC problem
- set of weighted resources: R
- n collections of sets: {Ai}ni=1 ⊆ 2R

- choose one set per collection to max

W (a) =
∑

r∈∪iai

vrw(|a|r)

Max-n-cover
- set of weighted resources: R
- one collection of sets: Ā ⊆ 2R

- choose n sets from collection to max

W (a) =
∑

r∈∪iai

vr

. GMMC subsumes max-n-cover (set w(j) ≡ 1, Ai = Aj for all i , j)

. GMMC subsumes [Che04],[Gair09] (set w(j) ≡ 1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09

4

Connection with Coverage problems

GMMC problem
- set of weighted resources: R
- n collections of sets: {Ai}ni=1 ⊆ 2R

- choose one set per collection to max

W (a) =
∑

r∈∪iai

vrw(|a|r)

Max-n-cover
- set of weighted resources: R
- one collection of sets: Ā ⊆ 2R

- choose n sets from collection to max

W (a) =
∑

r∈∪iai

vr

. GMMC subsumes max-n-cover (set w(j) ≡ 1, Ai = Aj for all i , j)

. GMMC subsumes [Che04],[Gair09] (set w(j) ≡ 1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09

4

Connection with Coverage problems

GMMC problem
- set of weighted resources: R
- n collections of sets: {Ai}ni=1 ⊆ 2R

- choose one set per collection to max

W (a) =
∑

r∈∪iai

vrw(|a|r)

Max-n-cover
- set of weighted resources: R
- one collection of sets: Ā ⊆ 2R

- choose n sets from collection to max

W (a) =
∑

r∈∪iai

vr

. GMMC subsumes max-n-cover (set w(j) ≡ 1, Ai = Aj for all i , j)

. GMMC subsumes [Che04],[Gair09] (set w(j) ≡ 1)

[Che04] C. Chekuri et al. “Maximum Coverage Problem with Group Budget Constraints and Applications”, APPROX 04

[Gair09] M. Gairing, “Covering Games: Approximation through Non-cooperation”, WINE 09 4

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:
- distributedness?
- best possible approximation? Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:
- distributedness?
- best possible approximation? Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:
- distributedness?
- best possible approximation? Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:
- distributedness?
- best possible approximation? Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:
- distributedness?
- best possible approximation? Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:
- distributedness?
- best possible approximation? Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:
- distributedness?
- best possible approximation? Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:
- distributedness?
- best possible approximation? Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:

- distributedness?
- best possible approximation? Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:
- distributedness?

- best possible approximation? Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:
- distributedness?
- best possible approximation?

Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Facts: hardness and approximability

max-n-cover problem:

. NP-hard

. NP-hard to approximate within any ratio better than 1− 1/e

. Poly-algorithms achieve 1− 1/e

GMMC problem:

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− (w(n)− w(n − 1))

Issues:
- distributedness?
- best possible approximation? Ai 6= Aj , w not concave?

[Svir17] M. Sviridenko, J. Vondrák, J. Ward, “Optimal Approximation for Submodular and Supermodular Optimization with
Bounded Curvature”, MOR 17

5

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

max-n-cover
1− 1

e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Main result

Game theory can be used to produce algorithms that are:

distributed, efficient, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

max-n-cover
1− 1

e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Main result

Game theory can be used to produce algorithms that are:
distributed

, efficient, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

max-n-cover
1− 1

e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient

, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

max-n-cover
1− 1

e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

max-n-cover
1− 1

e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

max-n-cover
1− 1

e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

max-n-cover
1− 1

e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

1− c/e

max-n-cover
1− 1

e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

GT-approach

1− c/e

max-n-cover
1− 1

e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

GT-approach

1− c/e

max-n-cover

1− 1
e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

GT-approach

1− c/e

max-n-cover
1− 1

e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Main result

Game theory can be used to produce algorithms that are:
distributed, efficient, match/improve existing approximations

Example: - # agents ≤ 40
- w(j) = jd , d varies in [0, 1]

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

approx.

w(j) = jd , 40 agents

GT-approach

1− c/e

max-n-cover
1− 1

e

6

[Pac18a] DP, R.Chandan, J. Marden “Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy”, ArXiv 2018

[Pac18b] DP, J. Marden “- Part II: applications to submodular, supermodular and set covering problems”, ArXiv 2018

Outline

1. Introduction

2. Game-design approach

3. Characterizing the price of anarchy

4. Optimizing the price of anarchy

5. Conclusions and Outlook

7

The game-theoretic approach

Game design

8

maxW (a)

The game-theoretic approach

Game design

8

. Distributed algorithm

. Good approximation

. Polytime

maxW (a)

The game-theoretic approach

Game design

8

. Distributed algorithm

. Good approximation

. Polytime

maxW (a)

Design a game
(agents, constraints, utilities)

Requirement:
equilibria have high welfare

Use existing algorithms to
find an equilibrium

The game-theoretic approach

Game design

8

. Distributed algorithm

. Good approximation

. Polytime

maxW (a)

Design a game
(agents, constraints, utilities)

Requirement:
equilibria have high welfare

Use existing algorithms to
find an equilibrium

The game-theoretic approach

Game design

8

. Distributed algorithm

. Good approximation

. Polytime

maxW (a)

Design a game
(agents, constraints, utilities)

Requirement:
equilibria have high welfare

Use existing algorithms to
find an equilibrium

The game-theoretic approach

Game design

8

. Distributed algorithm

. Good approximation

. Polytime

utilities

maxW (a)

Design a game
(agents, constraints, utilities)

Requirement:
equilibria have high welfare

Use existing algorithms to
find an equilibrium

The game-theoretic approach

Game design

8

. Distributed algorithm

. Good approximation

. Polytime

utilities
game

maxW (a)

Design a game
(agents, constraints, utilities)

Requirement:
equilibria have high welfare

Use existing algorithms to
find an equilibrium

The game-theoretic approach

Game design

8

. Distributed algorithm

. Good approximation

. Polytime

utilities
game

equilibria

maxW (a)

Design a game
(agents, constraints, utilities)

Requirement:
equilibria have high welfare

Use existing algorithms to
find an equilibrium

The game-theoretic approach

Game design

8

. Distributed algorithm

. Good approximation

. Polytime

utilities
game

equilibria

maxW (a)

Design a game
(agents, constraints, utilities)

Requirement:
equilibria have high welfare

Use existing algorithms to
find an equilibrium

The game-theoretic approach

Game design

8

. Distributed algorithm

. Good approximation

. Polytime

utilities
game

equilibria

maxW (a)

Design a game
(agents, constraints, utilities)

Requirement:
equilibria have high welfare

Use existing algorithms to
find an equilibrium

The game-theoretic approach

Game design

8

. Distributed algorithm

. Good approximation

. Polytime

utilities
game

equilibria

Utility design and approximation ratio

ui (ai , a−i)

=
∑
r∈ai

vrw(|a|r)f (|a|r) f : N→ R≥0 (distributed)

How to design f ? Maximize worst-case performance

Given instance I, fix f → game Gf = {I, f } → NE(Gf)

PoA(f) =

inf
Gf : #agents ≤n

mina∈NE(Gf) W (a)

W (aopt)
≤ 1

PoA(f) is the approx. ratio of any equilibrium-computing algorithm

9

Utility design and approximation ratio

ui (ai , a−i) =
∑
r∈ai

vrw(|a|r)f (|a|r) f : N→ R≥0 (distributed)

How to design f ? Maximize worst-case performance

Given instance I, fix f → game Gf = {I, f } → NE(Gf)

PoA(f) =

inf
Gf : #agents ≤n

mina∈NE(Gf) W (a)

W (aopt)
≤ 1

PoA(f) is the approx. ratio of any equilibrium-computing algorithm

9

Utility design and approximation ratio

ui (ai , a−i) =
∑
r∈ai

vrw(|a|r)f (|a|r) f : N→ R≥0 (distributed)

How to design f ?

