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OVERVIEW

1. Interconnected dynamics and stability analysis

2. Projected gradient f ow on the power f ow manifold

3. Numerical experiments
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ROADMAP

1. Mechanisms for smart mobility: congestion pricing
 optimal tolling mechanisms

2. Outlook and opportunities
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How do we design fine grained and adaptive
congestion pricing?
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Abstract. In a system in which noncooperative agents share a common
resource, we propose the ratio between the worst possible Nash equilib-
rium and the social optimum as a measure of the e�ectiveness of the
system. Deriving upper and lower bounds for this ratio in a model in
which several agents share a very simple network leads to some interest-
ing mathematics, results, and open problems.

1 Introduction

Internet users and service providers act selfishly and spontaneously, without
an authority that monitors and regulates network operation in order to achieve
some “social optimum” such as minimum total delay [1]. How much performance
is lost because of this? This question appears to exemplify a novel and timely
genre of algorithmic problems, in which we are investigating the cost of the lack
of coordination —as opposed to the lack of information (on-line algorithms) or
the lack of unbounded computational resources (approximation algorithms). As
we show in this paper, this point of view leads to some interesting algorithmic
and combinatorial questions and results.

It is nontrivial to arrive at a compelling mathematical formulation of this
question. Independent, non-cooperative agents obviously evoke game theory [8],
and its main concept of rational behavior, the Nash equilibrium: In an environ-
ment in which each agent is aware of the situation facing all other agents, a Nash
equilibrium is a combination of choices (deterministic or randomized), one for
each agent, from which no agent has an incentive to unilaterally move away. Nash
equilibria are known not to always optimize overall performance, with the Pris-
oner’s Dilemma [8,10] being the best-known example. Conditions under which
Nash equilibria can achieve or approximate the overall optimum have been stud-
ied extensively ([10]; see also [5,7,11] for studies on networks). However, this line
of previous work compares the overall optimum with the best Nash equilibrium,
not the worst, as befits our line of reasoning. To put it otherwise, this previous
research aims at achieving or approximating the social optimum by implicit acts
of coordination, whereas we are interested in evaluating the loss to the system
due to its deliberate lack of coordination.

Game-theoretic aspects of the Internet have also been considered by re-
searchers associated with the Internet Society [1,12], with an eye towards de-
signing variants of the Internet Protocols which are more resilient to video-like

C. Meinel and S. Tison (Eds.): STACS’99, LNCS 1563, pp. 404–413, 1999.
c� Springer-Verlag Berlin Heidelberg 1999
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Preview of the results

Main result: first solution to design of optimal tolls
in congestion games (via linear programming)

Û Example: prices of anarchy for polynomial latencies of degree d

d Untolled

Lower bound Optimal toll Optimal toll

[1, 2, 3, . . . ]

full info [4, 5] local info local info & constant

1 2.50

2 2.01 2.15

2 9.58

5 5.10 5.33

3 41.54

15 15.55 18.36

4 267.64

52 55.45 89.41

5 1513.57

203 220.40 469.74

 Approach recovers altogether [1, 2, 3, ...] + produces novel results
 Tolls based on local info ¥ tolls with full info
 Tolls based on local info & constant do not lose much

[1] Christodoulou, Koutsoupias, STOC 05; [2] Aland et al., STACS 06; [3] Roughgarden, STOC09 and JACM 15

[4] Caragiannis, Kaklamanis, Kanellopoulos, ESA 06; [5] Bilò, Vinci, EC 16 and TEAC 19
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How did we obtain this result?

