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the traditional database exchange setting, which considers only the exchange of data,
we are interested in exchanging implicit knowledge. As representation formalism we use
Description Logics (DLs), thus assuming that the source and target KBs are given as a DL
TBox+ABox, while the mappings have the form of DL TBox assertions. We define a general

I[()eg;‘g/r?;iis('m logic framework of KB exchange, and study the problem of translating the knowledge in the
Knowledge exchange source KB according to the mappings expressed in OWL2QL, the profile of the standard
DL-Lite Web Ontology Language OWL 2 based on the description logic DL-Litez. We develop novel
Data exchange game- and automata-theoretic techniques, and we provide complexity results that range
Query inseparability from NLOGSPACE to EXPTIME.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ontologies are at the heart of various Computer Science disciplines, among which the most prominent ones are Semantic
Web, Biomedical informatics, and of course, Artificial Intelligence and Knowledge Representation. Here, for simplicity, by
ontology we mean a formal representation of the knowledge about a domain in terms of concepts (unary predicates) and
roles (binary predicates). In the biomedical domain, e.g., Pneumonia and Lung could be concepts, and finding_site could be a
role, and the knowledge about the domain could be asserted in an axiom of the form “The finding site of pneumonia is lungs”
[1,2]. The advantages of using ontologies are that, on the one hand, they provide a framework for organizing and structuring
information, and on the other hand, they are equipped with capabilities to reason about concepts and roles.

When representing the knowledge about a domain of interest in terms of an ontology, on the one hand the designer is
free to choose the formalism in which to express the ontology, among a variety of different alternatives (e.g., a relational
database possibly with constraints, Datalog, or Description Logics). On the other hand, she can select the specific terminology
she considers more appropriate to convey the domain semantics. For instance, when creating a biomedical ontology about
deseases, the lungs can be modeled as Pair_of_lungs or Both_lungs. This leads to having complex forms of information,
maintained in different formats and organized according to different structures. Often, this information needs to be shared
between agents: to reuse the existing ontologies, to integrate knowledge from different agents, and so on. Therefore in
recent years, both in the data management and in the knowledge representation communities, several settings have been
investigated that address this problem from various perspectives: (i) in information integration, uniform access is provided
to a collection of data sources by means of an ontology (or global schema) to which the sources are mapped [3]; (ii) in
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Fig. 1. Data exchange framework.

peer-to-peer systems, a set of peers declaratively linked to each other collectively provide access to the information assets
they maintain [4-6]; (iii) in ontology matching, the aim is to understand and derive the correspondences between elements
in two ontologies [7-9]; (iv) in ontology modularity, the aim is to extract independent, possibly small, subsets of an ontology,
so-called modules [10-12]; (v) in knowledge translation, axioms are being translated from one representation (i.e., logical
language and vocabulary) into another [13-15]; and, finally, (vi) in data exchange, the information stored according to a
source schema needs to be restructured and translated so as to conform to a target schema [16,17]. The work we present
in this article is inspired by this latter setting investigated in databases.

Data exchange is a field of database theory, motivated by several applications from industry [18,19], that deals with
transferring data between differently structured databases. In the seminal article [16], the data exchange problem was
defined as the problem of transforming data structured under a source schema into data structured under a target schema,
given a mapping specifying how to translate data from the source to the target schema. This problem is depicted in Fig. 1,
where the obtained target data instance is referred to as a solution. The data exchange problem has been studied for
different combinations of languages used to specify the source schema, the target schema and the mapping [17,20,21]. Most
of the results in the literature consider source-to-target tuple generating dependencies (tgds) as the language to specify
mappings. The dependencies in this class allow one to express containment of conjunctive queries: if a conjunction of
several predicates holds, then a conjunction of some other predicates must hold as well. For example, the tgd

Va, b . AuthorOf (a, b) — 3y, g . BookInfo(b, a, y) A BookGenre(b, g) (1)

says that if a is the author of a book b, then there exist y and g such that b is a book with author a that was published in
year y, and b has genre g. Many database integrity constraints can be expressed by tgds, so these dependencies have been
widely used in databases. Source-to-target tgds (st-tgds) are tgds of a special shape: the conjunction on the left-hand side
uses only symbols from a source schema, while the conjunction on the right-hand side uses only symbols from a target
schema.

A fundamental assumption in the (traditional) data exchange framework is that the source is a complete database: every
fact is either true or false. On the other hand, a target instance can be incomplete and a source instance can have many
different solutions, as incomplete information can be introduced by the mapping layer (see also [22]).

Example 1.1. If we consider the mapping consisting of the constraint (1), and a source instance consisting of one entry
AuthorOf (tolkien, lotr), encoding that Tolkien is the author of ‘The Lord of the Rings’, then the following two target instances,
I and I, are solutions:

I, = {BookInfo(lotr, tolkien, 1937), BookGenre(lotr, fantasy)},
I = {BookInfo(lotr, tolkien, NULL{), BookGenre(lotr, NULL)}.

Note that here incompleteness is caused by the existential restriction 3y, g..., which can be satisfied by introducing new
objects: either named individuals (or constants), like fantasy, or anonymous objects, like NULL;. Note also that NULL; and
NULLy are labeled nulls, which are widely used in databases to represent anonymous objects. O

To characterize good transformations, several criteria have been considered [23]. We emphasize two types of good trans-
lations, universal solutions and query solutions. Universal solutions are the most general solutions: any other solution is more
specific (I, in Example 1.1 is a universal solution), while query solutions are good solutions from the point of view of
answering target queries, i.e., queries formulated over the target schema.

Data exchange with incomplete information. As mentioned before, in the (traditional) data exchange framework, source
instances are assumed to contain complete information. However, there are natural scenarios where source instances may
contain incomplete information [24,25,21]. In particular, the problem of data exchange with incomplete source data was
studied in [25], where an incomplete specification is understood as an object with (possibly infinitely) many interpretations.
A simple example of such an object is a database with nulls: assume that we have a table storing information about book
genres, and that ‘The Lord of The Rings’ is a book whose genre is unknown. In this case, the table would consist of an entry
of the form BookGenre(lotr, NULL), which represents all different instances containing a concrete value for the genre of ‘The
Lord of The Rings’: BookGenre(lotr, fantasy), BookGenre(lotr, history), BookGenre(lotr, scifi), etc.
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A knowledge base is another example of an object with multiple interpretations. A knowledge base (KB) is a description
of a domain of interest that includes two kinds of information: (i) ground facts, i.e., extensional information of the form
“John is a student”, “Databases is a course”, “John attends the Databases course”, etc., which assert properties of individual objects
that are part of the domain; and (ii) logical axioms, i.e., intensional information of the form “Every course must be taught by
somebody”, “A student cannot be a professor”, etc., which structure the knowledge about the domain. We also call the second
type of information an ontology. It is implicit in the standard semantics of a KB that the knowledge it describes is only a
partial description of a domain of interest, which means that the KB represents many actual states of the world. For instance,
if we consider the KB consisting of the five axioms mentioned above, then it could represent one possible state of the world,
where John also attends the Statistics course, David teaches Databases and Peter teaches Statistics. The general knowledge
exchange framework proposed in [25] considers the case where the source is a KB as opposed to a relational database.
Moreover, it is shown in that work that some natural problems (such as query answering over the target schema) become
undecidable if KBs are specified by tgds and mappings are specified by source-to-target tgds. Thus, some decidability results
are obtained by considering some restricted fragments of the class of tgds when specifying KBs.

An alternative to the approach proposed in [25] to achieve decidability is to consider less expressive ontological languages
when specifying both KBs and mappings. A good candidate for that role is the formalism of Description Logics, which come
in variants that provide fair expressive power, and at the same time possess good computational properties.

Description Logics as ontology language. Description Logics (DLs) [26] are a family of formal languages, more precisely,
fragments of first-order logic, that are specifically designed to serve as ontology languages. They exhibit a reasonable tradeoff
between their expressive power and the computational complexity of logical inference tasks. Nice computational properties
in DLs are achieved by restricting attention to unary and binary predicates, called concepts and roles, respectively, and to
restricted forms of axioms. Ground facts in DLs are encoded in the form of an ABox, which is a set of membership assertions,
and logical axioms are encoded in the form of a TBox, which is a set of concept and role inclusions. For instance, the DL KB
containing the five axioms describing the university domain mentioned before looks as follows:

Student(john)
Course(databases)
attends(john, databases)

Course C Ateaches™
Student C —Professor

Notice that both inclusions above are between concepts.

Thus, the starting point for our work is the knowledge exchange framework defined in [25], and the main motivation is
to find ontology and mapping specification languages where the fundamental problem of knowledge base exchange can be
solved, and which are both natural and useful in practice. For this purpose, we focus on the Description Logic underlying
OWL2 QL, which is the profile [27] of the standard Web Ontology Language OWL 2 [28] that has been specifically designed
for efficient query answering. Next we describe our contributions in this respect.

Our contributions. First, we propose and develop a framework for KB exchange based on DLs; both source and target
are KBs constituted by a DL TBox, representing intensional information, and an ABox, representing extensional information,
and mappings are sets of DL concept and role inclusions. We then specialize this framework to the case of lightweight
DLs of the DL-Lite family [29]. In particular, we consider DL-Liter, which is the logic underlying the OWL2 QL profile of
OWL 2. In this framework, we are interested in three types of solutions: universal solutions, universal UCQ-solutions, and
UCQ-representations. Universal solutions are the most precise solutions: a target KB K; is a universal solution for a source
KB Ks under a mapping M if it preserves all the interpretations of g with respect to M. Universal UCQ-solutions is
a relaxation of the notion of universal solutions: a target KB K; is a universal UCQ-solution for a source KB /Cs under
a mapping M if it preserves all answers to unions of conjunctive queries (UCQs) formulated over the target signature.
UCQ-representations are similar to universal UCQ-solutions, but they do not depend on the source ABox, only on the source
TBox and the mapping: a target TBox 7 is a UCQ-representation of a source TBox S under a mapping M if for each possible
source ABox As, it holds that 7, M, and As give the same answers to UCQs as S, M, and As. The rationale behind the
notion of UCQ-representation is to maximize the implicit knowledge translated to the target. Thus, a UCQ-representation
of a source TBox captures at best the intensional information that can be extracted from this source TBox according to a
mapping and using UCQs.

Second, we study each one of the three notions of solution just described, and their relationship to each other for
the case of KBs and mappings defined using DL-Lite. We provide examples that justify the need for target ABoxes with
labeled nulls in order for universal solutions and universal UCQ-solutions to exist, as the language of DL-Lite is capable of
implying the existence of new objects. Such ABoxes mentioning anonymous objects are called extended ABoxes, as opposed
to simple ABoxes, which mention only named individuals (or constants).

Finally, in order to obtain a good understanding of the knowledge base exchange problem, we study the computa-
tional complexity of the membership and non-emptiness problems for universal solutions, universal UCQ-solutions and
UCQ-representations. For universal solutions (resp., universal UCQ-solutions), the membership problem verifies, given a
source KB g, a mapping M, and a target KB K, whether X; is a universal solution (resp., universal UCQ-solution) for
Ks under M; instead, the non-emptiness problem addresses the question whether there exists a universal solution (resp.,
universal UCQ-solution) for a given source KB /g and a given mapping M. For UCQ-representations, the membership
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Table 1
Complexity results for the membership and non-emptiness problems.
Universal solutions Membership Non-emptiness
simple ABoxes PTiME-complete (Th. 6.10) PTiME-complete (Th. 6.11)
extended ABoxes NP-complete (Th. 6.14) PSpAce-hard (Lem. 6.15), in EXPTIME (Th. 6.19)
Universal UCQ-solutions
simple ABoxes ExPTIME-complete ([30, Th. 45]) in EXPTIME ([30])
extended ABoxes ExPTIME-complete ([30, Th. 46]) PSpace-hard (Lem. 6.16)

UCQ-representations
NLoGSPACE-complete (Th. 7.6) NLoGSPACE-complete (Th. 7.17)

problem verifies, given a source TBox S, a mapping M, and a target TBox 7, whether 7 is a UCQ-representation for S un-
der M; instead, the non-emptiness problem addresses the question whether there exists a UCQ-representation for a given
source TBox S and a given mapping M, that is, whether S is UCQ-representable under M. Notice that the non-emptiness
problem is directly related to the task of materializing a translation; moreover, determining UCQ-representability is a crucial
task, since it allows one to use the obtained target TBox to infer new knowledge in the target, thus reducing the amount of
extensional information to be transferred from the source.

The complexity results obtained in this article (for DL-Lite ) are summarized in Table 1, where we also mentioned
the theorems and lemmas where the results are proved. For universal solutions with simple ABoxes, we show that both
the membership and the non-emptiness problems are PTiME-complete, where the upper bound is obtained by considering
infinite games on graphs with the reachability acceptance condition, for which it is known that the problem of finding a
winning strategy is in PTIME. Then, for universal solutions with extended ABoxes, we prove that the membership problem
is NP-complete, while the non-emptiness problem is PSpace-hard, and provide for the latter an EXpTIME upper bound
based on a novel approach exploiting two-way alternating tree automata. For UCQ-representations, we show that both the
membership and non-emptiness problems are NLoGSPACE-complete, the key condition for this low complexity being the
fact that UCQ-representations do not depend on the shape of ABoxes. As for universal UCQ-solutions, the main results have
been established in [30], where it has been shown that the membership problem (both for simple and for extended ABoxes)
is ExpTiME-complete. The upper bound immediately provides also an ExPTIME algorithm for solving the non-emptiness
problem with simple ABoxes [30]. For extended ABoxes, we prove instead a PSPACE lower bound, which does not carry over
to simple ABoxes.

It should be noticed that in the non-emptiness problem mentioned before, the target signature is assumed to be part of
the input. Thus, the constructed solutions (i.e., universal solutions, universal UCQ-solutions and UCQ-representations) are
not allowed to use any new concept or role symbols not included in the given target signature. The problem of allowing
additional symbols in these constructions is certainly interesting and worth investigating in the future. However it is a
different problem from the one we are studying here. In fact, the problem we are investigating is a natural one, fully in
line with the work done in data exchange [16,17,20,25,21]. Moreover, there are several reasons why it may be undesirable
or even impossible to allow for additional concepts or roles in the target. First, the target signature might be given and not
under control of the user, therefore it might not be extensible. Second, there might be privacy issues that prevent the use
of all the information in a source KB, so only the information about some concepts and roles have to be displayed. This
problem can be viewed as a knowledge exchange problem where the target signature stores the symbols to be displayed,
and which cannot include some new concepts or roles. Third, a source signature might be very large, hence the user would
like to switch to a smaller target signature. In this case, it is not desirable to add new symbols that can make the target
signature to grow. Finally, an instance of data exchange could be part of the more general problem of schema evolution
[31,32], where one needs to consider a sequence of several instances of data exchange. In this context, allowing for keeping
existing symbols or adding new symbols at each step, might result in an unacceptable (and undesired) growth of the
signature.

Organization of the article. The rest of the article is structured as follows. We start with related work in Section 2, and
then we provide in Section 3 the preliminary notions and terminology needed in the rest of the article. In Section 4, we
introduce our knowledge base exchange framework: we formally define the three notions of solution, and we set up the
space of computational complexity-related problems that we consider. Section 5 gives some intuition and basic results about
each kind of solution, and provides several examples about these notions. Then, the complexity results and the technical
development are presented in Section 6 for universal solutions, and in Section 7 for UCQ-representations. Finally, we provide
in Section 8 some concluding remarks. Detailed proofs of many of the results are provided in an appendix, so as to ease the
presentation in the main body of the article.

2. Related work

Data exchange, including the case with incomplete information, which is the most important area related to our work,
has already been discussed in the introduction. Below we discuss other related areas.
Knowledge translation. The problem of knowledge translation was addressed in [13] with the goal of formalizing the task
of reusing/sharing existing encoded knowledge in the process of the development of new intelligent systems. This problem
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had emerged already in the early nineties, and in [33] an interlingua-based methodology for this problem was proposed,
where logical theories encoded in one representation (source) are translated to another representation (target). Interlingua
is a mediating first-order logic based language designed for communicating knowledge between the source and the target
representations, where a representation is formed using a declarative language, a vocabulary, and a base theory (associated
with the language). In [34-36], the authors devised a formalism for producing translations based on a theory of contexts;
a translation is specified as a set of first-order logic sentences, each of which describes a rule for deriving a formula in a
target output context that is a translation of a formula in a source input context. Such an approach, first, provides a formal
semantics for translation, and second, enables translations to be computed by standard theorem provers.

A decade later there has been a revival of interest in knowledge translation in the context of the Semantic Web, where
the problem of communicating knowledge between heterogeneous agents is especially relevant [14,37,15]. The focus of
these works is to translate axioms represented in a rule-based formalism, where the mapping axioms, that is, the axioms
defining how the source and target vocabularies are related, are represented in a simple fragment of first-order logic. In this
context, algorithms for translating axioms have been developed and implemented.