Maximize worst-case performance

Given instance I, fix f → game Gf = {I, f } → NE(Gf)

PoA(f) =

inf
Gf : #agents ≤n

mina∈NE(Gf) W (a)

W (aopt)
≤ 1

PoA(f) is the approx. ratio of any equilibrium-computing algorithm

9

Utility design and approximation ratio

ui (ai , a−i) =
∑
r∈ai

vrw(|a|r)f (|a|r) f : N→ R≥0 (distributed)

How to design f ? Maximize worst-case performance

Given instance I, fix f → game Gf = {I, f } → NE(Gf)

PoA(f) =

inf
Gf : #agents ≤n

mina∈NE(Gf) W (a)

W (aopt)
≤ 1

PoA(f) is the approx. ratio of any equilibrium-computing algorithm

9

Utility design and approximation ratio

ui (ai , a−i) =
∑
r∈ai

vrw(|a|r)f (|a|r) f : N→ R≥0 (distributed)

How to design f ? Maximize worst-case performance

Given instance I, fix f

→ game Gf = {I, f } → NE(Gf)

PoA(f) =

inf
Gf : #agents ≤n

mina∈NE(Gf) W (a)

W (aopt)
≤ 1

PoA(f) is the approx. ratio of any equilibrium-computing algorithm

9

Utility design and approximation ratio

ui (ai , a−i) =
∑
r∈ai

vrw(|a|r)f (|a|r) f : N→ R≥0 (distributed)

How to design f ? Maximize worst-case performance

Given instance I, fix f → game Gf = {I, f }

→ NE(Gf)

PoA(f) =

inf
Gf : #agents ≤n

mina∈NE(Gf) W (a)

W (aopt)
≤ 1

PoA(f) is the approx. ratio of any equilibrium-computing algorithm

9

Utility design and approximation ratio

ui (ai , a−i) =
∑
r∈ai

vrw(|a|r)f (|a|r) f : N→ R≥0 (distributed)

How to design f ? Maximize worst-case performance

Given instance I, fix f → game Gf = {I, f } → NE(Gf)

PoA(f) =

inf
Gf : #agents ≤n

mina∈NE(Gf) W (a)

W (aopt)
≤ 1

PoA(f) is the approx. ratio of any equilibrium-computing algorithm

9

Utility design and approximation ratio

ui (ai , a−i) =
∑
r∈ai

vrw(|a|r)f (|a|r) f : N→ R≥0 (distributed)

How to design f ? Maximize worst-case performance

Given instance I, fix f → game Gf = {I, f } → NE(Gf)

PoA(f) =

inf
Gf : #agents ≤n

mina∈NE(Gf) W (a)

W (aopt)
≤ 1

PoA(f) is the approx. ratio of any equilibrium-computing algorithm

9

Utility design and approximation ratio

ui (ai , a−i) =
∑
r∈ai

vrw(|a|r)f (|a|r) f : N→ R≥0 (distributed)

How to design f ? Maximize worst-case performance

Given instance I, fix f → game Gf = {I, f } → NE(Gf)

PoA(f) = inf
Gf : #agents ≤n

mina∈NE(Gf) W (a)

W (aopt)
≤ 1

PoA(f) is the approx. ratio of any equilibrium-computing algorithm

9

Utility design and approximation ratio

ui (ai , a−i) =
∑
r∈ai

vrw(|a|r)f (|a|r) f : N→ R≥0 (distributed)

How to design f ? Maximize worst-case performance

Given instance I, fix f → game Gf = {I, f } → NE(Gf)

PoA(f) = inf
Gf : #agents ≤n

mina∈NE(Gf) W (a)

W (aopt)
≤ 1

PoA(f) is the approx. ratio of any equilibrium-computing algorithm

9

Utility design reduces to

Given f , characterize or bound PoA(f)

Find f with highest PoA(f)

10

Utility design reduces to

Given f , characterize or bound PoA(f)

Find f with highest PoA(f)

10

Utility design reduces to

Given f , characterize or bound PoA(f)

Find f with highest PoA(f)

10

Utility design reduces to

Given f , characterize or bound PoA(f)

Find f with highest PoA(f)

10

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

W (aopt)

)
- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n2) constraints

. LP involves all the components w(j) and f (j)

11

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

W (aopt)

)

- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n2) constraints

. LP involves all the components w(j) and f (j)

11

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

W (aopt)

)
- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n2) constraints

. LP involves all the components w(j) and f (j)

11

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

W (aopt)

)
- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n2) constraints

. LP involves all the components w(j) and f (j)

11

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

W (aopt)

)
- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n2) constraints

. LP involves all the components w(j) and f (j)

11

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

W (aopt)

)
- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n2) constraints

. LP involves all the components w(j) and f (j)

11

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

W (aopt)

)
- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n2) constraints

. LP involves all the components w(j) and f (j)

11

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

W (aopt)

)
- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n2) constraints

. LP involves all the components w(j) and f (j)

11

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

W (aopt)

)
- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n2) constraints

. LP involves all the components w(j) and f (j)

11

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

W (aopt)

)
- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n2) constraints

. LP involves all the components w(j) and f (j)

11

Characterizing the price of anarchy

The quantity we wish to compute: PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

W (aopt)

)
- well studied in game theory

- difficult to compute

- bounds are available in special cases

- bounds do not explicitly depend on f

- smoothness not applicable

- tightness?

Theorem (Characterization of PoA(f)) [Pac18a],[Pac18b]

PoA(f) is the solution to a tractable LP in 2 variables, O(n2) constraints

. LP involves all the components w(j) and f (j)

11

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations

i.e. we can reduce to Ãi = {ei , oi} with ei the worst NE

PoA(f) =
()

s.t. ui (e) ≥ ui (oi , e−i) ∀i

2. Relax the previous program

PoA(f) = inf
G∈G̃

W (e)

W (o)

s.t.

∑
i

ui (e) ≥

∑
i

ui (oi , e−i)

12

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations

i.e. we can reduce to Ãi = {ei , oi} with ei the worst NE

PoA(f) =
()

s.t. ui (e) ≥ ui (oi , e−i) ∀i

2. Relax the previous program

PoA(f) = inf
G∈G̃

W (e)

W (o)

s.t.

∑
i

ui (e) ≥

∑
i

ui (oi , e−i)

12

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations

i.e. we can reduce to Ãi = {ei , oi} with ei the worst NE

PoA(f) =
()

s.t. ui (e) ≥ ui (oi , e−i) ∀i

2. Relax the previous program

PoA(f) = inf
G∈G̃

W (e)

W (o)

s.t.