1. Structure of optimal tolls: optimal tolls are linear

2. LP to characterize e�ciency of linear tolls

3. LP to compute optimal tolls
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Optimal local tolls are linear maps

PoA

= sup
set of instances

3 total traveltime in worst equilibrium
minimum total traveltime

4

Set of instances:
- any graph

, any pairs (Oi , Di), any # of agents |N| Æ n

- any latency ¸ œ L

= {
qm

j=1 –j · bj(x), –j Ø 0}

for given bases in B = {b1(x), . . . , bm(x)}

Local tolling scheme: ·e = T (¸e)

Claim: There exists a local optimal tolling T
opt that is linear, i.e.,

T
opt(¸e) = T

opt
3ÿ

j
–e

j · bj

4
=

ÿ

j
–e

j · T
opt(bj)

Û finding T
opt(bj) is su�cient!

17
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Computing e�ciency of given linear tolls

[Paccagnan, et al.]

Theorem: given b1(x), . . . , bm(x), and linear tolls T , let fj = bj + T (bj).

PoA(B, n, T ) = 1/C
ı

C
ı = max

‹œRØ0, flœR
fl

s.t. bj(x +z)(x +z)≠flbj(x +y)(x +y)+‹ [fj(x +y)y ≠ fj(x +y +1)z] Ø 0

’ j œ {1, . . . , m}, ’ (x , y , z) œ N3 with x + y + z Æ n

Û |I| = O(n3), but su�ces O(n2)
Û gives worst-case instance

18
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The main idea

PoA = sup
set of instances

3 total travel time in worst equilibrium
minimum total travel time

4

Key idea: transform the definition of PoA itself into a linear program

1. reduce to only two allocations: optimal o and worst-equilibrium e

PoA = sup
GœG̃

3
TT (e)
TT (o)

4
s.t. Ci(ei , e≠i) Æ Ci(oi , e≠i) ’i

2. relax the previous program

PoA = sup
GœG̃

3
TT (e)
TT (o)

4
s.t.

ÿ

i
Ci(ei , e≠i) Æ

ÿ

i
Ci(oi , e≠i)

3. how to parametrize an instance G œ G̃?

O(n3) variables su�ce for TT (e), TT (o),
q

i Ci(e) ≠ Ci(oi , e≠i)

4. massage and take the dual

19
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Designing optimal tolls

[Paccagnan, et al.]

Theorem: Given b1(x), . . . , bm(x), an optimal local toll is given by
T

opt(¸e) =
ÿ

j
–e

j · T
opt(bj) where T

opt(bj) = f
opt

j ≠ bj

f
opt

j œ arg max
fj œRn, flœR

fl

s.t. bj(x +z)(x +z)≠flbj(x +y)(x +y)+ fj(x +y)y ≠ fj(x +y +1)z Ø 0
’(x , y , z) œ I

20
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Review of Tolling in Congestion Games. The scientific interest
in the design of tolls can be traced back to (20). Since then,
a large body of literature in the areas of transportation and
computer science has investigated this approach (21–24).

In this respect, the continuous-flow approximation of Rosen-
thal’s original model is by far the most well understood, as
uniqueness of the Nash equilibrium is guaranteed, greatly sim-
plifying the analysis. In this setting, Pigouvian tolls produce
an emergent behavior which is always optimal (20, 28).

With regard to the original congestion game model, much
less is known as observed, e.g., by (29), in part due to the
multiplicity of equilibria. Within this setting, no tolling scheme
can incentivize optimal routing in every instance (27). Despite
the vast scientific interest in the design of tolling schemes,
there is currently no means to derive a set of optimal local
tolls, let alone being able to do so through a computationally
tractable approach. It is in fact already di�cult to provide
tight e�ciency bounds for a given tolling scheme, as one must
consider its performance over multiple instances. To date, the
only available answer is confined to problems where all latencies
¸e are a�ne functions, and under the restrictive requirement
that each tolling function ·e is congestion-independent (25).

Tolling schemes utilizing full information have recently been
proposed for congestion games where all latencies ¸e are poly-
nomial functions of the utilization (26). Unfortunately, the
above-mentioned work requires leveraging complete network
and user information - a rather impractical scenario. In addi-
tion, the resulting taxation mechanism must be recomputed
for any change in the network topology, lacking the robustness
property one hopes for (see Fig. 2). Finally, the computation
of these tolls has complexity growing exponentially with the
number of users and size of the network, making the approach
unusable even for small-size networks. In this article we pro-
vide a computationally tractable framework to design local
tolls that maxmize the system e�ciency and are robust to
modifications in the underlying routing problem.