While the first work [13] gives a rather abstract and high-level view on the problem of knowledge translation, the more
recent contributions [14,37,15] are more on the practical side and lack solid theoretical foundations. Thus, none of these
results provides a precise understanding of the complexity of the problems related to translating knowledge.

Data and information integration. A problem closely related to data exchange is that of data integration, which is concerned
with the task of combining data coming from a variety of heterogeneous sources [3,38-41]. The main aim is to provide
a uniform view of these data so that users can query and access them in an integrated way. This problem is relevant in
many real-world applications, both in commercial and scientific domains [42]. The problem of data integration is addressed
by defining a global schema (i.e., a schema available to the user) and mappings between the schemas of the data sources
and the global schema. While the combination of the schemas of the sources to be integrated naturally corresponds to the
source schema in data exchange, the global schema plays the role of the target schema.

Information integration has also been studied under the assumption that the global schema is expressed by means of
an ontology, which provides a layer that captures the semantics of the domain of interest and that helps to overcome
the semantic heterogeneity of the data sources [43,44]. In fact, the problem of integration has also been considered when
applied to ontologies themselves, i.e.,, when the sources to be integrated are incompletely specified, in terms of logical
constraints encoded in an ontology [45].

Although the data and ontology integration settings bear similarity to the one we are studying here, the techniques
developed there are not applicable towards our goals, due to the difference in focus between information integration and
exchange: while in information integration the aim is to query the source through the target via the mappings, possibly
without materializing any data at the target, the aim of exchange is precisely to understand which data to materialize and
how to do this efficiently.

Ontology and knowledge base maintenance. There are various scenarios where one ontology or KB needs to be compared
against another or against its own part. On one hand, this occurs when an ontology was updated and the update needs
to be verified. On the other hand, modularization (or module extraction) aims at splitting a given ontology into smaller
sub-ontologies, each of which can be used autonomously, when only a subset of the ontology signature is of interest [10,12,
46,47]. Such sub-ontologies are called modules, and since they are typically of a small size (compared to the entire ontology,
which can be very large), it is easier to understand them and perform reasoning with them. Another mechanism to extract
information relevant to a subset of the ontology signature, is uniform interpolation, also known as forgetting [48-50]. As
opposed to modules, uniform interpolates are not restricted to subsets of the original ontology, but can be arbitrary sets
of axioms over the restricted signature that at best capture the semantics. It is important to observe that, in general, the
restriction to a smaller signature can lead to a much larger ontology [49].

In the Description Logics domain, ontology modularity and uniform interpolation rely on the notion of inseparability for
a signature X, or X-inseparability, as a main technical tool. This notion has been studied for expressive DLs [51,47,52| and
for Horn variants of DLs [53-55,30]. Two major forms of inseparability have been considered in the literature. First, two KBs
are said to be X-model inseparable, if every model of one of these KBs can be extended to a model of the other one in such
a way that they agree on the symbols from X, and vice-versa. In other words, these KBs cannot be logically distinguished
in the signature X. The second notion is query-based: two KBs are X-query inseparable if they give the same answers
to all queries formulated over . So intuitively, such KBs cannot be distinguished as far as answering queries formulated
over X is concerned. This work is relevant for our investigation, as the notions of ¥-model and X-query inseparability are
tightly related to some of the concepts studied in this paper. We formally define these notions in Section 3, and make these
connections precise in Section 4.

3. Preliminaries
3.1. The description logic DL-Lite

In this work we are concerned with OWL2 QL, which is grounded on the lightweight DLs of the DL-Lite family [29]. Such
DLs are characterized by the fact that conjunctive query answering is first-order rewritable and that standard reasoning can
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be done in polynomial time. Specifically, the formal counterpart of OWL2 QL is DL-Litez, for which we present now syntax
and semantics.

Let N¢, Ng, Ng, Ng be pairwise disjoint countably infinite sets of concept names, role names, constants, and labeled nulls,
respectively. Assume in the following that A € N¢ and P € Ng; in DL-Litep, B and C are used to denote basic and arbitrary
(or complex) concepts, respectively, and R and Q are used to denote basic and arbitrary (or complex) roles, respectively,
which are defined as follows:

R =P | P B:=A]3R
Q =R |-R C =B |—-B

From now on, for a basic role R, we use R~ to denote P~ when R =P, and P when R=P".

A TBox, usually denoted O, is a finite set of concept inclusions B C C and role inclusions R C Q encoding relevant domain
knowledge. We call an inclusion of the form By C —B; or Ry C —R; a disjointness axiom. An ABox A is a finite set of
membership assertions B(a), R(a,b), where a, b € Ng, indicating which individuals belong to the concepts and how they are
related by the roles in the ontology. We use ind(.4) to denote the set of constants appearing in .A.

Example 3.1. We define now an ontology PhotoCamera about digital photo cameras, underlying the structure of an electron-
ics selling website. Specifically, we want to capture the fact that DSLR (digital single lens reflex) cameras have exchangeable
lenses, and that there are different types of connectors between the camera and the lens, which are called mounts. For
instance, some camera manufacturers have proprietary mounts, which allow one to connect to a camera only lenses of
that manufacturer. Instead other manufacturers adopt standard mounts, e.g., the Micro Four Thirds system, that work across
camera and lens models of different manufacturers. We define first a TBox Q¢ introducing some concepts and roles that
are relevant for this domain. For clarity, we use strings beginning with capital letters to denote concepts, and strings begin-
ning with lowercase letters to denote roles. The concept DigitalCamera denotes digital cameras, while DSLRCamera denotes
digital reflex cameras. ExchangeLens denotes exchange lenses that can be mounted onto DSLR cameras through lens mounts,
which in turn are grouped together in the concept Mount. The role cameraMounts relates DSLR cameras to their mounts, and
hence has Mount as its range. The role lensMounts relates exchange lenses to their mounts, and its domain is ExchangeLens.
Moreover, we require that every Mount is the mount of some ExchangeLens to which it is connected via the inverse of the
role lensMounts. This knowledge is captured by the following DL-Liteg TBox Ocam of the ontology PhotoCamera:

DSLRCamera C DigitalCamera, DSLRCamera = JcameraMounts, JcameraMounts™ T Mount
Mount € JlensMounts™, 3lensMounts C ExchangeLens

The ABox Acam = {DSLRCamera(canon5d)} of PhotoCamera simply introduces an instance of a DSLR camera. 0O

In this paper, we also consider extended ABoxes, which are obtained by allowing labeled nulls in membership assertions.
Formally, an extended ABox is a finite set of membership assertions B(u) and R(u,v), where u,v € (Ng U N;). Moreover,
a(n extended) KB K is a pair (O, A), where O is a TBox and A is an (extended) ABox. When we need to emphasize the
distinction between ABoxes and extended ABoxes, we might also use the term simple ABox to refer to an ABox that is not
extended; likewise for simple KBs. Note that labeled nulls are quite natural in the Semantic Web, since RDF (and hence OWL)
in fact supports “extended ABoxes” by allowing blank nodes to occur in membership assertions. Similarly to labeled nulls,
blank nodes are used to refer to unnamed objects.

A signature X is a finite set of concept and role names. A KB K is said to be defined over (or simply, over) X if all the
concept and role names occurring in K belong to ¥ (and likewise for TBoxes, ABoxes, concept inclusions, role inclusions
and membership assertions). Moreover, an interpretation Z of ¥ is a pair (AZ,.Z), where AZ is a non-empty domain and
I is a partial interpretation function over N¢c UNg U Ng, such that: (1) AZ is defined and AZ < AZ, for every concept name
A€ ; (2) PL is defined and PZ € AT x AZ, for every role name P € %; and (3) aZ € AZ, for every constant a € Ng,
such that aZ is defined (such constants are called interpreted). Function -Z is also extended to interpret concept and role
constructs:

AR)Z = {0 e AT |30’ € AT such that (0, 0") € RT}; (-B)T = AT\ BT;
(PHT = {(0,0") e AT x AT | (0',0) € PT}; (=R = (AT x AT)\ RZ.

Note that, consistently with the semantics of OWL2 QL, we do not make the unique name assumption (UNA), i.e., we allow
distinct constants a,b € N, to be interpreted as the same object, that is, af = bZ. Observe also that labeled nulls are not
interpreted by Z. Finally, note that interpretations do not have to interpret all constants in Ng. This is required first of all
to avoid that both the canonical model and the generating structure (as defined in Section 3.2) are forced to be infinite.
Moreover, this allows for finite interpretation domains without the need for interpreting an infinite number of constants as
the same object.

Let Z = (AZ,.T) be an interpretation of a signature . Then Z is said to satisfy a concept inclusion B = C over X,
denoted by Z =B C C, if BZ < ¢Z; T is said to satisfy a role inclusion R = Q over ¥, denoted by Z=RC Q, if RZ € QZ;
and Z is said to satisfy a TBox O over X, denoted by Z = O, if Z =« for every a € O. Moreover, satisfaction of membership
assertions over X is defined as follows. A substitution over 7 is a partial function hz : (Nqg U N¢) — AT such that for every
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a € Ng, (1) hz(a) is defined if and only if aZ is defined; and (2) if hz(a) is defined, then hz(a) = a%. Then, Z is said to
satisfy an (extended) ABox .4, denoted by Z = A4, if there exists a substitution hz over Z such that:

- for every B(u) € A, it holds that h7(u) is defined and hz(u) € BZ; and
- for every R(u, v) € A, it holds that h7(u) and h7(v) are defined and (hz(u), h7(v)) € RZ.

Finally, Z is said to satisfy a(n extended) KB K = (O, A), denoted by Z =K, if Z =0 and Z = A. Such 7 is called a model
of IC, and we use MoD(K) to denote the set of all models of K. We say that /C is consistent if Mop(KC) # @.

As is customary, given a(n extended) KB K over a signature ¥ and a membership assertion or an inclusion o over X,
we use notation K =« to indicate that for every interpretation Z of X, if Z = /C, then Z = «. Similarly, we use O =« for
a TBox O, and A = «, for an ABox A.

3.2. The canonical and generating models

Throughout this section we consider only simple KBs. Horn logics in general, and DL-Liteg in particular, enjoy the
canonical model property. It means that, given a KB KC, if C is consistent, then it is possible to construct a model of K that is
more general than any of the other models of this KB. We now introduce this notion formally, and show how the canonical
model can be constructed for a DL-Liteg KB.

The canonical model. Let I = (O, A) be a consistent simple DL-Liteg KB. To define the canonical model of X, we need to
introduce some terminology. For every basic role R in K, we define the equivalence class [R] as

[R1={S|Sisabasicrole, O=RCS, and O =S C R}.

We introduce a witness wigy for each [R], and write [R] Ep [S] if O =R E S. Then the generating relation ~»x. between
the set Nq U {w(g] | R is a basic role} and the set {wg; | R is a basic role} is defined as follows:

- a~x Wigy, if (1) £ E3R(a); (2) K & R(a, b), for every b € Ng; and (3) [R'] =[R], for every [R’] such that [R'] Co [R]
and K =3R (a).

- Wisp~x Wigy, if (1) O =3S~ C 3R; (2) [ST1#[R]; and (3) [R'] = [R] for every [R’] such that [R'] CTp [R] and
O35~ 3R

Intuitively, the generating relation defines when an existing object can be reused to satisfy an axiom of the form B C 3R, or
a new object has to be generated.

A sequence aw|g,]... Wg,], where a € ind(A), n >0, a~x wg,] and wg;) ~x Wigr,,,] for i € {1,...,n— 1}, is called
a C-path. We denote by path(K) the set of all K-paths, and by wit(XC) the set of all wg) such that awg,j... wig,] is a
K-path, n > 1 and wig) = w(g,]. A K-path aw(g,}... wg,) with n > 1 encodes an object that has to be generated to satisfy

all axioms in K, and which is called an anonymous individual as it is distinct from any named individual (i.e., constant).
Finally, for every o € path(K), denote by tail(c) the last element in o. With this we have the necessary ingredients to
define the canonical (or, universal) model of C, which is denoted by uni(X). Formally, uni(K) is defined as an interpretation
such that:

AWK = path(K),

auni(IC) =aq,

AN = (g eind(A) | K = A(@)} U {0 - wg) € path(K) | O [=3R™ C A},

Pu®) = {(a, b) €ind(A) x ind(A) | K = P(a,b)} U {(0',0 - wg)) | tail(0) ~x wigj and [R] Co [P]} U

{(0 - wry, 0) [tail(0) ~x wigy and [R™] Eo [P},

where a €ind(A), A is a concept name, and P is a role name occurring in k.

Notice that the part of uni(XC) formed by the anonymous individuals is tree shaped. On the other hand, individuals in
ind(.A) can be connected in an arbitrary way in uni(KC), and they are the only individuals that are interpreted by uni(K).

Example 3.2. Let £ = (O, A), where O = {AC 3R,3R™ C 3R} and A = {A(a)}. Then the canonical model uni(K) can be
seen as an infinite R-path starting in a, which can depicted as follows:

A R R R
o———» 0 >0 >0 -
a awig) aWR|WR] aw(R] WIR]W[R]

In this figure, dots represent domain elements, a label A on a node x represents the fact x € AU and a label R on an
arrow between x and y represents the fact (x, y) € R\, g

Example 3.3. Assume that Kcam = (Ocam, Acam), Where Ogam and Acam are as in Example 3.1. Then the canonical model
uni(/C) can be depicted as follows:
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DigitalCamera

DSLRCamera cameraMounts Mount lensMounts Exchangelens
[ J >0 lo)
canonsd canon5d - WicameraMounts] canon5d - WicameraMounts) * W{lensMounts™ O

The interpretation uni(X) is called the canonical model because every other model of K is less general than uni(kC).
We formalize generality in terms of homomorphisms. For an interpretation Z and a signature X, the X-types t% (0) and
r%(o,o’) for 0,0’ € AT are given by the set of concepts B (respectively, roles R) over %, such that o € BZ (respectively,
(0,0") € RT). We also use tZ(0) and rZ(0,0’) to refer to the types over the signature of all concepts and roles names.
Then, a $-homomorphism from an interpretation Z to 7 is a function h: AT — A7 such that: (1) for every a € Ng such
that a” is defined, it holds that a7 is defined and h(a?) =a7; (2) t&(0) C tJ (h(0)) and 1% (0,0') C 1y (h(0),h(0")) for all
0,0 € AT. We say that T is ©-homomorphically embeddable into .7 if there exists a ¥-homomorphism from Z to 7, and
T is X-homomorphically equivalent to 7, if they are X-homomorphically embeddable into each other. If ¥ is the set of all
concepts and roles names, we call a X-homomorphism simply homomorphism.

The theorem below establishes the relationship between the canonical model uni(K) and an arbitrary model of /.

Theorem 3.4 ([55]). If KC is consistent, then uni(KC) is a model of K. Moreover, for every model Z of IC, there exists a homomorphism
from uni(K) to Z.

The generating structure. In general, the canonical model of a DL-Liteg KB K can be infinite, which makes it impossible to
deal with it in practice. Thus, we define here an alternative notion that is called the generating structure of K. This structure
is always finite and can be used for deciding various reasoning tasks efficiently. Formally, given a simple KB K = (O, A),
the generating structure gen(K) = (A9"() .9en(C)y of K is defined as:

A9 K) — ind(A) Uwit(K),

a®n () — g

A%®NK) — (g eind(A) | K =A@} U {wg) e wit(K) | O =3R™ C A},

P9 = ((a,b) €ind(A) x ind(A) | K = P(a,b)} U {(x, w[g)) | X~k Wgj and [R] Eo [P]} U
{(W(r), X) | x~x wigyand [R™] Ep [P]},

where a €ind(.A), A is a concept name, and P is a role name occurring in K. It is easy to see that gen(K) is of polynomial
size in the size of K. Note that the canonical model uni(X) can be obtained by unraveling [56, Ch. 2] the generating
structure gen(K), i.e., by introducing a new domain element for every path starting from (the interpretation of) a constant.

3.3. Queries and certain answers

In this paper, we deal with conjunctive queries and their unions. A conjunctive query (CQ) (of arity k > 0) over a signature
¥ is a formula of the form q(x) = 3y. (X, y), where X, y are tuples of variables, X = (x1, ..., x) is the tuple of free variables
of q(X), and ¢(%, y) is a conjunction of atoms of the form A(z) and P(z,Zz’), where A is a concept name in %, P is a role
name in ¥, and each of z, Z/ is a variable from XU y. Given an interpretation Z = (AZ, .Z) of ¥ and a k-tuple 6 of elements
of AT, we write Z = q[0], if there exist a tuple o1 of elements of AZ such that Z, £ = (%, y), where £ is the substitution
that assigns X to 0 and y to 61, and we write Z } q[0] otherwise. A union of conjunctive queries (UCQ) over a signature X
is a first-order formula of the form q(x) = \/{_; qi(X), where each g;, for i € {1,...,n}, is a CQ over ¥. Then, Z = q[d] if
T |=q;[0] for some i € {1,...,n}, and Z - q[0] otherwise. If k=0, then q is said to be a Boolean query, and we simply write
T k=q if ZE=q[(0], and Z § q otherwise.