∑
i

ui (e) ≥

∑
i

ui (oi , e−i)

12

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to Ãi = {ei , oi} with ei the worst NE

PoA(f) =
()

s.t. ui (e) ≥ ui (oi , e−i) ∀i

2. Relax the previous program

PoA(f) = inf
G∈G̃

W (e)

W (o)

s.t.

∑
i

ui (e) ≥

∑
i

ui (oi , e−i)

12

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to Ãi = {ei , oi} with ei the worst NE

PoA(f) = inf
G∈G

(
mina∈NE(G) W (a)

maxa∈AW (a)

)

s.t. ui (e) ≥ ui (oi , e−i) ∀i

2. Relax the previous program

PoA(f) = inf
G∈G̃

W (e)

W (o)

s.t.

∑
i

ui (e) ≥

∑
i

ui (oi , e−i)

12

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to Ãi = {ei , oi} with ei the worst NE

PoA(f) = inf
G∈G̃

(
mina∈NE(G) W (a)

W (o)

)

s.t. ui (e) ≥ ui (oi , e−i) ∀i

2. Relax the previous program

PoA(f) = inf
G∈G̃

W (e)

W (o)

s.t.

∑
i

ui (e) ≥

∑
i

ui (oi , e−i)

12

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to Ãi = {ei , oi} with ei the worst NE

PoA(f) = inf
G∈G̃

(
W (e)

W (o)

)

s.t. ui (e) ≥ ui (oi , e−i) ∀i

2. Relax the previous program

PoA(f) = inf
G∈G̃

W (e)

W (o)

s.t.

∑
i

ui (e) ≥

∑
i

ui (oi , e−i)

12

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to Ãi = {ei , oi} with ei the worst NE

PoA(f) = inf
G∈G̃

(
W (e)

W (o)

)
s.t. ui (e) ≥ ui (oi , e−i) ∀i

2. Relax the previous program

PoA(f) = inf
G∈G̃

W (e)

W (o)

s.t.

∑
i

ui (e) ≥

∑
i

ui (oi , e−i)

12

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP

Four steps towards the goal:

1. PoA(f) is the same of the price of anarchy over a reduced class of
games where each agent has only two feasible allocations
i.e. we can reduce to Ãi = {ei , oi} with ei the worst NE

PoA(f) = inf
G∈G̃

(
W (e)

W (o)

)
s.t. ui (e) ≥ ui (oi , e−i) ∀i

2. Relax the previous program

PoA(f) = inf
G∈G̃

W (e)

W (o)

s.t.
∑
i

ui (e) ≥
∑
i

ui (oi , e−i) ∀i

12

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

o1

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2

θe1

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2

θo1

θe1

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2

θo1

θe1

θo2

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2

θo1

θe1

θo2

θe2

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2

θo1e1 θo1

θe1

θo1o2

θe1e2

θo2e1 θo2

θo1e2

θo2e2

θe2

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2θo1o2e1

θo1e1 θo1

θe1

θo1o2

θo1e1e2

θo2e1e2

θe1e2

θo2e1 θo2

θo1o2e2

θo1e2

θo2e2

θe2

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2

θo1o2e1e2

θo1o2e1

θo1e1 θo1

θe1

θo1o2

θo1e1e2

θo2e1e2

θe1e2

θo2e1 θo2

θo1o2e2

θo1e2

θo2e2

θe2

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2

θo1o2e1e2

θo1o2e1

θo1e1 θo1

θe1

θo1o2

θo1e1e2

θo2e1e2

θe1e2

θo2e1 θo2

θo1o2e2

θo1e2

θo2e2

θe2

Variables θ allow to compute
W (a), ui (a) in all allocations

,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2

θo1o2e1e2

θo1o2e1

θo1e1 θo1

θe1

θo1o2

θo1e1e2

θo2e1e2

θe1e2

θo2e1 θo2

θo1o2e2

θo1e2

θo2e2

θe2

Variables θ allow to compute
W (a), ui (a) in all allocations,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2

θo1o2e1e2

θo1o2e1

θo1e1 θo1

θe1

θo1o2

θo1e1e2

θo2e1e2

θe1e2

θo2e1 θo2

θo1o2e2

θo1e2

θo2e2

θe2

Variables θ allow to compute
W (a), ui (a) in all allocations,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!

13

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe W (a), ui (a) on Ã

e1

e2

o1

o2

θo1o2e1e2

θo1o2e1

θo1e1 θo1

θe1

θo1o2

θo1e1e2

θo2e1e2

θe1e2

θo2e1 θo2

θo1o2e2

θo1e2

θo2e2

θe2

Variables θ allow to compute
W (a), ui (a) in all allocations,
e.g.

W (e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)

+ (θe2 + θo2
e2

+ θo1
e2

+ θo1o2
e2

)w(1)

+ (θe1e2 + θo1
e1e2

+ θo2
e1e2

+ θo1o2
e1e2

)w(2)

u1(e1, e2)

= (θe1 + θo1
e1

+ θo2
e1

+ θo1o2
e1

)w(1)f (1)

+ (θe1e2 + θo1
e1e2

+ θo1o2
e1e2

+ θo2
e1e2

)w(2)f (2)

Issue: #weights is exponential!
13

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(o),
∑

i ui(e)− ui(oi, e−i)
→ define θ(a, x , b) ∈ R≥0 for 1 ≤ a + x + b ≤n, a, x , b∈{1, . . . , n}

W (e) =
∑
a,x ,b

1{a+x≥1}w(a + x)θ(a, x , b)

W (o) =
∑
a,x ,b

1{b+x≥1}w(b + x)θ(a, x , b)

equil. =
∑
a,x ,b

[af (a+x)w(a+x)−bf (a+x+1)w(a+x+1)]θ(a, x , b)

The program becomes PoA(f) =

W (e)

W (o)

s.t.
∑
i

ui (e)− ui (oi , e−i) ≥ 0

W (e) = 1

14

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(o),
∑

i ui(e)− ui(oi, e−i)
→ define θ(a, x , b) ∈ R≥0 for 1 ≤ a + x + b ≤n, a, x , b∈{1, . . . , n}

W (e) =
∑
a,x ,b

1{a+x≥1}w(a + x)θ(a, x , b)

W (o) =
∑
a,x ,b

1{b+x≥1}w(b + x)θ(a, x , b)

equil. =
∑
a,x ,b

[af (a+x)w(a+x)−bf (a+x+1)w(a+x+1)]θ(a, x , b)

The program becomes PoA(f) =

W (e)

W (o)

s.t.
∑
i

ui (e)− ui (oi , e−i) ≥ 0

W (e) = 1

14

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(o),
∑

i ui(e)− ui(oi, e−i)
→ define θ(a, x , b) ∈ R≥0 for 1 ≤ a + x + b ≤n, a, x , b∈{1, . . . , n}

W (e) =
∑
a,x ,b

1{a+x≥1}w(a + x)θ(a, x , b)