Results

We begin introducing the formal notion of price-of-anarchy, be-
fore presenting the main result. Towards this goal, we consider
congestion games where each latency is a linear combination
of given bases bj : N æ R+, j = 1, . . . , m, with nonnegative
coe�cients. Note that this framework is extremely rich, as it
accommodates many well-studied classes of congestion games,
e.g., polynomial congestion games (30). A�ne congestion
games are obtained, for example, setting b1(x) = 1, b2(x) = x.
We denote with G the set of all congestion games that can
be constructed with latency functions as in the above, and n
players. Our objective is that of designing a function that asso-
ciates each latency ¸ to a corresponding toll, which we denote
with T (¸). As discussed earlier, the ine�ciency of a tolling
mechanism T is commonly measured by the price-of-anarchy,
defined as

PoA(T ) = sup
GœG

NashCost(G, T )
MinCost(G, T ) , [2]

where MinCost(G, T ) and NashCost(G, T ) are the minimum
social cost and the highest social cost at a Nash equilibrium
when employing the mechanism T on the game G. By defi-
nition PoA(T ) Ø 1, and a lower value of the price-of-anarchy
corresponds to a more e�cient tolling. Within this context, the

central planner is interested in designing a mechanism T that
results in the highest possible e�ciency, i.e., that minimizes
Eq. (2). The following theorem resolves this question.

Optimal Local Tolls. Let ¸ =
qm

j=1 –jbj be a latency func-
tion. A local taxation mechanism minimizing the price-of-
anarchy defined in Eq. (2) is given by

T opt(¸) =
mÿ

j=1

–j · T opt(bj), where T opt(bj) = fopt
j ≠ bj ,

and fopt
j is the solution to the following linear program,

max
fœRn,flœR

fl

s.t. bj(y)y ≠ flbj(x)x + (x ≠ z)fj(x) ≠ (y ≠ z)fj(x + 1) Ø 0
’(x, y, z) œ I.

The optimal price of anarchy is 1/flı.
The above statement contains two fundamental results.

The first part of the statement shows that an optimal taxation
mechanisms is a linear map. As a consequence, the toll applied
to any latency function ¸ =

qm

j=1 –jbj can be obtained as
the linear combination of T opt(bj), with the same coe�cients
–j used to define ¸. Complementary to this, the second part
of the statement provides us with a practical technique to
compute T opt(bj) for each of the basis bj , as the solution of
a simple linear program. This is particularly valuable, as
linear programs can be solved extremely e�ciently through
widely available software packages, e.g., (31, 32). Furthermore,
the approach presented allows to precompute and store in a
library the values of T opt(bj) for di�erent basis functions (e.g.,
polynomials). Having done so, the only operations required
to compute an optimal toll T opt(¸) are mere addition and
multiplications of T opt(bj) - stored in the library - with –j . A
graphical representation of this process is included in figure
blah, while MATLAB® and Python® code for designing optimal
mechanisms is publicly available at [blah].
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We finally observe that a di�erent linear program can be
derived in order to compute (and not optimize) the e�ciency
of given tolls, see supplementary material. As the un-tolled
case corresponds to setting the tolls to be identically zero, our
approach recovers and generalizes many well-known results on
the e�ciency of un-tolled systems, e.g., (15, 30, 33–35), see
the first column of figure BLAH. In addition to that, it allows
to automatically discover novel e�ciency bounds: for any
given choice of basis functions, the associated linear program
automatically recovers the exact value of the price of anarchy,
avoiding the need for ad hoc and complicated constructions
as those appearing in the above-cited works. Both in the
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 code available on GitHub
github.com/rahul-chandan/resalloc-poa
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Summary of results and opportunities

Congestion-pricing as mechanism for road-tra�c routing
Û first solution to design of optimal tolls in congestion games

Û computing/optimizing e�ciency of equilibria is a tractable LP

Consequences:

 recovers/generalizes existing results altogether
 local information as good as full information
 simple mechanisms do not loose performance

Opportunities: novel framework is still unexplored

≠ constraints on tolls
≠ carrots vs sticks
≠ knowledge on the latency functions
≠ ...