Given a query q of arity k and a KB /C defined over a signature X, the certain answers to q over K are defined as:

cert(q, K) ={(ay,...,ar) |{ai,...,ax} S Ngand T &= q[alI, el a,{], for every Z € MoD(K)}.

Each tuple d = (a1, ...,ay) in cert(q, K) is called a certain answer for q over K, and we write K |= g[a]. Notice that, by
definition, the certain answers to a query do not contain labeled nulls. If q is a Boolean query, then cert(q, ) = {()}
(representing the value true) if Z = q for every Z € Mobp(K), and cert(q, ) = @ (representing the value false) otherwise.
Observe also that, if & is unsatisfiable, then cert(q, K) is trivially the set of all possible tuples (aq, ..., ar) of constants in Ng,
which we denote by AllTup(q).

It is important to notice that the notion of certain answers can be characterized through the notion of canonical model.
The following lemma establishes that the canonical model can be used for checking certain answers to UCQs.

Lemma 3.5. Let KC be a consistent KB, q(x) a UCQ, and d a tuple of constants. Then K |= q[a] iff uni(K) = q[al.

Proof. Let d = (ay,...,qa;) for a; € Ng, and ¢(X) =3y1 - 3Ym. @ (X1, ..., Xks Y1s - - -2 Yim)-
(=) Assume K = q[d]. Then for each model Z of K, we have that Z |:q[a11, .. .,akz]. Since uni(K) is a model of K, and

a;‘"idc) = a;, for each constant a;, it follows that uni(K) = q[d].
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(<) Assume uni(K) = q[d). Then there exist o71,...,0m € A"®) such that uni(K) = ¢lai,...,a, 01, ...,0n). Let T
be a model of K. By Theorem 3.4, there exists a homomorphism h from uni(C) to Z. Then it is easy to see that Z &=
(p[alz,...,akz,h(m),...,h(om)], hence 7 = q[a%,..l,a%]. Thus, as Z is an arbitrary model of K, we conclude that K =

gldl. o
3.4. -query entailment

We refine the notion of X-query entailment studied in [55]. Let XC; and /C; be KBs, and X a signature. Then, Xy X-query
entails IC, if for each UCQ q over X, cert(q, Ky) C cert(q, K1). Moreover, 1 and K, are -query inseparable, if they X-query
entail each other. Note that we define X-query entailment and inseparability with respect to UCQs, whereas in [55] these
notions are defined with respect to CQs. Since DL-Liteg enjoys the canonical model property, it is easy to see that our
definitions and the previous ones coincide.

It is well known that homomorphisms preserve answers to UCQs [57], in particular, if uni(XC;) is X-homomorphically
embeddable into uni(XC1), then K1 X-entails K. However, for a characterization of X-query entailment one has to consider
finite ¥-homomorphisms, as illustrated in the following example.

Example 3.6 ([55]). Let 1 = (01, A) and K3 = (O, A), where A= {A(@)}, O1 ={AC3IR, IR C3IR} and O, ={AC
35,3ST C3R~,FIRC IR}, and ¥ = {A, R}. The canonical models of Xy and K, are as follows:

a aw(R) AW[RIWIR]  AW[RIW[R]W[R]
uni(Kq): A @——0 »0 A
R R R
. S R R R
uni(KCz): Ae® >0 < O« 0« O - v
a awis AW[SIW[R-]  AW[S]W[R-]W[R~] AW[S]W[R-]W[R-]W[R~]

In this case there is no X-homomorphism from uni(K;) to uni(Xq), although K1 Z-query entails Ky, O

Given an interpretation Z over a signature X, we say that 7’ is a finite sub-interpretation of Z (induced by a finite set
D) if: (1) AT = AT nD; (2) AT = AT N D for every concept name A € X; (3) PT =pPIn (D x D) for every role name
P e X; and (4) aZ’ =aZ for every a € N, such that aZ is defined and aZ e AT we say that 7 is finitely X -homomorphically
embeddable into an interpretation 7 if there exists a ¥-homomorphism from every finite sub-interpretation Z’ of Z to 7.

Lemma 3.7 ([55]). Let K1 and Ky be consistent KBs, and ¥ a signature. Then K1 X-query entails Cy iff uni(ICy) is finitely
Y -homomorphically embeddable into uni(Ky).

By using this lemma, we can confirm that KB K; X-query entails KB /C; in Example 3.6, as uni(K;) is finitely
Y -homomorphically embeddable into uni(Kq).

4. Knowledge base exchange

The goal of this section is to generalize the setting proposed in [25] to consider DL-Liter, and to formalize the problems
studied in this paper. The former is done in Section 4.1, while the latter is done in Section 4.2.

4.1. A knowledge base exchange framework

We start by defining the fundamental notion of mapping, which plays a key role in both data and knowledge exchange.
Assume that ¥, I' are signatures with no concepts or roles in common. An inclusion Es C E; is said to be from X to T, if
E is a concept or a role over ¥ and E; is a concept or a role over I'. Then we have that

Definition 4.1 (/16,58]). A mapping is a tuple M = (X, T, B), where B is a TBox consisting of inclusions from ¥ to T'.

Example 4.2. Consider the ontology PhotoCamera defined in Example 3.1, and a second ontology DigitalPhoto talking about
digital photo camera. This new ontology uses the following vocabulary I'cam:

DigitalPhotoCamera(-), ReflexCamera(-), InterchangeableLens(-), MountType(-),
hasMountType(-, -), mountsOn(-, -)

Then we can specify the relation between the terms in the different ontologies by means of a mapping. Formally, let
Meam = (Zcams lcams Beam), wWhere Xcam is the vocabulary from Example 3.1, and Bcam consists of the following inclusions:
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DigitalCamera C DigitalPhotoCamera Mount C MountType
DSLRCamera C ReflexCamera cameraMounts C hasMountType
ExchangeLens C InterchangeableLens lensMounts = mountsOn

Thus, Mcam relates the concepts and roles of the PhotoCamera ontology with the concepts and roles of the DigitalPhoto
ontology. O

The semantics of such a mapping was initially defined in [58]. Here we adapt it to the setting without the unique name
assumption (and, more generally, without the standard name assumption). More specifically, given interpretations Z, 7 of
Y and T, respectively, the pair (Z, J) satisfies TBox B, denoted by (Z, ) =B, if

- for every a € Ny such that aZ or a7 is defined, it holds that both aZ and a7 are defined and aZ = a7,
- for every concept inclusion B C C € B, it holds that BT c ¢, and
- for every role inclusion R C Q € B, it holds that RZ € Q7.

Notice that the connection between the information in Z and 7 is established through the constants that move from source
to target according to the mapping. For this reason, we require constants to be interpreted in the same way in Z and 7,
i.e,, they preserve their meaning when they are transferred. Besides, notice that this is the only restriction imposed on the
domains of Z and 7 (in particular, we require neither that AZ = A7 nor that AT € A7). Finally, SAT \((Z) is defined as
the set of interpretations 7 of I" such that (Z, J) = B, and given a set X’ of interpretations of X, SAT4(X) is defined as
Uzex SATAM (D).

The main problem studied in the knowledge exchange framework is the problem of translating a KB according to a
mapping. We formalize this problem through three different notions of translation introduced below (see Section 5 for a
comparison of these different notions of solution). We start by introducing the concepts of solution and universal solution.
More precisely,

Definition 4.3. Given a mapping M = (2, T, 5) and KBs Ks, K over X and T, respectively, K; is a solution (resp., universal
solution) for Ks under M if MobD(K;) C SAT o (MoD(Ks)) (resp., MoD(K;) = SAT o (MoD(K))).

Thus, i is a solution for s under M if every interpretation of C; is a valid translation of an interpretation of g ac-
cording to M. Although natural, this is a mild restriction, which gives rise to the stronger notion of universal solution. More
precisely, if K; is a universal solution for ICs under M, then K; is designed to exactly represent the space of interpretations
obtained by translating the interpretations of Ks under M. It should be noticed that this definition of universal solution
can be restated in terms of the notion of model inseparability presented in Section 2. More precisely, we have that £, is a
universal solution for s = (S, As) under M = (X, T, B) if and only if K; is I'-model inseparable with (S U B, As).

Example 4.4. Let Kcam = (Ocam, Acam) Where Ocam and Agam are respectively the TBox and the ABox of the PhotoCamera
KB from Example 3.1, and Mcam the mapping from Example 4.2. Then Kl = (Ofam. Acam) is @ universal solution for Keam
under Mcam, where O, =¥ and A, contains the following assertions:

ReflexCamera(canon5d), DigitalPhotoCamera(canon5d), hasMountType(canon5d, m),
MountType(m), mountsOn(l, m), InterchangeableLens(l).

Here m and [ are distinct labeled nulls. For more examples of universal solutions see Section 5.1. O

A second class of translations is obtained by observing that solutions and universal solutions are too restrictive for some
applications, in particular when one only needs a translation storing enough information to properly answer some queries.
For the particular case of UCQ, this gives rise to the notions of UCQ-solution and universal UCQ-solution.

Definition 4.5. Given a mapping M = (Z, T, B), a KB Ks = (S, As) over ¥ and a KB [, over T, K; is a UCQ-solution for ICg
under M if Ky T-query entails (S U B, As). Moreover, K is a universal UCQ-solution for ICg under M if K and (SU B, As)
are I'-query inseparable.

Example 4.6. Consider fCcam and Mcam from Example 4.4. Then K, = (O%m, Atam) is @ universal UCQ-solution for Keam
under Mcam, where A, = {ReflexCamera(canon5d)} and O, is the following TBox:

ReflexCamera C DigitalPhotoCamera, ReflexCamera T 3hasMountType,
JhasMountType™ T MountType, MountType C ImountsOn—, ImountsOn C InterchangeableLens.

This can be straightforwardly verified using Lemma 3.7 and the fact that the canonical models of (O¢am U Beam, Acam) and
K/, are finite. Note that, the universal solution K, of Example 4.4 is also a universal UCQ-solution. This holds in general,

as shown in Section 5.2. O
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Fig. 2. UCQ-representations in the context of knowledge base exchange.

Finally, a last class of solutions is obtained by considering that users want to translate as much of the knowledge in a
TBox as possible, as a lot of effort is put in practice when constructing a TBox. This observation gives rise to the notion
of UCQ-representation, which formalizes the idea of translating a source TBox according to a mapping. We present an
alternative to the formalization of this notion given in [58], which is appropriate for our setting where disjointness axioms
are considered.’

Definition 4.7. Assume that M = (Z,T", B) and S, 7 are TBoxes over X and T', respectively. Then 7 is a UCQ-representation
of S under M if for every ABox As over T that is consistent with S, it holds that (SUB, As) and (7 U B, As) are I'-query
inseparable.

Notice that Ag is required to be consistent with S in this definition, which avoids the trivialization of the notion of
certain answers because of the use of an inconsistent knowledge base (if (S, As) is inconsistent, cert(q, (S U B, As)) contains
every possible tuple of constants). Below we provide a simple example of a UCQ-representation in the digital camera
scenario.

Example 4.8. Consider Mcam = (Zcam, I'cam, Beam) from Example 4.2 and S¢qm = {DSLRCamera C DigitalCamera}. Then Tegm =
{ReflexCamera C DigitalPhotoCamera} is a UCQ-representation of Scgn under Mcegm. O

We would like to emphasize why we are interested in UCQ-representations. First of all, UCQ-representations are de-
signed to preserve in the target the implicit information from the source, which conforms to the idea of knowledge
base exchange as opposed to plain data exchange. Second, UCQ-representations allow to minimize the amount of exten-
sional information that has to be transferred from the source (which can be very large in size). Third, if there exists a
UCQ-representation 7 of a source TBox S under a mapping M, then we obtain a straightforward algorithm to construct a
universal UCQ-solution for a given source KB (S, Ag): take a target ABox obtained by “translating” the source ABox As with
respect to M and denote it by M(As),%> then (7, M(As)) is a universal UCQ-solution for (S, As) under M (see Fig. 2).
Finally, notice that UCQ-representations do not depend on the actual data, so if in the previous case ABox As is updated,
then it is sufficient to update M (As) in order to obtain a universal UCQ-solution for (S, As) under M.

A natural question at this point is why in knowledge base exchange the source KB is not mapped as it is, thus simplifying
the problem of computing solutions (under any of the notions given before). Notice that this can be easily done by including
some additional concept and role symbols in the target signature, which represent the corresponding concepts and roles in
the source signature. We would like to conclude this section by providing evidence why this is not desirable, or it could
even be impossible, in some scenarios. First, the target signature might be given and not under control of the user, therefore
it might not be extensible. Second, there might be privacy issues that prevent the use of all the information in a source KB,
so only the information about some concepts and roles have to be displayed. This problem can be viewed as a knowledge
exchange problem where the target signature stores the symbols to be displayed, and which cannot include some new
concepts or roles. Third, a source signature might be very large, hence the user would like to switch to a smaller target
signature. In this case, it is not desirable to add new symbols that can make the target signature to grow. Finally, an instance
of data exchange could be part of the more general problem of schema evolution [31,32], where one needs to consider a
sequence of several instances of data exchange. In this context, allowing for keeping existing symbols might result in an
unacceptable (and undesired) growth of the signature.

T If disjointness axioms are not allowed, then this new notion can be shown to be equivalent to the original formalization of UCQ-representation.
2 Qbserve that M (As) could be defined as a universal UCQ-solution for (4, As) under M.
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Fig. 3. The space of reasoning problems.

4.2. On the problem of computing solutions

In this section, we present the space of reasoning problems that naturally arise in the framework introduced in this paper.
The problem space has three dimensions and can be depicted as in Fig. 3. First, one is interested in the task of computing
a translation of a KB or a TBox according to a mapping, which is arguably the most important problem in knowledge
exchange [25,58], as well as in data exchange [16,59]. Thus, the first dimension in Fig. 3 defines the type of translation,
which as mentioned in the previous section can be either: (1) a universal solution, or (2) a universal UCQ-solution, or
(3) a UCQ-representation. Second, as it will become clear in Section 5, in order to be able to compute a translation, in some
cases it is necessary to use extended ABoxes. Therefore, the second dimension is along the type of ABoxes allowed to be
used in translations: (1) simple ABoxes, or (2) extended ABoxes. Finally, to study the computational complexity of knowledge
exchange, we consider two classical decision problems: the membership problem and the non-emptiness problem, which
constitute the third dimension.

As usual, the membership problem is concerned with deciding whether a particular instance (a target KB or target TBox,
in our case) belongs to a class of instances (all solutions for a given source KB or TBox under a given mapping, in our
case). Since we consider three classes of translations, we need to deal with three membership problems. The membership
problem for universal solutions (resp. universal UCQ-solutions) has as input a mapping M = (X, T, B) and KBs Ks, K over
¥ and T, respectively. Then the question to answer is whether K is a universal solution (resp. universal UCQ-solution)
for ICs under M. Moreover, the membership problem for UCQ-representations has as input a mapping M = (X, T, B) and
TBoxes S, 7 over X and I, respectively, and the question to answer is whether 7 is a UCQ-representation of S under M.

The non-emptiness problem corresponds to the existential version of the membership problem, and it is concerned
with deciding whether a class has at least one instance (is there some solution for a given source KB or TBox under a
given mapping?). Again, we consider three non-emptiness problems, one for each class of translation. Formally, the non-
emptiness problem for universal solutions (resp. universal UCQ-solutions) has as input a mapping M = (X, T, 5) and a KB
Ks over . Then the question to answer is whether there exists a universal solution (resp. universal UCQ-solution) for /Cg
under M. Moreover, the non-emptiness problem for UCQ-representations has as input a mapping M = (X, T, B) and a
TBox S over X, and the question to answer is whether there exists a UCQ-representation of S under M. In the case it
exists, we say that S is UCQ-representable under M, otherwise, S is not UCQ-representable under this mapping.

Observe that UCQ-representations do not depend on target ABoxes, therefore, in total we have defined 10 different rea-
soning problems: 4 for universal solutions, 4 for universal UCQ-solutions, and 2 for UCQ-representations. We investigate in
Sections 6 and 7 the computational complexity of the reasoning problems for universal solutions and UCQ-representations,
respectively. As for universal UCQ-solutions, the main results, summarized in Table 1, have been established in [30].
We prove here only, in Section 6.4, that the non-emptiness problem for universal UCQ-solutions for extended ABoxes is
PSpace-hard. A lower bound for simple ABoxes has yet not been established.

5. The shape of different notions of solutions

The goal of this section is to provide examples and some facts about universal solutions, universal UCQ-solutions and
UCQ-representations, which can help the reader to understand their advantages and limitations.

5.1. Universal solutions
We start by giving some simple examples of universal solutions.
Example 5.1. Let M = (2, T, B), where © ={A,B}, ' ={A’,B’}, and B={AC A, BC B'}. If S={} and As = {A(a), B(a)},

then the KB Ky = (7, A), where 7 =@ and A; = {A'(a), B'(a)} is a universal solution for Ks = (S, As) under M. Moreover,
if S={AC B} and As = {A(a)}, then K; is again a universal solution for s = (S, As) under M. 0O
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Universal solutions are the preferred solutions to materialize when exchanging relational databases [16,60,23,17], even
in the case of incomplete information [25]. However, universal solutions were not thought to take into account source data
including implicit knowledge (in the form of TBoxes), which is demonstrated in the following example.