W (o) =
∑
a,x ,b

1{b+x≥1}w(b + x)θ(a, x , b)

equil. =
∑
a,x ,b

[af (a+x)w(a+x)−bf (a+x+1)w(a+x+1)]θ(a, x , b)

The program becomes PoA(f) =

W (e)

W (o)

s.t.
∑
i

ui (e)− ui (oi , e−i) ≥ 0

W (e) = 1

14

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(o),
∑

i ui(e)− ui(oi, e−i)
→ define θ(a, x , b) ∈ R≥0 for 1 ≤ a + x + b ≤n, a, x , b∈{1, . . . , n}

W (e) =
∑
a,x ,b

1{a+x≥1}w(a + x)θ(a, x , b)

W (o) =
∑
a,x ,b

1{b+x≥1}w(b + x)θ(a, x , b)

equil. =
∑
a,x ,b

[af (a+x)w(a+x)−bf (a+x+1)w(a+x+1)]θ(a, x , b)

The program becomes PoA(f) =

W (e)

W (o)

s.t.
∑
i

ui (e)− ui (oi , e−i) ≥ 0

W (e) = 1

14

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(o),
∑

i ui(e)− ui(oi, e−i)
→ define θ(a, x , b) ∈ R≥0 for 1 ≤ a + x + b ≤n, a, x , b∈{1, . . . , n}

W (e) =
∑
a,x ,b

1{a+x≥1}w(a + x)θ(a, x , b)

W (o) =
∑
a,x ,b

1{b+x≥1}w(b + x)θ(a, x , b)

equil. =
∑
a,x ,b

[af (a+x)w(a+x)−bf (a+x+1)w(a+x+1)]θ(a, x , b)

The program becomes

PoA(f) =

W (e)

W (o)

s.t.
∑
i

ui (e)− ui (oi , e−i) ≥ 0

W (e) = 1

14

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(o),
∑

i ui(e)− ui(oi, e−i)
→ define θ(a, x , b) ∈ R≥0 for 1 ≤ a + x + b ≤n, a, x , b∈{1, . . . , n}

W (e) =
∑
a,x ,b

1{a+x≥1}w(a + x)θ(a, x , b)

W (o) =
∑
a,x ,b

1{b+x≥1}w(b + x)θ(a, x , b)

equil. =
∑
a,x ,b

[af (a+x)w(a+x)−bf (a+x+1)w(a+x+1)]θ(a, x , b)

The program becomes PoA(f) = inf
θ(a,x ,b)≥0

W (e)

W (o)

s.t.
∑
i

ui (e)− ui (oi , e−i) ≥ 0

W (e) = 1

14

Proof Sketch - Part 3/4

4. use reduced variables for W(e), W(o),
∑

i ui(e)− ui(oi, e−i)
→ define θ(a, x , b) ∈ R≥0 for 1 ≤ a + x + b ≤n, a, x , b∈{1, . . . , n}

W (e) =
∑
a,x ,b

1{a+x≥1}w(a + x)θ(a, x , b)

W (o) =
∑
a,x ,b

1{b+x≥1}w(b + x)θ(a, x , b)

equil. =
∑
a,x ,b

[af (a+x)w(a+x)−bf (a+x+1)w(a+x+1)]θ(a, x , b)

The program becomes PoA(f) = inf
θ(a,x ,b)≥0

1

W (o)

W (e)

W (o)

s.t.
∑
i

ui (e)− ui (oi , e−i) ≥ 0

W (e) = 1

14

Proof Sketch - Part 4/4: Primal LP

PoA(f) =
1

W ?

W ? = sup
θ(a,x ,b)

∑
a,x ,b

1{b+x≥1}w(b + x)θ(a, x , b)

s.t.
∑
a,x ,b

[af (a+x)w(a+x)−bf (a+x+1)w(a+x+1)]θ(a, x , b)≥0

∑
a,x ,b

1{a+x≥1}w(a + x)θ(a, x , b) = 1

θ(a, x , b) ≥ 0 ∀(a, x , b) ∈ I .

15

Dual LP

PoA(f) =
1

W ?

W ? = inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b+x)− µ1{a+x≥1}w(a+x)+

+λ[af (a+x)w(a+x)− bf (a+x+1)w(a+x+1)] ≤ 0

∀(a, x , b) ∈

. 2 decision variables, O(n2) constraints

. observe the special structure i.e. minλ,µ µ subject to µ ≥ . . .

. gives PoA for e.g., fsv(j) = 1/j , fmc(j) = 1− w(j − 1)/w(j)

16

Dual LP

PoA(f) =
1

W ?

W ? = inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b+x)− µ1{a+x≥1}w(a+x)+

+λ[af (a+x)w(a+x)− bf (a+x+1)w(a+x+1)] ≤ 0

∀(a, x , b) ∈ I

. 2 decision variables, O(n2) constraints

. observe the special structure i.e. minλ,µ µ subject to µ ≥ . . .

. gives PoA for e.g., fsv(j) = 1/j , fmc(j) = 1− w(j − 1)/w(j)

16

Dual LP

PoA(f) =
1

W ?

W ? = inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b+x)− µ1{a+x≥1}w(a+x)+

+λ[af (a+x)w(a+x)− bf (a+x+1)w(a+x+1)] ≤ 0

∀(a, x , b) ∈ ∂I

. 2 decision variables, O(n2) constraints

. observe the special structure i.e. minλ,µ µ subject to µ ≥ . . .

. gives PoA for e.g., fsv(j) = 1/j , fmc(j) = 1− w(j − 1)/w(j)

16

Dual LP

PoA(f) =
1

W ?

W ? = inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b+x)− µ1{a+x≥1}w(a+x)+

+λ[af (a+x)w(a+x)− bf (a+x+1)w(a+x+1)] ≤ 0

∀(a, x , b) ∈ ∂I

. 2 decision variables, O(n2) constraints

. observe the special structure i.e. minλ,µ µ subject to µ ≥ . . .

. gives PoA for e.g., fsv(j) = 1/j , fmc(j) = 1− w(j − 1)/w(j)

16

Dual LP

PoA(f) =
1

W ?

W ? = inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b+x)− µ1{a+x≥1}w(a+x)+

+λ[af (a+x)w(a+x)− bf (a+x+1)w(a+x+1)] ≤ 0

∀(a, x , b) ∈ ∂I

. 2 decision variables, O(n2) constraints

. observe the special structure i.e. minλ,µ µ subject to µ ≥ . . .

. gives PoA for e.g., fsv(j) = 1/j , fmc(j) = 1− w(j − 1)/w(j)

16

Dual LP

PoA(f) =
1

W ?

W ? = inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b+x)− µ1{a+x≥1}w(a+x)+

+λ[af (a+x)w(a+x)− bf (a+x+1)w(a+x+1)] ≤ 0

∀(a, x , b) ∈ ∂I

. 2 decision variables, O(n2) constraints

. observe the special structure i.e. minλ,µ µ subject to µ ≥ . . .

. gives PoA for e.g., fsv(j) = 1/j , fmc(j) = 1− w(j − 1)/w(j)

16

PoA: connection with existing literature

Covering Games: Approximation through
Non-Cooperation ?

