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Central Goal: coordinate socio-technical systems to desirable behaviour
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Paradigm shift: technology now interacts with human users
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Contents The 4 Grand Challenges are focused on the trends which will transform our future:

Artificial Intelligence and data — .
Ageing society Artificial Intelligence and data

Clean growth e Ageing society

Future of mobility

e Clean growth
o Future of mobility

~> an interdisciplinary endeavour:
computer science, control theory, optimization, economics,
social sciences, urban planning, ...



B¥
ROADMAP

1. Mechanisms for smart mobility: congestion pricing

~» optimal tolling mechanisms

2. Outlook and opportunities



Congestion is soaring...

London

New York

Nairobi

Beijing



Congestion is soaring...

. . The TEACTTaPD e s s s Sy O Tt ik Tt
$100 Billion Cost of Traffic Ry ] i I Traffic jams cost the average motorist
Congestion in Metro New York Itiﬂ;”f?] S — $1 - a"n“a”y more than £1.000 a year

| emmsHoRves osr

798 178HRS

520 ition sonualy incluces $9.17 billion o
o e et cos ottt THE SLOWEST CITY WAsS:

#1 LONDON

LN PN

PARTNERSHIP
New York City

GHG Emissions 2014

@ Transport

@ Electricity and Heat
@ Industry

@ Buildings

IEA via The World Bank




.and tolls being proposed to alleviate the issue

he Nework Times

Over $10 to Drive in Manhattan?
What We Know About the
Congestion Pricing Plan

 hoe
Most Cities Will Have To
Introduce Congestion
Charging, Say Experts At
Global Transit Conference

withinthe charging

2 Low Emissian Zane (ULEZ,




.and tolls being proposed to alleviate the issue

he Nework Times

Over $10 to Drive in Manhattan?
What We Know About the
Congestion Pricing Plan

 hoe
Most Cities Will Have To
Introduce Congestion
Charging, Say Experts At
Global Transit Conference

MAYOR OF LONDO!

# Orns Congaston Crarge

Congestion Charge

withinthe charging

Auto Pay. Exempions and discour

Yourt 50 need £ chck f your venicte i affected by the Utz Low Erlsson Zane (ULEZL

> Current: blunt policies




..and tolls being proposed to alleviate the issue

he Nework Times

Over $10 to Drive in Manhattan?
What We Know About the
Congestion Pricing Plan

 hoe
Most Cities Will Have To
Introduce Congestion
Charging, Say Experts At
Global Transit Conference

> Current: blunt policies
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> Future: fine grained + adaptive pricing using location data



How do we design fine grained and adaptive
congestion pricing?
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> Problem: collective behaviour of selfish agents is often inefficient

2 2
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Selfish routing Optimal routing
System cost: 2+2 =14 System cost: 2+1=3

> Congestion pricing: influence behavior to minimize total traveltime
24x

@O@ - Robustness?

- Information?
X +X

Selfish routing + tolls 7(x) = x
System cost back to 3

Q: how to compute “optimal” tolls?
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Routing on a network - model

- graph
- agent i, {O;,D;} = set of paths P;

- latency functions Z¢(|ple)

agents’ costs total traveltime
Ci(p) = D _ Le(lple) + 7e(|ple) TT(p) =D _ [plele(lple)
ecp; ecE

total travel time in worst equilibrium

Price of Anarchy = max — -
set of instances minimum total travel time

Goal: design tolls that minimize price of anarchy
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full info: 7.=T({O;, D;}, {¢c}, graph) local info: 7. = T(/)

-+ more performance

— requires more computation
— not robust

— less performance
+ simpler computation
+ robust
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Main result: first solution to design of optimal tolls

in congestion games (via linear programming)

> Example: prices of anarchy for polynomial latencies of degree d

d | Untolled | Lower bound [ Optimal toll <= Optimal toll
[1,2 3, ...] | full info [4, 5] Jg | local info local info & constant

1 2.50 2 2.01 2.15

2 9.58 5 5.10 5.33

3 41.54 15 15.55 18.36

4 | 267.64 52 55.45 89.41

5 | 1513.57 203 220.40 469.74

~~ Approach recovers altogether [1, 2, 3, ...] + produces novel results
~~ Tolls based on local info ~ tolls with full info
~ Tolls based on local info & constant do not lose much

[1] Christodoulou, Koutsoupias, STOC 05;
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[2] Aland et al., STACS 06;
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How did we obtain this result?

1. Structure of optimal tolls: optimal tolls are linear
2. LP to characterize efficiency of linear tolls

3. LP to compute optimal tolls
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PoA(B,n, T) = sup

set of instances

(total traveltime in worst equilibrium)
minimum total traveltime

Set of instances:
- any graph, any pairs (O;, D;), any # of agents || < n

- any latency £ € L = {377 o - bj(x), «; >0}
for given bases in B = {b1(x),..., bm(x)}

Local tolling scheme: 7. = T(4e)

Claim: There exists a local optimal tolling T°P! that is linear, i.e.,

TOPt(fe) = TOP* (Za ) Za T°pt(b

> finding T°PY(b;) is sufficient!
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Computing efficiency of given linear tolls
[Paccagnan, et al.]

Theorem: given by(x), ..., bm(x), and linear tolls T, let f; = b; + T(b;).
PoA(B,n, T)=1/C*
C*= max
VER>(, pER

s.t. bj(x+2)(x+2) = pbj(x+y)(x+y)+v [fi(x+y)y —fi(x+y+1)z] > 0
Vje{l,...,m}, VY(x,y,z) €N® with x+y+z<n

> |Z| = O(n?), but suffices O(n?)
> gives worst-case instance
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x

tuples (x,y, z)
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Key idea: transform the definition of PoA itself into a linear program
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Key idea: transform the definition of PoA itself into a linear program

1. reduce to only two allocations: optimal o and worst-equilibrium e

PoA = sup <:,I__:,I_-EZ;)

2. relax the previous program

TT(e)
PoA = sup ( > s.t. Ci(ei,e_;) < Ci(oj,e_;
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3. how to parametrize an instance G € G?
O(n?) variables suffice for TT(e), TT (o), 3_; Ci(e) — Ci(oi, e_;)

4. massage and take the dual
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[Paccagnan, et al.]
Theorem: Given b;(x),. .. m(x), an optimal local toll is given by

TOP(¢e) Za Topt where  TOPY(b)) = £ — b

fJOP € argmax p
fer” pER

st. bi(x+2)(x+2)—pbj(x+y)(x+y)+fi(x+y)y—fi(x+y+1)z >0
V(x,y,z) €T

——————————————————————————————

solve LP TP (by)
with by

solve LP
with bg

~ code available on GitHub

github.com/rahul-chandan/resalloc-poa == == -=-=--=-------------- - - -~
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Congestion-pricing as mechanism for road-traffic routing
> first solution to design of optimal tolls in congestion games

> computing/optimizing efficiency of equilibria is a tractable LP

Consequences:
~~ recovers/generalizes existing results altogether
~> local information as good as full information
~ simple mechanisms do not loose performance

Opportunities: novel framework is still unexplored
— constraints on tolls
— carrots vs sticks
— knowledge on the latency functions

[TAC19a], [TAC19b] Paccagnan, Chandan, Marden, “Distributed resource allocation through utility design - Part | and II", TAC 19

[ArXiv19] Paccagnan, Chandan, Ferguson, Marden, “Incentivizing efficient use of shared infrastructure”, ArXiv 19