Example 5.2. Let M = (X, T, B) be as in Example 5.1, and assume that s = (S, As), where S ={A C B} and A = {A(a)}.
Furthermore, suppose that K; = (7, A;), where 7 = {A’ C B’} and A; = {A’(a)}. Then we have that K; is a solution for g
under M. However, K is not a universal solution for Cg under M. To see why this is the case, consider an interpretation Z
of = such that aZ =1, AZ = {1} and BZ = {1}, and an interpretation 7 of I such that a7 =1, B"Y ={1} and A7 ={1,2}.
Then we have that Z is a model of Ks and (Z, J) &= B, and thus J € SAT A (MoD(Ks)). Thus, given that 7 is not a model
of K; (since it does not satisfy inclusion A’ = B’), we conclude that K; is not a universal solution for s under M as
SAT A4 (MoD(KCs)) # MoD(Ky). O

All the universal solutions shown in the previous examples have empty TBoxes. In the following proposition, we prove
that this is the case in general, which shows that universal solutions are not appropriate to represent implicit knowledge.
We say that a TBox O over a signature X is trivial if for every interpretation Z of X, it holds that Z = O (or, in other
words, if O is equivalent to the empty set of formulas).

Proposition 5.3. Let M = (X, T, B) be a mapping, Ks = (S, As) a KB over X, and Kt = (T, At) a KB over T'. If (SU B, Ag) is
consistent and Ky is a universal solution for KCs under M, then T is a trivial TBox.

The proof of Proposition 5.3 can be found in the appendix. Notice that this proposition shows that universal solutions
can be viewed as target ABoxes with empty TBoxes. We denote by A a KB of the form (#, A).

We continue our investigation by showing that extended ABoxes are necessary to guarantee the existence of universal
solutions in certain cases.

Example 54. Let M = ({A, R}, {B},{3R™ C B}) and Ks = (S, As), where S = {A C 3R} and Ag = {A(a)}. A natural way to
construct a universal solution for Ks under M is to “populate” the target with all the facts implied by uni(S U B, As) (as
it is usually done in data exchange [16,17,20]). In this case, we have that AUN(SUB.As) — (q} RUN(SUB.AS) — ((q, aw(g))}
and BU"(SYB.As) — (awyg;}, where awpg; is an object different from any of the constants in N, which is used to represent
a null value. Thus, the ABox A; = {B(n)}, where n is a labeled null, is a universal solution for s under M if nulls are
allowed, which can be readily checked using the definition of universal solution. Nevertheless, a universal solution with
simple ABoxes does not exist in this case, as substituting n by any constant is too restrictive, ruining universality. O

A natural question at this point is whether the use of null values guarantees the existence of universal solutions. Un-
fortunately, the following example shows that this is not the case. In fact, this example shows two different situations in
which universal solutions do not exist; in the first case this is due to the impossibility of representing an infinite number
of facts in a finite ABox, while in the second case this is due to the use of disjointness axioms and the absence of the UNA
(which has to be given up to comply with the OWL2 QL standard).

Example 5.5. Let M = (2, T, B), where ¥ ={A,R}, ' ={Q}, and B = {R C Q}. Furthermore, assume that s = (S, As),
where As ={A(a)} and S ={AC 3R, IR~ C IR}. In this case, uni(S U B, Ay) is infinite:

R,Q R,Q R, Q

e—»o0 >0 2 RRREEE
a AWIR| AW[RIWIR] AW[RIW[RIW[R]

so in principle one would need an infinite number of labeled nulls to construct a universal solution. It can be easily proved
that if A; is an (extended) ABox over I', then A; cannot be a universal solution for Ks under M. 0O

Example 5.6. Now let M = (X, T, B) be defined as in Example 5.1. Moreover, assume that s = (S, As), where S={AC
—B} and As = {A(a), B(b)}, and assume that A; = {A’(a), B'(b)}. As in Example 5.1, it is possible to show that A is a
universal solution for KB (#, As) under M. However, with the addition of the disjointness axiom A C —B, KB A; is no
longer a universal solution (not even a solution) for g under M. The reason for this is the lack of the UNA on the one
hand, and the presence of the disjointness axiom that forces a and b to be interpreted differently in the source, on the other
hand. More precisely, for a model J of A; such that a7 =b7, A7 = B'T = {a7}, there is no model Z of Ks such that
(Z,J) = B, as this forces aZ = a7 and bZ = b7, which is not possible since a = bZ. It can be straightforwardly proved
that in this case there is no universal solution for s under M. 0O
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From the previous examples, we conclude that:

Proposition 5.7. There exists a mapping M = (X, T, B) and a KB Ks = (S, As) over ¥ such that there is no universal solution for
Ks under M (even if extended ABoxes are allowed).

Let M = (X, T, B) be a mapping and Ks = (S, As) be a KB over X. As pointed out in the previous examples, a natural
way to construct a universal solution for s under M is to populate the target with all the facts implied by uni(SU B, As).
In Example 5.5, this procedure generates an infinite chain that cannot be represented in a finite ABox, which lead us to
conclude that /Cs does not have a universal solution under M in this case. Thus, the reader may wonder whether the
finiteness of uni(S U B, As) is a necessary condition for the existence of universal solutions. The following example shows
that this is not the case, and also gives evidence that checking whether a universal solution exists can be a computationally
hard task (the complexity of this problem is studied in Section 6).

Example 5.8. Let M = (Z, T, B), where ¥ ={A,R,S}, ' ={Q} and B={SE Q, RE Q}. Moreover, let Ks = (S, As), where
S={AC3R,3IR™ C IR} and As = {A(a), S(a, a)}. Notice that uni(S U B, As) as well as its projection over I' are infinite.
However, we can conclude that A4; = {Q (a, a)} is a universal solution for s under M, as if the projection of uni(SU B, As)
over I' is transformed into an infinite ABox, then the resulting ABox has the same interpretations as A;. Or, in other words,
it is possible to conclude that .4; is a universal solution for g under M as uni(A;) is contained in the projection of
uni(S U B, As) over T, and there exists a homomorphism h from the projection of uni(S U B, Ag) over T" to uni(Ay):

a aw(R] AW[RIW[R] AW[R]W[R]WIR]
projection of uni(SU B, As) over T : Q OQ N >0 . T
L Q Q Q
. Voo e -
Ay s Qe h
a

We conclude this section by demonstrating that universal solutions can be of exponential size, thus indicating that it can
be difficult to deal with them in practice. We use | M| and |K| to denote the sizes (number of symbols) of a mapping M
and a KB [, respectively.

Example 5.9. We show that there exists a family of mappings {M" = (X", I'", B")},>1 and a family of KBs {K7};>1 such

that every K" is defined over £" (n > 1), and the smallest universal solution for K7 under M" is of size 2€(M"I+IKSD | for
some constant ¢ > 0.
Indeed, let n > 1 be a natural number. Then mapping M" = (", '™, B") is defined as follows:

=" = {AJU{RF|ie(1,...,n},ke{0,1}},
I = {Q¥ke{0,1}}
B" = {RFz Qklie(1,...,n}, ke {0, 1}}.

Moreover, knowledge base K7 is defined as (S", .A%), where S" is defined as:
{AC3RY |ke{0,1}}U{IRY S3RL,, lie(l.....n—1},ke{0,1}and £ € {0, 1}},

and A7 is defined as {A(a)}.
For every n > 1, a universal solution A} for /] under M" exists. This universal solution A} is an edge-labeled full
binary tree of depth n (containing 2" leaves). Below we depict .At3, where ny, ..., n14 are null values:

Q° 5 Q!
nl/ \ﬂz
QO O. Q! Q0 0. Q!
O/HB\O O/n4\0 o (o] o o
nz ng ng no nin ni2 ni3 nig

It can be proved that | A"| > 2¢0M"+IKSD (for every n > 1) for some ¢ > 0. Moreover, it is straightforward to prove that A"
is the smallest universal solution for K} under M". O
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5.2. Universal UCQ-solutions

Our first observation is that the notion of universal UCQ-solution is a relaxation of the notion of universal solution, as
shown in the following proposition.

Proposition 5.10. Let M = (X, ', B) be a mapping, KCs a KB over X, and K; a KB over T. If IC; is a universal solution for KCs under
M, then K is a universal UCQ-solution for Ks under M.

Proof. Let K; be a universal solution for g = (S, As) under M and q a UCQ over T.

First, we show cert(q, (S U B, As)) C cert(q, k). Assume 7 is a model of K. Since K is a solution for Ks under M,
there exists a model Z of Kg such that (Z, J) = B. Let H be the interpretation of X UT" defined as the union of Z and 7,
that is, H = (AH,. 7y, A" = ATUAT, a™ =aT for each a € N, such that aZ is defined, A* = AZ for each concept name
Ae s, A" = A7 for each concept name A €T, P* = PZ for each role name P € ¥, and P* = PJ for each role name
P eT. Then H is a model of (S U B, As). Suppose d € cert(q, (S U B, As)), it implies H = q(@). Next, as q is a target query,
we have that 7 |=q(a). Given that 7 is an arbitrary model of K, we conclude that a e cert(q, Ky).

Now, we show cert(q, K;) C cert(q, (SU B, As)). Let H be a model of (S U B, As). From H we can construct interpreta-
tions Z and J of X and T, respectively, such that H is the union of Z and 7. Then Z is a model of K5 and (Z, ) = B.
Since K; is a universal solution for s under M, it follows that 7 is a model of ;. Suppose a € cert(q, K), it implies that
J =q(a), and since q is a target query, and 7 and # agree on the constants and target symbols, it follows that H = q(a).
Given that H is an arbitrary model of (S U B, Ag), we have that d € cert(q, (SU B, As)). O

However, the converse direction of Proposition 5.10 does not hold, as shown in the following example.

Example 5.11. Let K, M and K; be as in Example 5.2. As pointed out in that example, K; is not a universal solution for
Ks under M. However, it is easy to see that K is a universal UCQ-solution for s under M. 0O

Notably, the previous example also shows that, as opposed to universal solutions, universal UCQ-solutions can have
non-trivial TBoxes. As a consequence of this, we obtain that universal UCQ-solutions can be smaller than universal solutions,
as there is no need to materialize all facts (since they can be derived using the target TBoxes).

In the following example, we show that there are cases where universal solutions do not exist but universal
UCQ-solutions do. More precisely, we focus on the two cases provided in Example 5.5, and show that certain infinite
chains that cannot be encoded in a universal solution can be finitely represented if the more relaxed notion of universal
UCQ-solution is considered, and also show that disjointness axioms in the source or the mapping do not have any impact
on universal UCQ-solutions.

Example 512. Let M = (X, T, B), where ¥ = {A, R}, ' ={Q}, and B ={R C Q}. Furthermore, assume that s = (S, As),
where Ag = {A(a)} and S = {A C 3R, IR~ C 3R}. It can be verified that KB K = (T, A;), where 7 ={3Q~ = 3Q} and
Ay ={3Q (@)}, is a universal UCQ-solution for s under M, as the aforementioned infinite chain (cf. Example 5.5) can be
finitely represented by combining 3Q (a) with 3Q " C£3Q. O

Example 5.13. Now let M = (2, T, B) be defined as in Example 5.1. Moreover, assume that s = (S, As), where S={AC
=B} and As = {A(a), B(b)}, and assume that A; = {A’(a), B’(b)}. In Example 5.6, we show that .4; is not a universal solution
for KB s under M. On the other hand, it can be shown that A4; is a universal UCQ-solution for s under M. In fact, this
holds independently of whether the unique name assumption is employed. O

From the previous examples, we conclude that:

Proposition 5.14. There exists a mapping M = (X, T, B) and a KB s = (S, As) over X such that, there is no universal solution for
Ks under M, but there exists a universal UCQ-solution for ICs under M.

Unfortunately, we show in the following example that there are cases where universal UCQ-solutions do not exist.

Example 5.15. Let M = (X,T, B), where ¥ ={A,R,S}, ' ={Q} and B={RC Q,S E Q}. Moreover, let s = (S, As),
where S ={A C 3R,3R~ C 3R} and As = {A(a), S(a, b)}. Then the projection over I of the canonical model of (S U B, As)
can be depicted as follows:

projection of . Q Q Q Q

i >0 >0 >0 -
uni(SU B, Ag) over T’ awig) AW (R W] AW R W (R W(R]

S @
A
20



26 M. Arenas et al. / Artificial Intelligence 238 (2016) 11-62

In this case, the basic requirement for a KB K; = (7, A;) to be a universal UCQ-solution for g under M is that A;
contain {3Q (a), Q (a, b)}. Thus, the approach in Example 5.12 to obtain a universal UCQ-solution cannot work, as having
the axiom 3Q ~ C 3Q in 7 would also make the query 3x. Q (b, x) evaluate to true over K, while it evaluates to false over
(SU B, As). In general, a universal UCQ-solution for s under M does not exists, as every KB Ky = (7, A;) over I with
{3Q (a), Q(a,b)} C Ay is not a universal UCQ-solution for g under M. O

We conclude this section by showing that, as in the case of universal solutions, there are some cases where only universal
UCQ-solutions of exponential size exists.

Example 5.16. There exists a family of mappings {M" = (£",I'", B")}n,>1 and a family of KBs {K7};>1 such that every K7

is defined over =" (n > 1), and the smallest universal UCQ-solution for K under M, is of size 22(Mnl+IK5D,
Indeed, let n > 1 be a natural number. Then mapping M" = (Z",I'", B") is defined as follows:

=" = {AJU{RF|ie{l,....,n},ke{0,1}} U (S0, S},
I = {Q*|ke{0,1}}
B" = {RF2 Qklie{l,...,n},ke {0, 1} U{SkE Q¥ ke {0, 1}}.

Moreover, knowledge base K7 is defined as (S", A7), where S" is defined as:
{AC3RY ke {0,1}}U{3RY =3RY,, |ie(l,....n—1},ke{0,1}and £ € {0, 1}},

and A7 is defined as {A(a), SO(b, ), S'(d, e)}, where a, b, c,d, e are pairwise distinct constants.

For every n > 1, a universal solution A{ for K] under M" exists. This universal solution A} consists of membership
assertions Q°(b, c), Q'(d, e) together with an edge-labeled full binary tree of depth n (that contains 2" leaves). As in the
case of Example 5.9, the root of this tree is a, the label of each edge is one of the role names Q¥ (k € {0, 1}), and the tree
contains labeled nulls in every node except for the root.

In this case, there exist no universal UCQ-solution distinct from the universal solutions for ICf under M", as each of
the non-trivial axioms over I'" = {Q°, Q !} combined with A would produce more certain answers to some queries than
S" U B" combined with A7. Hence, as in the case of Example 5.9, we can conclude that A{ is the smallest universal
UCQ-solution for K under M", from which our initial claim follows. O

5.3. UCQ-representations

In this section, we discuss several simple examples explaining various cases when a UCQ-representation exists and when
it does not. We start by showing how the existence of UCQ-representations depends on the shape of the mappings. In the
following example, we consider signatures consisting of concept names only, and TBoxes and mappings containing only
positive axioms (i.e., no disjointness axioms).

Example 5.17. Assume that M = (X, T, B), where ¥ = {A, B,C} and T" = {A’, B/, C'}. Moreover, let S = {A C B}. Consider
the following cases for TBox B.

(1) If B={B C B'}, then there exists no UCQ-representation: take ABox As = {A(a)}, then query q = B’(a) evaluates to true
over (S U B, Ag). However, for every target TBox 7, q evaluates to false over (7 U B, As).

(2) If B={AC A’, BC B’}, then, as expected, 7 = {A’ C B’} is a UCQ-representation of S under M.

(3)If B={AC A", BC B/, AC ('}, then there exist several UCQ-representations: 7 = {A’ C B}, 7' ={C’ C B’} and their
combination.

(4) If B={AC A’,BC B’,C C A’}, then there exists no UCQ-representation: on one hand, if a target TBox contains A’ C B/,
then for As = {C(c)}, g = B'(c) evaluates to true over (7 U B, As) and to false over (S U B, As). On the other hand, if a
target TBox does not imply A’ C B’, then for As = {A(a)}, ¢ = B’(a) evaluates to true over (S U B, As) and to false over
(TUB, As).

B)YIf B={ACA,BCB,AC(C/,CC A}, then 7' ={C’'C B’} is a UCQ-representation of S under M. Note that 7 =
{A’C B’} is not a UCQ-representation of S under M for the same reason as explained in item (4) above. O

Roughly speaking, the previous example illustrates that there exists no UCQ-representation when the mapping is un-
derspecified for the source concepts, as in (1) where A is not mapped to anything, or the mapping is overspecified for the
target concepts, as in (4) where A’ is the image of two source concepts. A “good” mapping is a mapping that is overspecified
for the source concepts, as in (3) where A is mapped to two distinct target concepts and it is possible to construct two
incomparable UCQ-representations.