Martin Gairing

Department of Computer Science, University of Liverpool, U.K.
m.gairing@liverpool.ac.uk

Abstract. We propose approximation algorithms under game-theoretic
considerations. We indroduce and study the general covering problem
which is a natural generalization of the well-studied max-n-cover prob-
lem. In the general covering problem, we are given a universal set of
weighted elements E and n collections of subsets of the elements. The
task is to choose one subset from each collection such that the total
weight of their union is as large as possible. In our game-theoretic set-
ting, the choice in each collection is made by an independent player.
For covering an element, the players receive a payo↵ defined by a non-
increasing utility sharing function. This function defines the fraction that
each covering player receives from the weight of the elements.
We show how to construct a utility sharing function such that every Nash
Equilibrium approximates the optimal solution by a factor of 1 � 1

e
. We

also prove that any sequence of unilateral improving steps is polynomially
bounded. This gives rise to a polynomial-time local search approximation
algorithm whose approximation ratio is best possible.

1 Introduction

Motivation and Framework. Large scale distributed systems, like the Inter-
net, usually lack a centralized control authority. Instead, they are operated and
controlled in a distributed fashion by competing entities – modeled as players –
which make their decisions in order to optimize their own private utility. Such
systems are assumed to end up in a Nash equilibrium [21] – a state in which
no player wishes to unilaterally leave her own strategy in order to improve the
value of her private utility. However, Nash equilibria are often suboptimal solu-
tions with respect to the social objective function. The price of anarchy [19] is
a measure for the performance degradation. It is defined as the worst-case ratio
between the values of a social objective function in a Nash equilibrium and in
an optimum solution.

As the designer of a distributed system we are faced with the main challenge
of how to design the distributed system in order to optimize this social objec-
tive function even in the presence of myopic players. However, even if all players

? This work was supported by a fellowship within the Postdoc-Programme of the
German Academic Exchange Service (DAAD).

17

PoA: connection with existing literature

Covering Games: Approximation through
Non-Cooperation ?

Martin Gairing

Department of Computer Science, University of Liverpool, U.K.
m.gairing@liverpool.ac.uk

Abstract. We propose approximation algorithms under game-theoretic
considerations. We indroduce and study the general covering problem
which is a natural generalization of the well-studied max-n-cover prob-
lem. In the general covering problem, we are given a universal set of
weighted elements E and n collections of subsets of the elements. The
task is to choose one subset from each collection such that the total
weight of their union is as large as possible. In our game-theoretic set-
ting, the choice in each collection is made by an independent player.
For covering an element, the players receive a payo↵ defined by a non-
increasing utility sharing function. This function defines the fraction that
each covering player receives from the weight of the elements.
We show how to construct a utility sharing function such that every Nash
Equilibrium approximates the optimal solution by a factor of 1 � 1

e
. We

also prove that any sequence of unilateral improving steps is polynomially
bounded. This gives rise to a polynomial-time local search approximation
algorithm whose approximation ratio is best possible.

1 Introduction

Motivation and Framework. Large scale distributed systems, like the Inter-
net, usually lack a centralized control authority. Instead, they are operated and
controlled in a distributed fashion by competing entities – modeled as players –
which make their decisions in order to optimize their own private utility. Such
systems are assumed to end up in a Nash equilibrium [21] – a state in which
no player wishes to unilaterally leave her own strategy in order to improve the
value of her private utility. However, Nash equilibria are often suboptimal solu-
tions with respect to the social objective function. The price of anarchy [19] is
a measure for the performance degradation. It is defined as the worst-case ratio
between the values of a social objective function in a Nash equilibrium and in
an optimum solution.

As the designer of a distributed system we are faced with the main challenge
of how to design the distributed system in order to optimize this social objec-
tive function even in the presence of myopic players. However, even if all players

? This work was supported by a fellowship within the Postdoc-Programme of the
German Academic Exchange Service (DAAD).

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014 571

Generalized Efficiency Bounds in
Distributed Resource Allocation

Jason R. Marden and Tim Roughgarden

Abstract—Game theory is emerging as a popular tool for dis-
tributed control of multiagent systems. To take advantage of these
game theoretic tools, the interactions of the autonomous agents
must be designed within a game-theoretic environment. A central
component of this game-theoretic design is the assignment of a local
utility function to each agent. One promising approach to utility
design is assigning each agent a utility function according to the
agent’s Shapley value. This method frequently results in games that
possess many desirable features, such as the existence of pure Nash
equilibria with near-optimal efficiency. In this paper, we explore
the relationship between the Shapley value utility design and the
resulting efficiency of both pure Nash equilibria and coarse corre-
lated equilibria. To study this relationship, we introduce a simple
class of resource allocation problems. Within this class, we derive
an explicit relationship between the structure of the resource allo-
cation problem and the efficiency of the resulting equilibria. Lastly,
we derive a bicriteria bound for this class of resource allocation
problems—a bound on the value of the optimal allocation relative
to the value of an equilibrium allocation with additional agents.

Index Terms—Cost sharing, distributed control, game theory,
price of anarchy.

I. INTRODUCTION

R ESOURCE allocation is a fundamental problem that
arises in many application domains ranging from the

social sciences to engineering [1]–[7]. One example is the
problem of routing information through a shared network,
where the global objective is to minimize average delay [7].
An alternative example is the problem of allocating sensors to
a given mission space where the global objective is to maxi-
mize coverage area [6]. Regardless of the specific application
domain, the central objective is always the same: allocate
resources to optimize a given global objective.
Research has focused on both centralized and distributed

approaches for resource allocation [2], [5], [8]–[13]. In this
paper, we study distributed algorithms for resource allocation

Manuscript received May 21, 2012; revised March 29, 2013 and August 16,
2013; accepted October 15, 2013. Date of publication January 20, 2014; date
of current version February 19, 2014. This paper was presented in part at the
Proceedings of the 48th IEEE Conference on Decision and Control, December
2010. This work was supported by AFOSR grants FA9550-09-1-0538 and
FA9550-12-1-0359 and ONR grant N00014-12-1-0643. Recommended by
Associate Editor Ozdaglar.
J. R. Marden is with the Department of Electrical, Computer, and Energy