[TAC19a], [TAC19b] Paccagnan, Chandan, Marden, “Distributed resource allocation through utility design - Part I and II”, TAC 19

[ArXiv19] Paccagnan, Chandan, Ferguson, Marden, “Incentivizing e�cient use of shared infrastructure”, ArXiv 19 21



Summary of results and opportunities

Congestion-pricing as mechanism for road-tra�c routing
Û first solution to design of optimal tolls in congestion games
Û computing/optimizing e�ciency of equilibria is a tractable LP

Consequences:

 recovers/generalizes existing results altogether
 local information as good as full information
 simple mechanisms do not loose performance

Opportunities: novel framework is still unexplored

≠ constraints on tolls
≠ carrots vs sticks
≠ knowledge on the latency functions
≠ ...

[TAC19a], [TAC19b] Paccagnan, Chandan, Marden, “Distributed resource allocation through utility design - Part I and II”, TAC 19

[ArXiv19] Paccagnan, Chandan, Ferguson, Marden, “Incentivizing e�cient use of shared infrastructure”, ArXiv 19 21



Summary of results and opportunities

Congestion-pricing as mechanism for road-tra�c routing
Û first solution to design of optimal tolls in congestion games
Û computing/optimizing e�ciency of equilibria is a tractable LP

Consequences:
 recovers/generalizes existing results altogether
 local information as good as full information
 simple mechanisms do not loose performance

Opportunities: novel framework is still unexplored

≠ constraints on tolls
≠ carrots vs sticks
≠ knowledge on the latency functions
≠ ...

[TAC19a], [TAC19b] Paccagnan, Chandan, Marden, “Distributed resource allocation through utility design - Part I and II”, TAC 19

[ArXiv19] Paccagnan, Chandan, Ferguson, Marden, “Incentivizing e�cient use of shared infrastructure”, ArXiv 19 21



Summary of results and opportunities

Congestion-pricing as mechanism for road-tra�c routing
Û first solution to design of optimal tolls in congestion games
Û computing/optimizing e�ciency of equilibria is a tractable LP

Consequences:
 recovers/generalizes existing results altogether
 local information as good as full information
 simple mechanisms do not loose performance

Opportunities: novel framework is still unexplored

≠ constraints on tolls
≠ carrots vs sticks
≠ knowledge on the latency functions
≠ ...

[TAC19a], [TAC19b] Paccagnan, Chandan, Marden, “Distributed resource allocation through utility design - Part I and II”, TAC 19

[ArXiv19] Paccagnan, Chandan, Ferguson, Marden, “Incentivizing e�cient use of shared infrastructure”, ArXiv 19 21



Summary of results and opportunities

Congestion-pricing as mechanism for road-tra�c routing
Û first solution to design of optimal tolls in congestion games
Û computing/optimizing e�ciency of equilibria is a tractable LP

Consequences:
 recovers/generalizes existing results altogether
 local information as good as full information
 simple mechanisms do not loose performance

Opportunities: novel framework is still unexplored
≠ constraints on tolls
≠ carrots vs sticks
≠ knowledge on the latency functions
≠ ...

[TAC19a], [TAC19b] Paccagnan, Chandan, Marden, “Distributed resource allocation through utility design - Part I and II”, TAC 19

[ArXiv19] Paccagnan, Chandan, Ferguson, Marden, “Incentivizing e�cient use of shared infrastructure”, ArXiv 19 21