In the next example, we also consider roles in the signatures. This example shows that in some cases to ensure the
existence of a UCQ-representation, it is necessary to map a complete role, that is, it must appear in a role inclusion in the
mapping.
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Example 5.18. Assume that M = (Z, T, B), where ¥ = {A, R} and I" = {A’, R/, B’}. Moreover, let S = {A C 3R}. Consider the
following cases for TBox B.

(1) If B={AC A’,3dR™ C B’}, then there exists no UCQ-representation of S under M: take As = {A(a)} and a Boolean
target query q = 3x. (A/(a) A B’(x)). Then g evaluates to true over (SUB, As). Let us consider two target TBoxes 7 such
that g also evaluates to true over (7 U B, As):

(a) T ={A’C B'}. Then for the query q’ = B'(a), it holds that (7 U B, As) = ¢/, while (SUB, As) i~ q'. Hence T is not
a UCQ-representation.

(b) T ={A’C3R',3R’™ C B’}. Then for the query ¢’ = 3x. R'(a, x), it holds that (T UB, As) =q’, while (SUB, As) i~ ¢q'.
Hence 7 is not a UCQ-representation.

(2) If B={AC A’,3R~ C B/, RC R'}, then, as opposed to the previous case, 7 = {A’ C3IR’,3R’™ C B’} is a UCQ-represen-
tation of S under M. 0O

Finally, we provide an example involving disjointness axioms in the mapping. Now we will, however, fix the mapping,
and see how the shape of UCQ-representations depends on the shape of the source TBox.

Example 5.19. Assume M = ({A, B, C},{A’, B'}, B), where B={AC A’, BC B’,C C —A’}. In the following, to better illustrate
the structure of TBoxes and mappings, we use a graphical notation in which basic concepts are represented as nodes in a
graph, and we use different types of directed edges: (—%V”) unlabeled edges to represent inclusion assertions between basic
concepts, (—> ) unlabeled “wavy” edges to represent assertions in the mapping. The barred arrows represent disjointness
axioms.

If S={ALC B}, then TBox 7 = {A’ C B’} is a UCQ-representation of S under M. First, notice that
every source ABox As is consistent with S. It should be clear that for every As = {X(a)} for

B—— B’
X e{A, B,C} or As ={B(a),C(a)}, As is consistent with S U B, and
(1) cert(q, (SU B, As)) = cert(q, (T UB, Ag)) for each UCQ q. Zr
Consider now Ag = {A(a), C(a)}, then A is not consistent with S U B (in fact, As is not consistent A——> A
already with B), so cert(q, (S U B, As)) = AllTup(q) for each UCQ q. On the other hand, As is not C/
consistent with 7 U B either, so as well, cert(q, (7 U B, As)) = AllTup(q) for each UCQ q.
C
If S ={B C A}, then similarly to the previous case, TBox 7 = {B’ C A’} is a UCQ-representation of S A}, A
under M, but now it is a bit more involved. Namely, in this case ABox A5 = {B(a), C(a)} is not
(2) consistent with S U I3, but consistent with 3 alone. But Ay is not consistent with 7 U 3 due to the Zr
axiom B’ C A’ in T. So cert(q, (S U B, As)) = cert(q, (T U B, As)) for each ABox As and UCQ ¢q B—— B’
over I'.
A—> A
If S ={B C C}, then TBox 7 = {B’ = —A’} is a UCQ-representation of S under M. This case is in C
(3) some sense the opposite of (2). Consider ABox A = {A(a), B(a)}, then As is inconsistent with S U B. ?
Now the fact that Ag is inconsistent with 7 U B is achieved with the disjointness axiom B’ = —A’ |

in 7.

If S={AC C}, then TBox 7 = {A’ C —A’} is a UCQ-representation of S under M. Observe, that C
every ABox As such that A(a) € A for some constant a is inconsistent with S U . So the axiom ?\Q
(4) A’'C —=A’ in T assures that every such A is also inconsistent with 7 U B. One the other hand, it is
easy to see that for every source ABox that does not contain assertions of the form A(a), the required
condition is satisfied. B——> B’
o
Notice that in the previous example, the source TBox always contains exactly one inclusion of concept names, and
depending on the concepts involved in it, this inclusion needs to be represented either by another inclusion of concept
names, or by a disjointness axiom.
It is worth mentioning that in Section 7.1, Example 7.4 illustrates a case with disjointness axioms in the mapping where
a UCQ-representation does not exist.

AMA’

5.4. Comparison of solutions

Out of the three notions of solution discussed in the previous sections, none of them could be considered as the preferred
one in all possible scenarios. Each one of them has its strengths and its weaknesses, which can be summarized as follows.

Universal solutions are the preferred translations if one is interested in preserving logical correctness of the knowledge
stored in the target KB, as these solutions are the most precise model-theoretical translations. However, they present several
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limitations from the practical point of view: (i) if one considers extended ABoxes, then universal solutions can be of expo-
nential size; (ii) universal solutions are sensitive to presence of disjointness axioms: in some cases one disjointness axiom is
enough to ruin existence of a universal solution (see Example 5.6); and (iii) universal solutions are sensitive to whether the
UNA is employed or not: there are examples when a universal solution exists under the UNA, but it does not exist without
the UNA. This is illustrated, e.g., in Example 5.13.3

Universal UCQ-solutions are the preferred translations if one considers a scenario where the main reasoning task is
query answering over the target KB. In this scenario, universal UCQ-solutions behave better than universal solutions, in
particular they overcome the last two limitations of universal solutions mentioned in the previous paragraph. Besides,
universal UCQ-solutions are, in general, more succinct than universal solutions (although in the worst case can be of the
same size).

Finally, in a scenario where data is changing, or it is not known, and where the main reasoning task is query answering,
UCQ-representations immediately stand out with their nice computational properties: it is shown in Section 7 that their
existence is decidable in polynomial time, and their size is bound by a polynomial as they are TBoxes. Moreover, when a
UCQ-representation exists, one has a straightforward polynomial-time algorithm for computing universal UCQ-solutions of
polynomial size.

6. Complexity results on existence and membership of universal solutions

In this section, we study the membership and non-emptiness problems for universal solutions, in the cases where such
solutions are required to be (simple) KBs, see Section 6.2, and where they are allowed to be extended KBs (i.e., nulls are
allowed in the ABoxes), see Sections 6.3 and 6.4. We start by presenting in Section 6.1 a characterization of universal
solutions in DL-Liter;.

6.1. Characterization of universal solutions

We define the notion of I'-safeness required to deal with disjointness axioms in the source KB and mapping. Assume
that M = (2, T, B) is a mapping and Ks = (S, As) is a KB over X. Let K = (SUB, As) and let uni(KC) be the canonical
model of K. We say that an element 0 € AU(X) s T-invisible if

0¢N; and t}'-”'(’c) (0) =0.

Then a basic concept B over X is said to be safe in uni(K) if for every o € BUN(K) ¢ is I'-invisible. Intuitively, safeness for
B means no constant “associated” with B and no target concept “associated” with B via S and B can be mentioned in the
target; in Example 5.6 neither A nor B is safe in uni(S U B, As). Furthermore, a pair of basic concepts (B, C) is said to
be safe if B or C is safe. Intuitively, if a pair (B, C) is not safe and (B C —C) € S, then universal solutions cannot exist, as
explained in Example 5.6. Similarly, we say that a basic role R over ¥ is safe in uni(K) if for every (o,0’) € R" ) either
o or o’ is I'-invisible. Then, a pair of basic roles (R, Q) is safe in uni(K) if (1) R or Q is safe in uni(K), and (2) for every
(0,0") € RUC) and (0, 0”) € QUNU)  either o’ or 0” is I'-invisible.

Definition 6.1. s = (S, As) is I'-safe with respect to M = (2, T, B) if

(cs) each pair of concepts (B, C) is safe in uni(S U B, As), whenever (BC —C) € S,
(rs) each pair of roles (R, Q) is safe in uni(SU B, As), whenever (RCE—-Q) € S,
(ce) BUni(SUB.As) — . for each basic concept B such that (B C —B’) € B,

(re) RUNi(SUB.As) — ¢ for each basic role R such that (R = —R’) € B.

Note that if Cg and B do not contain disjointness axioms, Ks is trivially I'-safe with respect to M.

We also define the canonical model of an extended ABox .A. Without loss of generality we may assume that A contains
only membership assertions with atomic concepts and roles. Denote by null(A) the set of labeled nulls occurring in .A. Then
the canonical model uni(A) is defined as follows:

AU = ind(A) Unull(4), A" = {aeind(4) Unull(A) | A(a) € A},
a4 = g, foraeind(A), PUA = {(a,b) € (ind(4A) Unull(4)) x (ind(A) Unull(A)) | P(a,b) € A}.

Now, we are ready to provide a characterization of universal solutions, where we already take into account Proposi-
tion 5.3, and therefore consider only target ABoxes as universal solutions. The proof can be found in the appendix.

Lemma 6.2. An (extended) ABox Ay over T is a universal solution for a KB s = (S, As) under a mapping M = (£, T, B) iff the
following conditions hold:

3 Note that standard reasoning and conjunctive query answering in DL-Litez is not sensitive to the presence of the UNA.
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(safe)  ICq is I'-safe with respect to M;
(hom) uni(Ay) is T'-homomorphically equivalent to uni(KCgsp), for Ksp = (SU B, As).

Below we show how checking whether a concept is safe can be done in NLOGSPACE by using TBox reasoning in DL-
Liteg [61]. The proof can be extended to show that condition (safe) can also be checked in NLOGSPACE.

Proposition 6.3. Given a KB I, it can be decided in NLOGSPACE whether a basic concept B is safe in uni(fC).

Proof. Checking whether B is safe in uni(XC), for IC = (O, A), amounts to verifying whether (i) IC (& B(a) for each a € ind(A),
and (ii) for each role R such that wg; € A%NK) apnd O |=3R™ C B, it holds that O = 3R~ C B’ for each basic concept
B’ over I'. Then, given a role R, we can verify whether wg) € A% K) in NLoGSPACE as follows. We use an algorithm for
directed graph reachability, in a graph where the nodes are taken from the union of ind(K) and {w(sj| S is a role in K}, and
the edges correspond to the generating relation ~x (cf. Section 3.2, the definition of the canonical model). Starting from
some a € ind(K), we “follow” a sequence of roles R1,...,R; =R (with n > 1) in such a way that, when we “guess” R; we
check whether a ~x w(g,}, and when, while “remembering” R;, i > 0, we “guess” R;,1, we check whether wg,) ~x W(Rr;,4]»
and “forget” R;. O

As for condition (hom), we show how to check it in Section 6.2 for simple universal solutions, i.e., when we consider only
simple target ABoxes, and in Section 6.3 for extended universal solutions, i.e., when we consider extended target ABoxes.
Next, we provide a characterization of the cases when a universal solution exists.

Lemma 6.4. Let M = (X, T, B) be a mapping, and Ks = (S, As) a KB over X. Then, a universal solution with extended ABoxes for
KCs under M exists iff the following conditions hold: (safe) and

(core) uni(Kgp) is ['-homomorphically embeddable into a finite subset of itself, for Ksp = (S U B, As).

Proof. (<) Let A; be an ABox over I" such that uni(A,) is a finite subset of uni(Ksp) and there exists a I'-homomorphism
h from uni(Ksp) to uni(A;). Then, uni(Ay) is trivially homomorphically embeddable into uni(Ksgp). Since, Ks is I'-safe with
respect to M, by Lemma 6.2, we obtain that A4; is a universal solution for s under M.

(=) Let A; be a universal solution for /Cs under M. By Lemma 6.2, it follows that Kg is I'-safe with respect to M
and that uni(A;) is I'-homomorphically equivalent to uni(Ksp). Let h be a homomorphism from uni(A;) to uni(Kgp), and
h(uni(Ay)) the image of h. Then, h(uni(A;)) is a finite subset of uni(Xg,), moreover it is homomorphically equivalent to
uni(A;) and to uni(Kgp). Therefore, uni(Cqp) is I'-homomorphically embeddable to a finite subset of itself. O

It follows from the proof of Lemma 6.4 that the ABox .4; corresponding to the finite subset uni(A;) of uni(Cgp) in
condition (core) is a universal solution. Hence, if we additionally require in condition (core) that the finite subset uni(.A4;)
does not contain anonymous individuals, we obtain a characterization for universal solutions with simple ABoxes.

We introduce some additional notation needed in this section. For a KB X and a € ind(K) define gen,(K) to be an
interpretation obtained from gen(KC) by restricting it to the domain {a} Uwit(XC) and removing (a, a) from the interpretation
P9en(X) of every role name P. We denote by uni;(K) the unraveling of gen,(K). Observe that AUa) = (g0 | ao € AUMUO)}
and that unig(K) is a tree structure.

6.2. Universal solutions with simple ABoxes

In this section, we show that both the membership and the non-emptiness problems for universal solutions without null
values are PTIME-complete.

We start with tackling the membership problem: we are given a mapping M = (X,T, 5), a source KB s = (S, As),
and a simple target ABox .A;, and the question to decide is whether A4; is a universal solution for s under M. By
Lemma 6.2, it is sufficient to check conditions (safe) and (hom). The former condition does not depend on .4; and can
be checked in polynomial time. As for the latter condition, denote by g, the KB (S U B, As). First, checking the existence
of a I'-homomorphism from uni(A;) to uni(fCgp) for a simple ABox .4; amounts to checking,

A @) c R ) and A (@, b) < " ®) (q,b)  foralla, b € ind(Ay). )
Second, a necessary condition for the existence of a I'-homomorphism in the opposite direction, is that
tF”i(’CSb)(a) - tF”i(A‘)(a) and r‘li"i(]Cs")(a, b) C tlli"i(At) (a,b) foralla,b eind(As). (3)

Clearly, these two conditions can be checked in PTIME. In addition, we need to check for each a € ind(As), whether the
tree unig(KCsp) can be I'-homomorphically mapped to uni(At). To do so, we make use of infinite reachability games on
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Fig. 4. Example of a game: a) the game arena A4, b) projection of uni(KC) over X, c) uni(.A).

graphs [62]. Specifically, we show how this problem can be reduced to the problem of existence of a winning strategy
for Duplicator in a reachability game, known to be solvable in polynomial time. For a short introduction to (reachability)
games, we refer to Section B.6. Below we show how to construct the game G, for a KB K, an ABox 4, a signature X, and
c €ind(K).

The reachability game G, = (Ac, F¢) is formally defined as follows: A, = (S,D,T) is the game arena, where S and D
are respectively the sets of Spoiler and Duplicator states defined next, and T is the transition relation defined below; F,
is the winning condition, i.e., the set of states that Spoiler wants to reach. Each state in S has the form (u+>a) with
t%en(’c)(u) C tl)’:"'(A) (@), while each state in D has the form (a, u~u’) with u~»x v/, where u, u’ € A% and g € ind(A).
Intuitively, the game proceeds as follows. Duplicator tries to construct a £-homomorphism from the tree unic () to uni(A),
and Spoiler attempts to fail him by finding a path in unic(C) that does not have a homomorphic image in uni(A), given
the partial homomorphism constructed so far. Spoiler starts in (ug+> ag) for ug =ag =c if (c+c) € S, which corresponds
to mapping c to ¢, and at each of his turns chooses a successor u;;1 of u; in gen,(fC): the “challenge” represented by
the state (a;, uj~ u;11). Then Duplicator tries to find a constant a;;1 € ind(A) that could be the image of the “challenged”

element ug - - - ujy1 of unic(K), i.e., he chooses a state (uj1+> aj41) such that rgzenf(lc)(u,-, Uipq) r;”i(A) (a;, aiy1). Note that,

if r%en‘(’c)(ui, uj+1) is empty, then Duplicator can respond with any a;y1 such that (uj;1+>aiy1) is a Spoiler state, even if

ai+1 is not connected to a; in uni(.A). Duplicator loses if he cannot find where to map the challenged element, i.e., for all

ajt+1 € uni(A) we have that either r%enf(K)(ui, Uit1) ;(_ rl;:ni(A) (aj, ai+1) or (uj41+>ai4+q) is not a state in S. In other words,

the game reaches a “dead-end” of Duplicator, i.e., (a;, u;j~ u;t+1) € Fc. Otherwise, the game can reach a dead-end of Spoiler,
or continue forever avoiding the dead-ends of Duplicator, hence Duplicator wins. Note that, if (c—c) ¢ S, then we assume
that Spoiler “wins” the game immediately.

Formally, we define T and F. as follows:

T={(ur~a),@u~u))|(u~aeSand (@ u~u)eD}U
{ (@ u~u), @'a))| (@ u~u)eD, @ a)es, and 1w, u) e, a) )
Fe={(@u~u)|@Wra)¢s or r%e"C(K)(u, u) ¢ r“E"'(A)(a, a), foralla’ e AUICA

Notice that the size of A; is O(|gen ()| x |.A]), and that A. and F. can be directly computed according to their definition
in time that is linear in their size.