Engineering, University of Colorado, Boulder, CO 80309 USA (e-mail: jason.
marden@colorado.edu).
T. Roughgarden is with the Department of Computer Science, Stanford, Stan-

ford, CA 94305 USA (e-mail: tim@cs.stanford.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TAC.2014.2301613

in large-scale engineering systems, where a centralized con-
trol approach is undesirable or even infeasible. For example,
a centralized control approach may be impossible for the
aforementioned sensor allocation problem because of the com-
plexity associated with a potentially large number of sensors,
the vastness/uncertainty of the mission space, or potential
stealth requirements that restrict communication capabilities.
A more desirable control approach is to establish a distributed
control algorithm that allows the sensors to allocate themselves
effectively over the mission space without the need for global
intervention [14], [15]. Such an algorithm would eliminate the
need for centralized communication and introduce an inherent
robustness to communication failures, sensor failures, and
environmental uncertainties. While desirable, establishing such
a distributed control algorithm comes with its share of chal-
lenges. Is it possible to characterize the global behavior that
results from the interactions of a large group of autonomous
agents, each acting independently in response to its own local
information? How can we coordinate the agents behavior to
ensure that the emergent global behavior is desirable? What do
we give up in terms of efficiency when we transition from a
centralized to a distributed control approach?
A popular tool for distributed resource allocation is game

theory [11]–[13], [16]–[18]. Game theory is a well-established
discipline in the social sciences used for describing the emer-
gent global behavior in social systems such as traffic networks,
social networks, and auctions. More generally, “Game theory is
a bag of analytical tools designed to help us understand the phe-
nomena that we observe when decision-makers interact” [19].
The appeal of applying game-theoretic tools to distributed en-
gineering systems stems from the fact that the underlying deci-
sion-making architecture in social systems and the desired deci-
sion-making architecture in distributed engineering systems can
be analyzed using the same mathematical tools. Furthermore,
the field of game theory provides a vast array of tools that are
extremely valuable for the design and control of distributed en-
gineering systems [20]–[22].
To take advantage of game theoretic tools for distributed en-

gineering systems, the interactions of the autonomous agents
must be designed within a game-theoretic environment. This
means that the system designer must specify the following ele-
ments: i) the set of decision-making agents, ii) a set of actions for
each agent, and iii) a local utility function for each agent. While
specifying the agents and their respective actions can be rela-
tively straightforward, assigning local utility functions is some-
what more opaque. There are many pertinent issues that need
to be considered when designing the agents’ utility functions

0018-9286 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

17

PoA: connection with existing literature

Covering Games: Approximation through
Non-Cooperation ?

Martin Gairing

Department of Computer Science, University of Liverpool, U.K.
m.gairing@liverpool.ac.uk

Abstract. We propose approximation algorithms under game-theoretic
considerations. We indroduce and study the general covering problem
which is a natural generalization of the well-studied max-n-cover prob-
lem. In the general covering problem, we are given a universal set of
weighted elements E and n collections of subsets of the elements. The
task is to choose one subset from each collection such that the total
weight of their union is as large as possible. In our game-theoretic set-
ting, the choice in each collection is made by an independent player.
For covering an element, the players receive a payo↵ defined by a non-
increasing utility sharing function. This function defines the fraction that
each covering player receives from the weight of the elements.
We show how to construct a utility sharing function such that every Nash
Equilibrium approximates the optimal solution by a factor of 1 � 1

e
. We

also prove that any sequence of unilateral improving steps is polynomially
bounded. This gives rise to a polynomial-time local search approximation
algorithm whose approximation ratio is best possible.

1 Introduction

Motivation and Framework. Large scale distributed systems, like the Inter-
net, usually lack a centralized control authority. Instead, they are operated and
controlled in a distributed fashion by competing entities – modeled as players –
which make their decisions in order to optimize their own private utility. Such
systems are assumed to end up in a Nash equilibrium [21] – a state in which
no player wishes to unilaterally leave her own strategy in order to improve the
value of her private utility. However, Nash equilibria are often suboptimal solu-
tions with respect to the social objective function. The price of anarchy [19] is
a measure for the performance degradation. It is defined as the worst-case ratio
between the values of a social objective function in a Nash equilibrium and in
an optimum solution.

As the designer of a distributed system we are faced with the main challenge
of how to design the distributed system in order to optimize this social objec-
tive function even in the presence of myopic players. However, even if all players

? This work was supported by a fellowship within the Postdoc-Programme of the
German Academic Exchange Service (DAAD).

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014 571

Generalized Efficiency Bounds in
Distributed Resource Allocation

Jason R. Marden and Tim Roughgarden

Abstract—Game theory is emerging as a popular tool for dis-
tributed control of multiagent systems. To take advantage of these
game theoretic tools, the interactions of the autonomous agents
must be designed within a game-theoretic environment. A central
component of this game-theoretic design is the assignment of a local
utility function to each agent. One promising approach to utility
design is assigning each agent a utility function according to the
agent’s Shapley value. This method frequently results in games that
possess many desirable features, such as the existence of pure Nash
equilibria with near-optimal efficiency. In this paper, we explore
the relationship between the Shapley value utility design and the
resulting efficiency of both pure Nash equilibria and coarse corre-
lated equilibria. To study this relationship, we introduce a simple
class of resource allocation problems. Within this class, we derive
an explicit relationship between the structure of the resource allo-
cation problem and the efficiency of the resulting equilibria. Lastly,
we derive a bicriteria bound for this class of resource allocation
problems—a bound on the value of the optimal allocation relative
to the value of an equilibrium allocation with additional agents.

Index Terms—Cost sharing, distributed control, game theory,
price of anarchy.

I. INTRODUCTION

R ESOURCE allocation is a fundamental problem that
arises in many application domains ranging from the

social sciences to engineering [1]–[7]. One example is the
problem of routing information through a shared network,
where the global objective is to minimize average delay [7].
An alternative example is the problem of allocating sensors to
a given mission space where the global objective is to maxi-
mize coverage area [6]. Regardless of the specific application
domain, the central objective is always the same: allocate
resources to optimize a given global objective.
Research has focused on both centralized and distributed

approaches for resource allocation [2], [5], [8]–[13]. In this
paper, we study distributed algorithms for resource allocation

Manuscript received May 21, 2012; revised March 29, 2013 and August 16,
2013; accepted October 15, 2013. Date of publication January 20, 2014; date
of current version February 19, 2014. This paper was presented in part at the
Proceedings of the 48th IEEE Conference on Decision and Control, December
2010. This work was supported by AFOSR grants FA9550-09-1-0538 and
FA9550-12-1-0359 and ONR grant N00014-12-1-0643. Recommended by
Associate Editor Ozdaglar.
J. R. Marden is with the Department of Electrical, Computer, and Energy

Engineering, University of Colorado, Boulder, CO 80309 USA (e-mail: jason.
marden@colorado.edu).
T. Roughgarden is with the Department of Computer Science, Stanford, Stan-

ford, CA 94305 USA (e-mail: tim@cs.stanford.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TAC.2014.2301613

in large-scale engineering systems, where a centralized con-
trol approach is undesirable or even infeasible. For example,
a centralized control approach may be impossible for the
aforementioned sensor allocation problem because of the com-
plexity associated with a potentially large number of sensors,
the vastness/uncertainty of the mission space, or potential
stealth requirements that restrict communication capabilities.
A more desirable control approach is to establish a distributed
control algorithm that allows the sensors to allocate themselves
effectively over the mission space without the need for global
intervention [14], [15]. Such an algorithm would eliminate the
need for centralized communication and introduce an inherent
robustness to communication failures, sensor failures, and
environmental uncertainties. While desirable, establishing such
a distributed control algorithm comes with its share of chal-
lenges. Is it possible to characterize the global behavior that
results from the interactions of a large group of autonomous
agents, each acting independently in response to its own local
information? How can we coordinate the agents behavior to
ensure that the emergent global behavior is desirable? What do
we give up in terms of efficiency when we transition from a
centralized to a distributed control approach?
A popular tool for distributed resource allocation is game

theory [11]–[13], [16]–[18]. Game theory is a well-established
discipline in the social sciences used for describing the emer-
gent global behavior in social systems such as traffic networks,
social networks, and auctions. More generally, “Game theory is
a bag of analytical tools designed to help us understand the phe-
nomena that we observe when decision-makers interact” [19].
The appeal of applying game-theoretic tools to distributed en-
gineering systems stems from the fact that the underlying deci-
sion-making architecture in social systems and the desired deci-
sion-making architecture in distributed engineering systems can
be analyzed using the same mathematical tools. Furthermore,
the field of game theory provides a vast array of tools that are
extremely valuable for the design and control of distributed en-
gineering systems [20]–[22].
To take advantage of game theoretic tools for distributed en-

gineering systems, the interactions of the autonomous agents
must be designed within a game-theoretic environment. This
means that the system designer must specify the following ele-
ments: i) the set of decision-making agents, ii) a set of actions for
each agent, and iii) a local utility function for each agent. While
specifying the agents and their respective actions can be rela-
tively straightforward, assigning local utility functions is some-
what more opaque. There are many pertinent issues that need
to be considered when designing the agents’ utility functions

