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PhD research overview

Aggregative games

> Large population, algorithms
[TAC18a]

> Equilibrium efficiency
[L-CSS18], [CDC18]

> Algorithms and applications
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[Submitted, J18a]
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Aggregative games

- Introduction
- Convergence between Nash and Wardrop

- Efficiency of equilibria
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- A fleet of EVs to recharge players: i€ {l,...,M}
- Each vehicle min bill in [1, n] cost of i: p(o(x) +d)"x
- Charging requirements constr: x e X

System level objective

- Minimize congestion minJs(x) = ple(x)+a) T ((x)+d)

How much does selfish behaviour degrade the performance?

max,eng(a) Js(X) -
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- Introduction
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