We illustrate such games in the following example.

Example 6.5. Assume X~ = {R’, §’,Q'}, K = (O, {3R(a),3S(a)}), where O = {IR~ C IR,3S~ C 3Q,3Q C 3IS,RC R/,
SCS,QEQ’), and A={R'(a,a),S'(a,b), Q'(b,b)}. Then Fq = {(b, wig;~ w(s})}, and the game arena A, can be de-
picted as in Fig. 4(a), where the Duplicator states are shown as ovals and the Spoiler states are shown as boxes (we ignore
the states that are not reachable from (a+> a)). In Fig. 4(b) and (c), we show the projection over X of uni(K) and uni(A),
respectively.

The game starts in state (a+> a), which corresponds to setting the homomorphic image of a € AU tg g € AUNICA),
Then Spoiler can choose one of the two successors of a in gen,(K): either wg; or wys). If he chooses wpg;, it means he
moves to the state (a, a~ w(g}). Now, Duplicator has to respond by finding where in uni(4) to map awg;: he can map it
only to a (note the role labels), so he moves to (w[r; > a). In this manner, the two players have to continue forever moving
between the states (a, wigj~ wgj) and (w[g)+ a), which corresponds to mapping all elements of the form awg;--- wg) €
AWK to g € AU Thus, this play is infinite: (a— a) - (@, a~ wigy) - (Wig) > @) - (@, Wigj~ W(g]) - (W[g]+> @) --- and it
is a win for Duplicator.
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Fig. 5. Example of a game: a) the game arena A4, b) projection of uni(XC) over %, c) uni(.A).

Instead, if Spoiler at his first move chooses the successor wis; of a, hence moves to the state (a, a~ w(s), the game fin-
ishes soon in a dead-end of Duplicator. Hence, the second play is finite: (a+>a)-(a, a~ wis)) - (Wsj—=b) - (b, wisj~ wiq1)-
(wrqi—Db) - (b, wiq1~ wis), and it is a win for Spoiler, since the game reaches a state in Fq. O

Having constructed the game G. = (A, F¢), we prove that verifying whether uni.(XC) can be X-homomorphically mapped
to uni(A) reduces to checking whether both (c+> c) is a state in the game arena A (i.e., t%en(}c)(c) C tl;:n'(A) (c)) and Dupli-

cator has a winning strategy in G, from (c+ c).

Lemma 6.6. Let KC be a KB, A an ABox, and X a signature. There exists a ¥ -homomorphism from uni(C) to uni(A) iff
(abox1) r;”i(lc) (a,b) C r“E”i(A) (a,b), foralla, b €ind(K);
(win) (c+> ¢) is a state in Ac and Duplicator has a winning strategy in G. = (A, F¢) from (c+> ¢), for each ¢ € ind(K).

Proof. (=) Suppose h is a X-homomorphism from uni() to uni(A): clearly, (abox1), and t%en(lc) (a) < tuzn'(A)(a) for each
a € ind(K) hold. Let ¢ € ind(K), then (c+ c) is a state of A.. We describe a winning strategy f for Duplicator in G, from
(c+>0). Let m = (ug> ap) - (agp, Up~uq)--- (U ay) - (ax, Ux~ Ugs1) be a finite sequence of states in A;, where k > 0,
ug =ag =c, and g; € ind(A), u; € A%"X) for i > 1. Then we set f () = (ug41 > h(cuq ---ug41)). Note that by construction
of T, cuy ---ugyq is an element of AU " and since h is defined for AU it follows that f is defined for each possible
sequence . Moreover, f(;r) is never a dead-end of Duplicator. Hence each play, either ends in a dead-end of Spoiler (i.e.,
Spoiler is in a leaf of the tree in uni(K)), or continues infinitely long avoiding visits to the dead-ends of Duplicator. In any
case Duplicator wins.

(<) Assume that both (abox1) and (win) hold (in particular, tgze"(lc) (@) < (), for each a € ind(K)). Given ¢ e
ind(KC), we construct a X-homomorphism h. from the tree unic(XC) to uni(A). Let f be a winning strategy of Duplicator from
(c+c). Let m = (ug+> ap) - (ap, up~uq)--- (Ug > ax) - (ax, ug~>ugy1)--- be a play conforming with f, where ug =ap=c,
u; € A% and g; € ind(A). Then Duplicator wins 77, and either

- 1w = (ug+>ap) - (ap, ugp~uq)--- (Ug+— ay) is a finite play, k >0, and (uy+> ay) is a dead-end of Spoiler. In this case, we
set he(cuq---uj)=a;, for 0 <i<k.
- 7 is an infinite play such that no state from F. occur in it. In this case, we set hc(cuq---u;) =aj, for i > 0.

The function h. is well defined for all elements in A< and one can verify that it is a X-homomorphism from unic(XC)
to uni(A). Finally, we define a £-homomorphism from uni(XC) to uni(A) as the union of he, for each c €ind(K). O

The example below illustrates the presented reduction.

Example 6.7. Assume ¥ = {R’, Q'}, K = (O, {3R(a), 35(a)}), where ©® ={3S~C3R, 3R~ C3Q, 3Q~C=3Q, RCR/, SCR/,
QC Q'Y and A={R'(a,a).R'(a,b), Q'(b,b)}. Then Fy ={(b, wisj~ Wg}), (a, Wgj~ wq7)}. In Fig. 5 we depict the game
arena A; and a X-homomorphism h from uni(K) to uni(A). Observe that in the game G, Spoiler does not have a winning
strategy from (a+> a), because there is a way for Duplicator to play (infinitely) so that the game never reaches F,. It is not
difficult to see that such strategy of Duplicator can be used to define the homomorphism h, and vice versa. 0O
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Finally, combining Lemma 6.2 and Lemma 6.6, and considering that (win) in Lemma 6.6 can be checked in polynomial
time (see Section B.6), we obtain that the membership problem for universal solutions with simple ABoxes is in PTIME.
Below we show the matching lower bound.

Lemma 6.8. Given a KB s = (S, As), a mapping M, and a simple target ABox A, checking whether Ay is a universal solution for
Ks under M is PTIME-hard.

Proof. The proof is inspired by one in [30], but makes use of a reduction from the Circuit Value problem, known to be
PTiME-complete [63, Theorem 8.1], instead of a reduction from the Horn Satisfiability problem. Given a monotone Boolean
circuit C consisting of a finite set of assignments to Boolean variables Pq,..., P, of the form P; =0, P;=1, Pj=P; A Py,
J.k<i,or Pi=PjVv Py, j k<i, where each P; appears on the left-hand side of exactly one assignment, check whether the
value P, is 1 in C.

We fix signatures ¥ = {P(-),L(-,-),R(-,)} and ' ={L'(-,-), R’(-, -)}. Let ay, ..., an € Ng, and consider

As ={P(an)} U {L(aj, a;), R(aj,q;) | Pi=1in C}U {L(a;, aj), R(a;,ar) | P;=P;j A Py in C}
U {L(aj, aj), R(a;,aj), L(a;, ax), R(aj, ar) | P =PV P in C}
S={PCc3L, PC3R, AL CP, IR C P}, B={LC L, RCR}
A= {L'(aj,aj) | L(a;j, aj) € As} U{R(a;, aj) | R(a;, aj) € As}

Note that X, I', S, and B do not depend on C, which is encoded by .4; only. Hence, the reduction provides a lower bound
for data complexity [64]. In the appendix we show that the value of P, in C is 1 if and only if A; is a universal solution for
Ks=(S, As) under M= (2, I',B). O

Example 6.9. For a circuit C containing assignments P =1, P, =1, P3 =0, P4= Py A P, and P5 = P3 Vv P4, we depict
the projections over I' of uniq (S U B, As) and uni(Ay):

unigs (S U B, As) uni(Ay)
asw \EW[R] LR LF
O. 0. / . ag4
L R
/ / \ . .

o (o}
AsWLIWIL] - AsWILIW[R] - AsWIRJWIL] . asWRJW[R] - L’ R @

We explain why the value of Ps in C is 1 if and only if there is a '-homomorphism h from an infinite binary tree unig (SU
B, As) to a finite tree with loops on the leaves uni(Ay). First, h(as) = as. Then, as has two successors in unig; (S U B, As),
aswiyr) and aswig), that could be mapped either to as or to as. Intuitively, this corresponds to the fact that Ps = P3 V Py,
therefore in order for the value of Ps5 to be 1, at least one of P3, P4 should evaluate to 1. The former option is not good
because the value of P3 is 0 and a3 has no successors. Therefore we map both aswy;; and asw(g) to as: h(asw) =
h(aswigy) = as. Intuitively, this corresponds to the fact that the value of P4 is 1. Let o be aswy or asw(g;. Then o wyj has
to be mapped to a; and o wgy has to be mapped to ay. This corresponds to the fact that P4 = Py A Py, therefore in order
for the value of P4 to be 1, the values of both P; and Py should be 1. Finally, since the values of Py and P are, in fact, 1,
there are loops on a; and a, labeled with L" and R’. So, all successors of o w; and o wg) can be mapped to a; and ay,
respectively. O

/E

Theorem 6.10. The membership problem for universal solutions with simple ABoxes is PTIME-complete.

We conclude this section by addressing the non-emptiness problem. It follows from what is observed after Lemma 6.4
that there exists a universal solution for KCg under M that is a simple ABox iff the (simple) ABox .4; over I is a universal
solution for Ks under M, where A; satisfies equations (2) and (3). Obviously, we can construct the required .A; in PTIME,
then it remains to check if it is a universal solution. Moreover, we can adapt the reduction in Lemma 6.8 above to show
that the PTIME bound is tight. We obtain the following result.

Theorem 6.11. The non-emptiness problem for universal solutions with simple ABoxes is PTIME-complete. Moreover, there is an effec-
tive algorithm to compute a universal solution in polynomial time.

6.3. The membership problem for universal solutions with extended ABoxes

In this section, we study the membership problem for universal solutions when extended ABoxes are allowed in the
target, and show that it is NP-complete.
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Assume given a mapping M = (X, T, B), a KB Ks = (S, As) over X, and an extended ABox A; over I', and let K =
(SUB, As). In this setting, existence of I'-homomorphism from uni(X) to uni(A;) can be still checked in PTIME using
the technique of reachability games presented in Section 6.2 (note that for homomorphisms in this direction, there is no
distinction made between the constants and the labeled nulls in A;). Instead, existence of a '-homomorphism in the
opposite direction cannot be checked efficiently due to the nulls in A;. In fact, we show now that the membership problem
for universal solutions with extended ABoxes is NP-hard in data complexity.

Lemma 6.12. Given a KB KCg = (S, As), a mapping M, and an extended target ABox A, checking whether Ay is a universal solution
for Ks under M is NP-hard.

Proof sketch. The proof is by reduction from 3-colorability of undirected graphs, known to be NP-hard. Consider an undi-
rected graph G = (V, E), which we view as a symmetric directed graph, and fix signatures ~ = {E(-,-)} and T = {E'(-,")}.
Further, let r, g,b € Ng, V C N; and

As={E(r.g), E(g.1),E(r,b), E(b,1), E(g.b),E(b, &)},  S={}, B={ECE},
Av={E'(r.g). E'(g.1), E'(r,b), E'(b,1), E'(g, b), E'(b, ©)} U{E"(x. ¥) | (x, ¥) €E}.

Note that the vertices in G become labeled nulls in .A4;. In the appendix we show that G is 3-colorable if and only if A; is
a universal solution for s = (S, As) under M= (Z,T',B). O

We provide now a matching upper bound.
Lemma 6.13. The membership problem for universal solutions with extended ABoxes is in NP.

Proof. Given a KB g = (S, As), a mapping M = (2, T, ), and an extended target ABox .A;, it suffices to show that the
existence of a homomorphism from uni(A) to uni(K), for K = (SUB, As), can be checked in NP in the size of ICs, M, and
At (checking the existence of a I'-homomorphism in the other direction is in PTIME, as discussed above). For this, we use
the fact that the image W € A of the function h on AU(AY js bounded by the size of 4. Therefore, for each constant
and null in A;, one needs to guess its homomorphic image in AU and then check whether the resulting function is a
homomorphism.

First, if there exists a homomorphism h from uni(A4;) to uni(KC), then there exists witness W with a number of elements
bounded by the size of Ay, such that W € AU and h is a function from AUYCAY to W: take W = h(AUN(AD),

Second, we show that there exists a witness W such that W € AU and every x € W is a path of length smaller or
equal 2m, where for x =awys,]--- w(s,] the length of x is k+ 1, and m is the size of SU B U A;. To this end, let h be a
homomorphism from uni(4) to uni(K) and W = h(AU(AD), Let Zyy be the sub-interpretation of uni(X) induced by W.
For x, y € W, we say that x is connected to y in Zy, if there exists n > 0 and a path xq, X2, ..., Xs, Xp+1 such that x; e W,
X1 =X, Xpr1 =Y, and (x;, Xj+1) € RiIW for some role Rj, i € {1,...,n}. Assume that x € W and the length of x is more than
2m. Then, since W = h(AU(AD) we have that x is not connected to any element of ind(As) in Zy. Let C be the maximal
connected subset of W with x € C, i.e., for each y € C, (i) y is connected to y’ in Zw, for each y’ € C, and (ii) y is not
connected to any z€ W \ C. Note that C Nind(As) = . Let y be the path in path(XC) of minimal length in C, it exists and is
unique since C € AZw and there are no constants in C. Then for each y’ € C, we have that y' =y - w(g,]--- W[, for some
roles Ry, ..., Rg. Further assume tail(y) = w(g}, and let z be a path of minimal length in AWK with tail(z) = wig]. Then
the length of z is bounded by the size of S U B and the length of each z- wg,--- wig,) for some y - wig,j--- Wig, €C, is
bounded by the size of SUBU A;. Now, define a new function h’ : AU AY . AU guch that h'(x) = h(x) if h(x) ¢ C, and
W (x) =z-wr, - wg, if h(X) =y - Wr,) - Wg,). It is easy to see that i’ is a I'-homomorphism from uni(Ay) to uni(K).
Now we can take W = h/(AUICAY) and repeat the above construction until the claim is satisfied.

Finally, to verify in NP whether a homomorphism h from uni(A4;) to uni(K) exists, it is sufficient to guess W of polyno-
mial size and check if uni(A;) can be homomorphically mapped to Zy,. O

Thus, we obtain the exact complexity of the membership problem with extended ABoxes.
Theorem 6.14. The membership problem for universal solutions with extended ABoxes is NP-complete.

6.4. The non-emptiness problem for universal solutions with extended ABoxes

We now turn to the non-emptiness problem for universal solutions with null values. This problem turns out to be
harder than the membership problem as now candidate solutions, which can be of exponential size, are not part of the
input. In fact, we show by reduction from the validity problem for quantified Boolean formulas that checking the existence
of a universal solution is PSPACE-hard. We also show an EXPTIME upper bound by relying on techniques based on two-way
alternating automata on infinite trees (2ATA). 2ATAs are a generalization of non-deterministic automata on infinite trees whose
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non-emptiness problem is in EXPTIME [65]. They are at the basis of a variety of reasoning techniques for description and
modal logics. In particular, due to their ability of traversing trees both downwards and upwards, they are well suited for
handling inverse roles in DL-Litez. We briefly introduce in Section B.7 the basic notions about infinite trees and 2ATAs and
the notation that we use for them.

The lower bound can be shown (see the appendix) similarly to Theorem 11 in [55] by reduction from the validity
problem for quantified Boolean formulas, known to be PSPACE-complete:

Lemma 6.15. The non-emptiness problem for universal solutions with extended ABoxes in DL-Litez is PSPACE-hard.

As a corollary, we obtain a PSPACE lower bound for the non-emptiness problem for universal UCQ-solutions with ex-
tended ABoxes by a straightforward reduction from the non-emptiness problem for universal solutions with extended
ABoxes.

Lemma 6.16. The non-emptiness problem for universal UCQ-solutions with extended ABoxes is PSPACE-hard.

Proof. Let M = (X, T, B) be a mapping, and Ks = (S, As) a KB over . We construct XC, and M’ such that there exists a
universal solution for Ks under M iff there exists a universal UCQ-solution for K} under M’.