0018-9286 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MATHEMATICS OF OPERATIONS RESEARCH
Vol. 42, No. 4, November 2017, pp. 1197–1218

http://pubsonline.informs.org/journal/moor/ ISSN 0364-765X (print), ISSN 1526-5471 (online)

Optimal Approximation for Submodular and Supermodular
Optimization with Bounded Curvature
Maxim Sviridenko,a Jan Vondrák,b Justin Wardc

a Yahoo! Labs, New York, New York 10018; b Stanford University, Stanford, California 94305; c Ecole Polytechnique Federale de Lausanne,
1015 Lausanne, Switzerland
Contact: sviri@yahoo-inc.com (MS); jvondrak@stanford.edu (JV); justin.ward@epfl.ch (JW)

Received: December 30, 2014
Revised: June 20, 2016
Accepted: September 8, 2016
Published Online in Articles in Advance:
May 16, 2017

MSC2010 Subject Classification: Primary:
90C27; secondary: 68W25
OR/MS Subject Classification: Primary:
analysis of algorithms; secondary: mathematics:
functions

https://doi.org/10.1287/moor.2016.0842

Copyright: © 2017 INFORMS

Abstract. We design new approximation algorithms for the problems of optimizing sub-
modular and supermodular functions subject to a single matroid constraint. Specifically,
we consider the case in which we wish to maximize a monotone increasing submodular
function or minimize a monotone decreasing supermodular function with a bounded total
curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when
c ⇤ 0, f is linear, while for c ⇤ 1, f may be an arbitrary monotone increasing submodu-
lar function. For the case of submodular maximization with total curvature c, we obtain a
(1 � c/e)-approximation—the first improvement over the greedy algorithm of of Conforti
and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent anal-
ogous result for an arbitrary matroid constraint.

Our approach is based on modifications of the continuous greedy algorithm and
nonoblivious local search, and allows us to approximately maximize the sum of a non-
negative, monotone increasing submodular function and a (possibly negative) linear
function. We show how to reduce both submodular maximization and supermodular
minimization to this general problem when the objective function has bounded total
curvature. We prove that the approximation results we obtain are the best possible in
the value oracle model, even in the case of a cardinality constraint.

We define an extension of the notion of curvature to general monotone set functions
and show a (1 � c)-approximation for maximization and a 1/(1 � c)-approximation for
minimization cases. Finally, we give two concrete applications of our results in the set-
tings of maximum entropy sampling, and the column-subset selection problem.

Funding: Justin Ward was supported by ERC Starting Grant [335288-OptApprox] and EPSRC [Grant
EP/J021814/1].

Keywords: submodular maximization • supermodular minimization • curvature • matroids • continuous greedy • local search • column-subset
selection • maximum entropy sampling

1. Introduction
The problem of maximizing a submodular function subject to various constraints is a metaproblem that appears
in various settings, from combinatorial auctions (Lehmann et al. [32], Dobzinski et al. [15], Vondrák [40]) and
viral marketing in social networks (Kempe et al. [25]) to optimal sensor placement in machine learning (Krause
et al. [29, 28, 30], Krause and Guestrin [27]). A classic result by Nemhauser et al. [35] is that the greedy algorithm
provides a (1 � 1/e)-approximation for maximizing a monotone increasing submodular function subject to a
cardinality constraint. The factor of 1�1/e cannot be improved, under the assumption that the algorithm queries
the objective function a polynomial number of times (Nemhauser and Wolsey [34]). While this result rules out
improved approximation algorithms for arbitrary monotone increasing submodular functions, it is nonetheless
possible to obtain improvements for restricted classes of submodular functions. One natural such class is based
on the following notion of curvature, introduced by Conforti and Cornuéjols [11]:

Consider a set function f : 2X ! ✓�0, and for any A ✓ X, j < A let fA(j) ⇤ f (A [{ j}) � f (A) be the marginal
contribution of element j with respect to set A. Then, f is monotone increasing and submodular if and only
if fA(j) � 0 for all A and j < A and fA(j) � fB(j) for all A ✓ B and j < B, respectively. In this case, the marginal
contribution fA(j) of element j may diminish as the set A grows, although it always remains nonnegative.
Intuitively, the curvature of a monotone increasing submodular function measures how much any element’s
marginal may decrease in the worst case. Formally, the total curvature c 2 [0, 1] is defined by Conforti and
Cornuéjols [11] as:

c ⇤ max
j2X⇤

fú(j)� fX� j(j)
fú(j)

⇤ 1�min
j2X⇤

fX� j(j)
fú(j) , (1)

1197

17

Utility design reduces to

Given f , characterize or bound PoA(f)

Find f with highest PoA(f)

18

Utility design reduces to

Given f , characterize or bound PoA(f)

Find f with highest PoA(f)

18

Optimal price of anarchy

Corollary (Optimizing PoA) [Pac18a], [Pac18b]

Determining f ∈ Rn
≥0 maximizing PoA(f) is a tractable linear program

Proof.

PoA(f) =
1

W ?

W ? =

min
f ∈Rn

≥0

inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b + x)− µ1{a+x≥1}w(a + x)+

+ λ[af (a + x)w(a+x)− bf (a + x + 1)w(a + x + 1)] ≤ 0

∀(a, x , b) ∈ ∂I

19

Optimal price of anarchy

Corollary (Optimizing PoA) [Pac18a], [Pac18b]

Determining f ∈ Rn
≥0 maximizing PoA(f) is a tractable linear program

Proof.

PoA(f) =
1

W ?

W ? =

min
f ∈Rn

≥0

inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b + x)− µ1{a+x≥1}w(a + x)+

+ λ[af (a + x)w(a+x)− bf (a + x + 1)w(a + x + 1)] ≤ 0

∀(a, x , b) ∈ ∂I

19

Optimal price of anarchy

Corollary (Optimizing PoA) [Pac18a], [Pac18b]

Determining f ∈ Rn
≥0 maximizing PoA(f) is a tractable linear program

Proof.

PoA(f) =
1

W ?