Define M’ to be (X', T, B'), where X’ extends ¥ with fresh concept and roles names {X; | X € I'} and fresh role names
Q1.Q2, I extends I' with a fresh role name Q, and B'=BU{X1C X |XeT}U{QiC Q,Q2C Q}. Let K = (S, AL),
where AJ is the union of As, assertions

{Xj(ax) | X e T is a concept name} U {X;(ax, bx) | X € T is a role name},

for fresh constants ay,bx for each symbol X, and assertions {3Qq(aq), Q2(aq,bq)}, for fresh constants aq,bq. If Ks is
not I'-safe with respect to M, then &’=SU{3Q; C 3Q4}, otherwise S’ =S. In the appendix, we prove that }C; and M’
are as required. 0O

As for the upper bound, we show how to check condition (core) of Lemma 6.4, i.e., whether there exists a finite subset
D of AU(Ks) and a I'-homomorphism from uni(g) to its finite sub-interpretation induced by D. In the following, for an
interpretation ¢/ and a finite subset D of A, we denote with &P the sub-interpretation of ¢/ induced by D. We also write
U? if D = {d}. To simplify the presentation, in the rest of this section we tackle a more general problem: given two (simple)
KBs K1 and K, with canonical models ¢/; and U5, and a signature ¥, decide whether there exists a ¥-homomorphism
from U; to LIZD, for some finite subset D of AY2,

As in the case of the membership problem for simple universal solutions in Section 6.2, for such a homomorphism to
exist, (i) an analog of condition (abox1) must hold (cf. Lemma 6.17), and (ii) for each c € ind(K;), the tree 24 must be
Y -homomorphically embeddable into UP<, for some finite subset D, of A2, To check condition (ii) we adopt 2ATAs; more
precisely, we show how to construct for each constant ¢ €ind(K1), an automaton A, (with Biichi acceptance condition) ac-
cepting (infinite) trees that correspond to (the finite) Z/IZD ¢. Hence, to verify the existence of the required X-homomorphism,
we solve the non-emptiness problem of A, for each constant c. It follows that, if the language accepted by A. for some
c €ind(KCq) is empty, then there is no such homomorphism, otherwise we can obtain Z/IZD from the trees accepted by A..
Below we show how to construct the automaton A. for two KBs Ky, K, a signature X, and some constant ¢ € ind(X1).

In the following, we assume that ind(Cz) = {ay, ..., an,}, Wit(K2) = {w1, ..., wp, }, and n = max(ng, ny). Denote by
and U, the canonical models, and by G; and G, the generating structures of Iy and K,. We define the automaton A. as
the tuple (I", Q, 8, qo, F), where the alphabet T is the set

I = {root, stop} U {a; | 1 <i<ng}U{w;|1<i<ny).

Hence, A, accepts n-ary trees where each node either corresponds to a constant of Ky, labeled with the symbol a;, or
corresponds to a witness of K, labeled with the symbol w;, or is the root of the tree, labeled with root, or is a node
outside the finite part, labeled with stop. The set Q of states is partitioned into three sets:

Q ={qo} VU QfUQp,

where Qy is the set of states responsible for labeling an input tree T as an appropriate finite substructure of i/, and Qj
is the set of states responsible for checking the existence of a homomorphism from /{ into a finite substructure of I/,. We
define

Qr={oi|1<i<ng}U{w;|1=<i=<ny},

where the states «; are responsible for labeling T with the constants of Xy, and the states w; are responsible for labeling T
with the witnesses of ;. We define the transition function § for these states and for the initial state qo as follows:
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Ng
(i, Ol')) A (0, qp), ifL=root
5(qo. L) = (/\1 ’ 4)
1, otherwise,
N Goop, ifL=g
for1<i<ng, &(ail)= aligggvvvv} 5)
1, otherwise,
N Goop. ifL=w;,
1<j<nw,
for1<i<nw, 68w, L)=4{""KWi (6)
T, if L = stop
1, if L eT \ {W;, stop},

where gy, is a state from Qp, which we are going to define below. For now observe that due to the transitions above, a tree
T accepted by A will have the symbol root in the root and the symbol @; in the i-th successor of the root. Then, each
of the i-th successors above will have its j-th successor marked with W; whenever a; ~x, w;. Further, each of the j-th
successors above will have its i-th successor marked with W; whenever w;j~»x, w;, and so on. Note that at some step,
when w;j~»k, wi, a node in T marked with W; can have its i-th successor marked with stop (instead of W;). This should
mean that this i-th successor is not inside the finite substructure of i/, to which the homomorphism will map ¢, and
A will stop going down T. Note that it is not yet guaranteed that each path in T from the root contains at some point a
node labeled with stop instead of w;. However, if this is not the case, we would have an infinite path in T over which the
automaton passes infinitely often through states w;. We rule this out by means of an appropriate acceptance condition of
the automaton, which we present below.
Let wit(C1) = {u1, ..., Uy}, and assume that ug = c. Now, the set of states Qy is defined as:

Qn = {qn) U {ye, xel0<t<m} U {kl|1<t<m, 1<i<ng),

and the transitions for theses states are defined as follows, where 1<¢ <mand 1 <i <ng:

(j, Y0), ifL=rootandc =a; forsome j,
s@an1) = 1Y o 4 (7)
1, otherwise;
fort € far,....an, wi,...,wn,}, 8(xe,D) = 0,70 v \/ G.xo) v (=1, xo); (8)
1<j<nw,
t’\’*}CZWj
Ng
8(xe. 00ty = \/ (i, x0); 9)
j=1
: i, , if L =root,
swi = |70 . (10)
1, otherwise;
forqe Qu, 8(q,stop) = L. (11)
Next, for 0<f¢<m and b e {ay,...,ay,},
Ng
r u Ug,u . Up,Ug i 3
syeby =1 A N\ Oxr N ( V (it A Gv0) v\ (g A (—pr)), (12)
1<k<m, 1<k<m, “1<j<ny, i=1
Up -5 Uk Ues2Uk bog,wj
and for 1 <¢{<mand v e{wy,...,wp,},
Sve ) =" A N\ O A N ( V (0 A Govo) v (™ A1, m)), (13)
1<k<m, 1<k<m, " 1<j<ny,
Ug-5> Uk Ug —> Uk v«»;czwj
where the relations -~ and -5 defined between elements s, s’ € {ug, ..., Uy} indicate whether the edge between s and s’

has a nonempty or empty X-role label, respectively:

’os ’ G ’ ;oo ’ g ’
sps’ if s~ox, s and Y (s,s) #0, and s-5>s" if s~ s'andry!(s,s) =0,



36 M. Arenas et al. / Artificial Intelligence 238 (2016) 11-62

the functions 77 and pts’ts,/, encoding local homomorphism conditions, return true iff s can be mapped to t, and the edge
(s,s’) can be mapped to the edge (t,t), respectively:

= . ! .
t 1, otherwise Lt 1, otherwise

) :T, iftd (s) < t2(0) o T s s) er e r)
and the function nf,’v’”/ returns true iff the edge (u,u’) can be “inversely” mapped to the edge (w,s), for the predecessor s
of w:

wy | T, if{RT|Re rg‘ (u,u)} C rgz (s, w) for some s~ y, w
w 1, otherwise,
for s,s" as above, t,t € {ai, ..., an,, W1, ..., Wp,}, u,u’ €{u1,...,un} and w € {wy, ..., wy, }. This concludes the definition
of the transition function.

Observe that for each witness u, € wit(K'1) there are two states in Qp: ), is responsible for checking the existence of
a homomorphic image for the sub-tree generated by uy, and y, is the “expecting state”, which is responsible for non-
deterministically finding a homomorphic image of u,; moreover for each witness u, € wit(XC;) and constant a; € ind(/Cy),
there is a state K} used to move from the current constant in /K, via the root to a;, to which u, is mapped. Intu-
itively, suppose an element cuy, ---ug, of AY1 is homomorphically mapped to the element aj, wi, ---wj, of AY2 and
Ug, ~Ky Ugyy- If Ug, —>Ug,,, then the element cuy, ---ugug,, of AY has to be mapped to an immediate successor

. . ug Ug, Uy, L
or predecessor of the image of cuy, ---ug, in Us. For w; ~x, wj_,, whenever rwi"*ll =T and pwi’; W:‘”l =T, it is guar-
r+ Tt

anteed that the edge (cug, ---ug,, cug, ---uglye,,) of U can be mapped to the edge (a;j, wi, --- Wi, aj; Wi, -+ Wi Wi_,)

of U,. Alternatively, if nuwfi"r’w"“ =T then the edge (cuy, ---ug,, Cug, ---Uglg,,) can be “inversely” mapped to the edge
(@i, Wiy - -+ Wi, aj, Wi, ---wi_). If, however, ug, -5>ug,,, then cug, ...ugug , can be mapped to any element of i/, which
is reflected by switching to the state x,.

For the (Biichi) acceptance condition we take F = {y; | 1 <i <m}. Observe that neither the states w; of Qf nor x; of Qj
are in F. This implies that a tree is rejected if it has an infinite branch all of whose nodes are labeled with w;, or if all
runs on it are such that the mapping of a “disconnected successor” (such as ug,,, with ug -5>uy,, in the example above)
is “infinitely postponed”. On the other hand, each accepted tree represents a finite substructure of i/, to which ¢/{ can be
Y -homomorphically mapped. The number of states of the automaton A, is quadratic and the overall size of the automaton
A, is polynomial in the combined size of the two generating structures G; and Go.

We prove that verifying whether ¢{; can be X-homomorphically mapped to Z/IéJ for some finite D € AY2 reduces to
checking the non-emptiness problem of A..

Lemma 6.17. Let K1, K, be KBs and  a signature. There exists a finite subset D of AY2 and a £-homomorphism from U to L{ZD if
and only if

(abox2) rzgl (a,b) C r%’z (a,b), foralla,b €ind(Ky), and
(aut) the language of the automaton A is non-empty, for each c € ind(K1).

Proof sketch. (=) Let D € A2 be finite, and h a S-homomorphism from Uf; to Z/lzD. We construct a labeled tree T =
({1,...,n}*, V) where n = max(nq, ny) and show that T € L(A.), for each c € ind(K1). The labeling function V is defined
as follows:

V (e) =root;

V(i) =aj, for each a; € D Nind(K3);

V(iyip---iy) = w;,, foreacha; wi,---wj € D;

V (x) = stop, foreach x € {1, ..., n}* such that V (x) is not otherwise defined.

To show that T € L£L(A,), we construct a run tree (Ty,r) of A. on T. The idea behind this construction is the following.
Assume that y € T with r(y) = (x,q), x € {1,...,n}*, and V(x) = L. Observe that the transition function can be viewed
as a conjunction §(q, L) = /\; ®;, where each &; = \/j ‘ﬁ}- To satisfy 8(q, L), we construct exactly one child for each ®;j,
and we satisfy ®; by choosing exactly one xp]‘. from &;, making use of the given homomorphism h. Thus, for instance, if
r(y)=(1-2,y), V(1-2)=ws,, the current path in I/ is cu; (this path can be obtained from the path from the root of Tr
to y), h(cuy) =aiwz, and uy <> u3 and h(cuqus) = a3 wowy, then we satisfy 'ﬂ} = (4, y3), so y would have a child y’ with
r(y)=(1-2-4,y3).
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If, instead, uq-5*>u3 and h(cuqus) = az, we switch to the “expecting” state x3 and remain in this state while traversing
the tree {1,...,n}* from the node 1-2 via the root to the node 2. Once node 2 is reached, we switch to the state ys.
The choices for satisfying the transition function follow from that. Thus, the run from y continues as: (1-2,y1), (1-
2, x3), (1, x3), (€, x3). (2, x3), (2, ¥3)-

U, (Llé) ﬂ/ﬂf
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partof T and 7',

For the formal definition of (T, r), we refer to the appendix.

(«) If the language of A, is non-empty, then there is a tree T = ({1,...,n}*, V) € L(A¢) and an accepting run (T, r) of
Ac over T. We can construct a finite set Do € AY2 by proving that T encodes a finite subset of AY2, extracting D, from
it, and defining a X-homomorphism h. from U to Z/IZD by induction, based on the choices in T, to satisfy the transition

function. A £-homomorphism from U/; to LIZD for D =, D¢ is defined as the union of h, for each c € ind(K1). O

Example 6.18. Consider M and K¢ from Example 5.8, i.e., M = (X, T, B), where £ ={A,R,S}, T ={Q}, and B={RC
Q,SC Q}, and K = (S, As), where As ={A(a), S(a,a)} and S ={AC 3R, IR~ C IR}

We construct the automaton A, for K1, K3 and Z, where K1 = (SU B, As), K2 =K1 and X =T. Moreover, ind(Ky) =
{a1}, wit(Ky) = {w1} and wit(XC1) = {uq}, where a; =a, wi = wigy, and u; = wgy. Thus n =1, so A, accepts trees of
the form ({1}*, V), where V(x) € {root, stop, a1, w1}, and the set of accepting states is F = {y;}. Below we depict a tree
T € L(Ay) with an accepting run over T that starts in € with r(e;) = (€, qo).
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From T we can extract the ABox 4; ={Q (a,a), Q (a,n)}, which is also a universal solution for s under M. 0O
Summing up, we get:

Theorem 6.19. If extended ABoxes are allowed in universal solutions, then the non-emptiness problem for universal solutions is
PSPACE-hard and in EXPTIME.
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7. Complexity results on UCQ-representability

In this section, we develop techniques and complexity results for the problem of UCQ-representability. More precisely,
we show in Section 7.1 that the membership problem for UCQ-representations is NLOGSPACE-complete, and then we prove
in Section 7.2 that the same complexity bound holds also for the non-emptiness problem for UCQ-representations.

7.1. The membership problem

One can immediately notice some similarities between the membership problem for UCQ-representations and the mem-
bership problem for universal UCQ-solutions, which was shown to be ExpTiME-complete in [30]. However, the universal
quantification over ABoxes in the definition of UCQ-representations makes the former problem computationally simpler; in
fact, we prove in this section that this problem is NLoGSPACE-complete, which coincides with the complexity of TBox rea-
soning in DL-Litep [61]. We now list several observations that help to understand this drop in complexity, and also provide
an intuition for the characterization of UCQ-representations that is stated in Lemma 7.1, and which is used to pinpoint the
complexity of the membership problem for UCQ-representations. In the following, assume fixed a mapping M = (%, T, B),
a source TBox &, and a target TBox 7.

1) For simplicity, we assume first that S, BB, and 7 do not contain disjointness axioms. Let As = {A(a)} be a source ABox,
for an atomic concept A, and assume that SU B = A C B’ for some basic concept B’ over I". Then (SU B, As) = B'(a) and,
thus, ¢ = B’(a) evaluates to true over (SUB, As). Hence, for 7 to be a UCQ-representation of S under M, it should be the
case that (7 UB, As) =q. From Lemma 3.5 it then follows that uni(7 U B, As) = B’(a), thus, 7 U B = A C B’. The converse
can be shown in the same way but starting with the assumption that 7 U B = AC B’. It is easy to extend the above
reasoning to the case As = {B(a)} for a basic concept B over X, or A5 = {R(a, b)} for a basic role R over X. As we quantify
over all possible source ABoxes, we are free to choose any such concept B or role R. Hence, if 7 is a UCQ-representation
of S under M, then for each basic concept or role X over ¥ and each basic concept or role X’ over T, it holds that
SUBEXC X if and only if 7 U B |= X E X'. This is the main intuition behind condition (ii) in Lemma 7.1.

2) For the sake of readability, below we denote by Us, and Uy, the canonical models of (S U B, As) and (T U B, As),
respectively. Moreover, for a TBox O, we say that a concept B generates a role R in O, and we write

B~p R

if for every constant a € Ng, it holds that a~ o (@) Wr]-
Let As = {A(a)} for an atomic concept A € X, and assume that A~g R, SUB=3IR-C B and SUBE=RLCR/, for a
role R over X, a concept B’ over I', and a role R’ over I". Then

awgy € A, B¢ t?Sb(aw[R]), and R'e rlrle(a, awgy)-

Next, for 7 to be a UCQ-representation of & under M, by Lemma 3.7, it follows that Uy, has to be finitely
I'-homomorphically equivalent to U,. Let A be the set containing a and all paths of the form awpq; in AYss T the sub-
interpretation of Usp induced by A, and h a I'-homomorphism from Z to U4,. Then h(a) =a and there exists aw(s) € Al
for a basic role S over I', such that

h(awgr) =aws;, B et®(aws), and R et (a,aw(s)),

since the image of awg) cannot be a constant as ind(As) = {a} and there are no loops on a in 4s. By construction of the
canonical model and by the fact that B is a set of inclusions from ¥ to T, it follows that TUBEAC3S, 7 =35 C B/,
and 7 = S C R'. Clearly, given 7 and B, one can check the existence of such S effectively. On the other hand, if we assume
that A~s R, SUB IR C B/, and SUB }~ R E R’ for any role R” over T (i.e., rlli{s” (a,aw(g)) = ¥), then the homomorphic

image of aw(g) could be any element y in AY with tzlbe (awgry) € tzf{‘

condition (iii) in Lemma 7.1.

Observe that it is sufficient to consider only chains of roles of length 1. Thus, for example, if A~ sy R and IR~ ~syp
Q, for some roles R,Q, then the fact that 7 is a UCQ-representation for S under M depends on whether 7 satisfies the
condition (iii) for two separate cases:

®(y). This example provides the intuition behind

- As={A(@} and A~sus R,
- As={3R (@)} and IR~ ~ sy Q.

Condition (iv) is symmetric to condition (iii) if we start with the assumption A~z R’ and 7 =3R’™ C B’ for a role
R’ over T" and a concept B’ over T'.