W ? =

min
f ∈Rn

≥0

inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b + x)− µ1{a+x≥1}w(a + x)+

+ λ[af (a + x)w(a+x)− bf (a + x + 1)w(a + x + 1)] ≤ 0

∀(a, x , b) ∈ ∂I

19

Optimal price of anarchy

Corollary (Optimizing PoA) [Pac18a], [Pac18b]

Determining f ∈ Rn
≥0 maximizing PoA(f) is a tractable linear program

Proof.

PoA(f) =
1

W ?

W ? =

min
f ∈Rn

≥0

inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b + x)− µ1{a+x≥1}w(a + x)+

+ λ[af (a + x)w(a+x)− bf (a + x + 1)w(a + x + 1)] ≤ 0

∀(a, x , b) ∈ ∂I

19

Optimal price of anarchy

Corollary (Optimizing PoA) [Pac18a], [Pac18b]

Determining f ∈ Rn
≥0 maximizing PoA(f) is a tractable linear program

Proof.

PoA(f) =
1

W ?

W ? = min
f ∈Rn

≥0

inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b + x)− µ1{a+x≥1}w(a + x)+

+ λ[af (a + x)w(a+x)− bf (a + x + 1)w(a + x + 1)] ≤ 0

∀(a, x , b) ∈ ∂I

19

Optimal price of anarchy

Corollary (Optimizing PoA) [Pac18a], [Pac18b]

Determining f ∈ Rn
≥0 maximizing PoA(f) is a tractable linear program

Proof.

PoA(f) =
1

W ?

W ? = min
f ∈Rn

≥0

inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b + x)− µ1{a+x≥1}w(a + x)+

+ λ[af (a + x)w(a+x)− bf (a + x + 1)w(a + x + 1)] ≤ 0

∀(a, x , b) ∈ ∂I

19

Back to the main result

Example:

- # agents ≤ 40

- w(j) = jd , d = 0

1 2 3 4 5

1
2
3
4
5

j

w

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fopt)

Solution of LP

20

Back to the main result

Example:

- # agents ≤ 40

- w(j) = jd , d = 0

1 2 3 4 5

1
2
3
4
5

j

w

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fopt)

Solution of LP

20

Back to the main result

Example:

- # agents ≤ 40

- w(j) = jd , d = 0

1 2 3 4 5

1
2
3
4
5

j

w

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fopt)

Solution of LP

1− c/e

20

Back to the main result

Example:

- # agents ≤ 40

- w(j) = jd , d = 0.2

1 2 3 4 5

1
2
3
4
5

j

w

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fopt)

Solution of LP

1− c/e

20

Back to the main result

Example:

- # agents ≤ 40

- w(j) = jd , d = 0.4

1 2 3 4 5

1
2
3
4
5

j

w

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fopt)

Solution of LP

1− c/e

20

Back to the main result

Example:

- # agents ≤ 40

- w(j) = jd , d = 0.6

1 2 3 4 5

1
2
3
4
5

j

w

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fopt)

Solution of LP

1− c/e

20

Back to the main result

Example:

- # agents ≤ 40

- w(j) = jd , d = 0.8

1 2 3 4 5

1
2
3
4
5

j

w

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fopt)

Solution of LP

1− c/e

20

Back to the main result

Example:

- # agents ≤ 40

- w(j) = jd , d = 1

1 2 3 4 5

1
2
3
4
5

j

w

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fopt)

Solution of LP

1− c/e

20

Back to the main result

Example:

- # agents ≤ 40

- w(j) = jd , d = 1

1 2 3 4 5

1
2
3
4
5

j

w

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fopt)

Solution of LP

GT

1− c/e

20

Back to the main result

Example:

- # agents ≤ 40

- w(j) = jd , d = 1

1 2 3 4 5

1
2
3
4
5

j

w

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fopt)

Solution of LP

GT

1− c/e

1− c/e

20

Comparison with other distributions, #agents ≤ 20

. fSV(j) = 1
j

. fMC(j) = 1− w(j−1)
w(j)

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fOPT)

PoA(fSV)

PoA(fMC)

1− c/e

21

Comparison with other distributions, #agents ≤ 20

. fSV(j) = 1
j

. fMC(j) = 1− w(j−1)
w(j)

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fOPT)

PoA(fSV)

PoA(fMC)

1− c/e

21

Comparison with other distributions, #agents ≤ 20

. fSV(j) = 1
j

. fMC(j) = 1− w(j−1)
w(j)

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fOPT)

PoA(fSV)

PoA(fMC)

1− c/e

21

Comparison with other distributions, #agents ≤ 20

. fSV(j) = 1
j

. fMC(j) = 1− w(j−1)
w(j)

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

d

PoA(fOPT)

PoA(fSV)

PoA(fMC)

1− c/e

21

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

The approach: Approximation through game theory

. Computing the exact price of anarchy

. Optimizing the price of anarchy

The contribution: Distributed algorithms, improved performance

Outlook: Extension to

. Coarse correlated equilibria

. More general W

22

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

The approach: Approximation through game theory

. Computing the exact price of anarchy

. Optimizing the price of anarchy

The contribution: Distributed algorithms, improved performance

Outlook: Extension to

. Coarse correlated equilibria

. More general W

22

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

The approach: Approximation through game theory

. Computing the exact price of anarchy

. Optimizing the price of anarchy

The contribution: Distributed algorithms, improved performance

Outlook: Extension to

. Coarse correlated equilibria

. More general W

22

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

The approach: Approximation through game theory

. Computing the exact price of anarchy

. Optimizing the price of anarchy

The contribution: Distributed algorithms, improved performance

Outlook: Extension to

. Coarse correlated equilibria

. More general W

22

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

The approach: Approximation through game theory

. Computing the exact price of anarchy

. Optimizing the price of anarchy

The contribution: Distributed algorithms, improved performance

Outlook: Extension to

. Coarse correlated equilibria

. More general W

22

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

The approach: Approximation through game theory

. Computing the exact price of anarchy

. Optimizing the price of anarchy

The contribution: Distributed algorithms, improved performance

Outlook: Extension to

. Coarse correlated equilibria

. More general W

22

Thank you
people.ee.ethz.ch/~dariop

[Pac18a] D. Paccagnan, R. Chandan and J.R. Marden. “Distributed resource allocation
through utility design - Part I: optimizing the performance certificates via the
price of anarchy”. ArXiv, 2018.

[Pac18b] D. Paccagnan and J.R. Marden. “Distributed resource allocation through utility
design - Part II: applications to submodular, supermodular and set covering
problems”. ArXiv, 2018.

23

people.ee.ethz.ch/~dariop

Thank you
people.ee.ethz.ch/~dariop

[Pac18a] D. Paccagnan, R. Chandan and J.R. Marden. “Distributed resource allocation
through utility design - Part I: optimizing the performance certificates via the
price of anarchy”. ArXiv, 2018.

[Pac18b] D. Paccagnan and J.R. Marden. “Distributed resource allocation through utility
design - Part II: applications to submodular, supermodular and set covering
problems”. ArXiv, 2018.

23

people.ee.ethz.ch/~dariop

	Introduction
	Game-design approach
	Characterizing the price of anarchy
	Optimizing the price of anarchy
	Conclusions and Outlook