3) To conclude, we analyze the cases when S, B, and 7 contain disjointness axioms. First, notice that without loss of
generality we can assume that there are no disjointness axioms in S as in the definition of UCQ-representations, we
consider only ABoxes A that are consistent with S. So we will take into account only disjointness axioms in B and 7.
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Then for a source ABox Ag consistent with S, it is possible that (S U B, As) is inconsistent due to the disjointness axioms
in the mapping, which will make all possible tuples to be in the answer to every query.

Consider an ABox As = {A(a), C(a)} for atomic concepts A, C over X, and assume that A is consistent with S. Further-
more, assume that the KB (SU B, {A(b), C(b)}), for an arbitrary constant b, is inconsistent. Then (S U BB, As) is inconsistent,
and by definition of certain answers over an inconsistent KB, cert(q, (S U B, As)) = AllTup(q) for each target UCQq. There-
fore, in order for 7 to be a UCQ-representation of S under M, (7 U B, As) has to be inconsistent as well. To ensure that
this is the case, we need to check that (A, C) is also (7 U B)-inconsistent. Similarly but in the opposite direction, if we
start with the assumption that (7 U B, {A(b), C(b)}) is inconsistent, it should be verified that also {S U B, {A(b), C(b)}} is
inconsistent, for some arbitrary constant b. This is the intuition behind condition (i) in Lemma 7.1.

Finally, we are ready to characterize UCQ-representations. To capture the above intuitions, in the following, for a TBox O,
we say that a pair (B, B’) of basic concepts is O-consistent, if the KB (O, {B(a), B'(a)}) is consistent, where a is an arbi-
trary constant, and (B, B’) is O-inconsistent otherwise. Similarly, a pair (R, R") of basic roles is O-consistent, if the KB
(O, {R(a, b), R'(a, b)}) is consistent, where a, b are arbitrary distinct constants, and (R, R’) is O-inconsistent otherwise.
Moreover, a concept or role X is O-consistent if (X, X) is O-consistent, and O-inconsistent otherwise. Below, we abuse
notation and write gen(O, B(0)) instead of gen({O, {B(0)})), and uni(O, B(0)) instead of uni({O, {B(0)})), for a TBox O, a
concept B and o € Nq.

Lemma 7.1. Given a mapping M = (X, T, B), a TBox T over I is a UCQ-representation of a TBox S over ¥ under M if and only if
the following conditions hold:

(i) for each pair of S-consistent concepts or roles X, X’ over ¥, (X, X') is (S U B)-consistent iff (X, X') is (T U B)-consistent;
(ii) for each (S U B)-consistent concept or role X over ¥ and each X' over ', SUB = XC X' iff TUBEXC X/;
(iii) for each (S U B)-consistent concept B over X and each role R such that B ~»sug R, there exists y € A9 (TUB.B©) ywhere o is
an arbitrary constant, such that

gen(SUB,B(0))

y), and rp gen(TUB,B(0))

SUB,B
tlgﬂen( (0)) (0, wig)) Crp- (0,¥);

(TUB.B(o
(wir)) S 2" D¢
(iv) for each (S U B)-consistent concept B over X and each role R such that B ~>7_g R, there exists y € A9N(SUB.BO) ywhere o is
an arbitrary constant, such that

gen(7TUB,B(0))

t gen(SUB,B(0)) gen(7UB,B(0)) gen(SUB,B(0))
r

(Wiry Ctp (¥), and rp; (0, wgy) Cr1p1 0,y).

Proof. (<) Let the conditions above hold for S, 7 and B, and let A5 be an ABox over ¥ such that (S, As) is consistent.
Moreover, denote by gy the KB (S U B, Ag), and by Ky, the KB (7 U B, As), and let Usp, and Uy, be the canonical models
of Kqp and Ky, respectively. Next we show that g, and [Cy, are I'-query inseparable.

Observe that condition (i) ensures that for every ABox As over X that is consistent with S, g, is consistent iff Cy,
is consistent. Indeed, if gy is consistent, then for each pair of basic concepts B, B’ over ¥ such that As = B(a) and
As = B'(a) for some a € ind(As), the KB K}, = (SU B, As U {B(a), B'(a)}) is consistent, and by monotonicity of first-order
logic we obtain that the KB (S U B, {B(a), B'(a)}) is also consistent, and thus (B, B") is S U B-consistent. And similarly, for
each pair of basic roles R, R’ over X such that Ag = R(b,c) and As = R’ (b, c) for some b, c € ind(As), we can derive that
(R, R’) is S U B-consistent. Then, by (i) for each pair B, B’ as above, (B, B") is 7 U B-consistent, and likewise for each
pair R, R’ as above. To see that Ky, is consistent, it suffices to observe that the interpretation Z defined as the union of
the canonical models uni(7 U B, {B(a), B'(a)}) and uni(7 U B, {R(b,c), R'(b,c)}) for B, B/, R, R/, and a, b, c as above, is a
model KCy,. Note that in this paragraph, B and B’ can denote the same concept, and R and R’ can denote the same role. The
proof can be inverted to show that consistency of ICy, implies consistency of KCgp.

First, assume Kg, is inconsistent, it follows that cert(q, KCsp) = AllTup(q) for each UCQ q over I'. By the argument above,
Ky is inconsistent, so cert(q, Ky) = AllTup(q) for each UCQ q over I' as well, hence Kg, and Ky, are I'-query inseparable.

Now assume K, is consistent. One can show that from (ii) and (iii) it follows that Us, is I'-homomorphically embed-
dable into Uy, (see Proposition C.1). Since Ky, is consistent, we can apply Lemma 3.7 to obtain that Ky, I'-query entails Kgp.
On the other hand, one can show that (ii) and (iv) imply that U4, is I'-homomorphically embeddable into U, (see Proposi-
tion C.2), hence K¢ I'-query entails Ky, by Lemma 3.7. We obtain again that Cg, and Ky, are I'-query inseparable.

(=) Assume, by contradiction, that one of the conditions (i)-(iv) is not satisfied. We produce an S-consistent ABox Ag
over X and a Boolean CQ q over I" such that it is not the case that g, = q iff Ky =q.

Assume, first, that condition (i) is violated. Then we take As = {B1(0), B2(0)} for concepts B; and B, violating it and
q = B1(a) for some constant a distinct from o. If (By, By) are S U B-consistent, but 7 U B-inconsistent, it follows that
Ksb = q and Ky, =g, and the opposite holds if (B1, B) are 7 U B-consistent, but S U B-inconsistent. If (ii) is violated for
roles, the proof is analogous.

Let now condition (ii) be violated for some S U B-consistent concept B over . Assume there is B’ such that SUB =
BC B’ and 7T UB [~ BC B/, and consider As = {B(0)} and q = B’(0). Then B’ € tzli{"‘b(o) and B’ ¢ tzli{“’(o), so it follows
that Usp = q and Uy, [~ q; finally by Lemma 3.5 it follows Kg, =q and Ky, [~ q. The opposite follows if we assume that
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SUB¥BLC B and 7 UB & BLC B/, which completes the proof for this case. If condition (ii) is violated for some role, the
proof is analogous.
Next, assume condition (iii) is violated, so there exists an S U B-consistent concept B over X and a role R

such that B ~gup R, and for As = {B(0)} there is no y € A9"(Kw) such that both t?en(KSb)(w[R]) c t?en(lc‘b)(y) and

£en (Ksb) gen () gen (Ksp)
r

(0, wigy) 17 (0,y). Let B= tge”(’cs*’)(w g), R=r1} (0, wig)), and consider

= x( /\ R'(0,%) A /\ B’(x)),
R’eR B’eB
where B’(x) denotes atom A(x) if B = A for an atomic concept A, and B’(x) denotes formula 3x’.S(x,x’) if B’ =3S for a
role S. Then Usp = q by mapping the existentially quantified variable x to ow(g;. On the other hand, U, (= q as there is no
element of AU to which x could be mapped. Using Lemma 3.5 we obtain that K, = q and Ky b q.
The case when condition (iv) is violated is analogous to the case above. This completes the proof. O

Having devised a characterization of UCQ-representations, we discuss several examples of (non-)UCQ-representations.

Example 7.2. Assume that M = (X,T, B), where ¥ ={A,R}, ' ={A’,R,B’}, and B={AC A’,3R™ C B’}. Moreover, let
= [{AC3R).

(a) In Example 5.18 we showed that 7 = {A’ C B’} is not a UCQ-representation of S under M. In fact, in this case,
condition (ii) is not satisfied, as 7 UB = AC B’ while SUB¥ AC B’

(b) In the same example we showed that also 7 = {A’ T 3R/, 3R’™ C B’} is not a UCQ-representation of S under M. In
this case, condition (iv) is not satisfied, as A ~»7ug R/, but there exists no y € AN (SUB.A0) gych that

t?‘en(’TUB,A(o)) (wir) S t%en(SUB,A(o)) (y) and l‘%en(TUB'A(O))(O wir) S rgen(SUB A(0)) . y),
since neither y = o, nor y = wgj in A%"(SUB.A0) satisfy R’ e rlg-en(SUB’A(o)) (0,y). O
Example 7.3. Assume that M = (Z, T, B), where
Y ={A,R,S,Q} andlet S={AC3R,AC3S,3S~ =3Q)
I'={A,B,S, Q'} T={A'£35,35-£3Q’,3Q' " C B}

B={ACA,3R"CB,SES,QCEQ’,IQ EB}
Then 7 is a UCQ-representation of S under M. We verify that conditions (iii) and (iv) are satisfied. First, A~ sy R: we
take wiq/ € A%N(TUB.AO) and it is easy to see that the following is satisfied:

tlgen(SUB,A(o))(W )C t

as rNSUBAO) (5 o) = . Next, A~sup S and 35~ ~gup Q. It should be clear that we take wys; and wjq/ in

A9NTUB.A©) apd A9n(TUB.IST(0) respectively to satisfy condition (iii). As for the opposite direction, now differently
from Example 7.2, for both w(s/; and wq/ in A9N(TUB.A0) apnd A9en(TUB.3S™(0) respectively, there exist wis) and wiq]
in A9eN(SUB.A(0) apd A9en(SUB.3ST(0) that satisfy condition (iv). Below we provide the graphical representation of S, B
and 7, and we illustrate the projections of gen(Kg) and gen(fCy) on T, for Kgp = (S U B, A(0)) and Ky = (T U B, A(0))
(concept labels of the form 3P, 3P~ for a role P are not shown). Notice that the dashed edge (o0, wir)) represents the fact

that the role type rge"(KSb)

1Q QW 0/ Q' ~

T i -

gen(TUB,A(0)) gen(SUB,A(0))

TUB,A(0
(W) and 1y lgen( ©)

(o,wgp Cr (0, wion,

(0, wigy) is empty.

gen(KCsb) gen(Kw)
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Example 7.4. Assume that M = ({A, B,C, D}, {A’, B’}, B), where B={AC A, BC B,CC—A',DC B}, and let S={D C C}.
Then 7 = {A’ € =B’} is not a UCQ-representation of S under M. To see that, consider source ABox As = {A(a), B(a)}: it is
consistent with S U B, but inconsistent with 7" U B. So for g = A’(b) where b is a constant distinct from a, (SUB, As) ¥ q,
and (7 U B, Ag) = q. Let us verify that using the characterization. In fact, although, 7 satisfies condition (i) for the pair
of concepts (A, D), which is both S U B-inconsistent and 7 U B-inconsistent, 7 violates this condition for the pair (A, B),
which is clearly S U B-consistent, however 7 U B-inconsistent as 7 U B entails both A = =B’ and B C B’. We note that in
general, S is not UCQ-representable under M. O

Note that the proof of Lemma 7.1 implies an alternative characterization of UCQ-representations in terms of homomor-
phisms.

Lemma 7.5. A TBox T over I" is a UCQ-representation of a TBox S over ¥ under a mapping M = (X, T, B) if and only if the
following conditions hold:

— for each ABox A consistent with S, (S U B, As) is consistent iff (T U 3, As) is consistent;
- for each ABox As consistent with S U BB, uni(S U B, As) is I'-homomorphically equivalent to uni(7 U B, As).

We can devise an efficient algorithm for checking the membership problem for UCQ-representations from the conditions
in Lemma 7.1. Combining it with the complexity of reasoning in DL-Lite, we obtain the following complexity bound, which
provides the main result of this section.

Theorem 7.6. The membership problem for UCQ-representations is NLOGSPACE-complete.

Proof. The lower bound can be obtained by the following reduction from the directed graph reachability problem, which
is known to be NLoGSPACE-hard: given a graph G = (V,E) and a pair of vertices vy, v, € V, decide if there is a directed
path from vy to vj. To encode the problem, we need a source signature ¥ of concept names {V; | v; € V} and a target
signature " of concept names {V/ | v; € V}. Consider S = {Vx C Vi J U{V; E V| (vi,vj) €E}, B={V; E V]| v; €V}, and
T={ViC V} | (vi, vj) € E}. One can easily verify that the condition (ii) of Lemma 7.1 is satisfied iff there is a directed path
from vy to vy, in G, whereas the other conditions of Lemma 7.1 are satisfied trivially. Therefore, there is a directed path
from vi to vy, in G iff 7 is a UCQ-representation of S under M = (X, I, B). This concludes the proof of the lower bound.

For the upper bound, we show that conditions (i)-(iv) of Lemma 7.1 can be verified in NLOGSPACE. It is well known
(see, e.g., [61]), that given a pair B, B’ of DL-Liter concepts, and a TBox O, it can be verified in NLOGSPACE, if (B, B') is
O-consistent (using an algorithm for directed graph reachability); the same holds for a pair R, R’ of DL-Litery roles. The
same algorithm can be straightforwardly adopted to check, if O =B C B’ or O &= R C R’. Therefore, clearly, conditions (i)
and (ii) can be verified in NLoGSPACE. Conditions (iii) and (iv) can be checked similarly to the proof of Proposition 6.3. O

7.2. The non-emptiness problem

We start with examples that provide some intuition on how the non-emptiness problem is solved.

Example 7.7. Consider M and the UCQ-representable TBox S from Example 5.17-(3): M = (2, T, B), where ¥ ={A, B, C},
I'={A',B,C'},and B={AC A, BC B, AC ('}, and S ={A C B}. It follows that SUB = A C B’. A first and obvious
requirement for a UCQ-representation 7 is that 7 should entail an axiom of the form D’ = B’ so that TUB = AC B’
(hence, B = A C D’). On the other hand, it could be that B = D = D’ for some D distinct from A, in which case it
follows also 7 U B =D C B’. Since we want 7 to be a UCQ-representation, it should be the case that SUB =D C B'.
In our case, we can take D’ equal to A’ or C’, and there exists no such concept D (distinct from A). Hence, there are two
UCQ-representations of S under M, namely {A’C B’} and {C’ C B'}.

Consider now the slightly different B={AC A’, BC B/,C C A’} from Example 5.17-(4), where we showed that S is not
UCQ-representable. As before, S U B = A C B’. However now, the only candidate for D’ is A’, and there exists a concept D
distinct from A, namely C, such that B =D C A’. So on the one hand, the only way to have a UCQ-representation 7 is to
include axiom A’ C B’ in 7T, but on the other hand since SU B }& C E B, this axiom cannot be in 7. In general, there is no
way to “represent” the inclusion A C B’ in the target, so in this case S is not UCQ-representable under M. 0O

Example 7.8. Consider M, S and B from Example 7.4 such that S is not UCQ-representable under M. It follows that the
pair of concepts (A, D) is S U B-inconsistent as SUB=AC A’ and SUB =D C —A’. So a candidate UCQ-representation
T should be such that (A, D) is 7 U B-inconsistent. One possible way to achieve that is by having 7 U B = D C —A’, and
since D is transferred only to B’ through the mapping, it means that 7 should entail B’ © —A’, or B’ C =B/, or A’C —A’.
In the first case, however, the pair (A, B) would be 7 U B-inconsistent as well, since AC A’ and B C B’ are in BB. Then, for
T to be a UCQ-representation of S under M, (A, B) should be S U B-inconsistent, which is not the case. In the second
case, the pair (B, B) would be 7 U B-inconsistent, while it is S U B-consistent. Similarly, we obtain that it cannot be the
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case that 7 = A’ C —A’. In general, it is impossible to have a target TBox 7 such that (A, D) is 7 U B-inconsistent and 7
is a UCQ-representation of S under M, i.e, it is impossible to enforce that concepts A and D “contradict” each other in
the target. O

We illustrated in the examples above that in order to check whether S is UCQ-representable under M one needs to
verify whether the axioms implied by S U B are “representable”, and whether S U B-inconsistent pairs are “target contra-
dictable”. To formally define these notions, which are required for the characterization in Lemma 7.13, we first introduce
the following notion. We say that a target TBox 7 is a parsimonious UCQ-representation of S under M, if for every ABox
As over X that is consistent with S, (SU B, As) I'-query entails (7 U B, As). Observe that the empty TBox is a parsimo-
nious UCQ-representation. In the definitions below, X and Y denote basic concepts or roles over ¥, and X’ denotes a basic
concept or role over TI'.

Definition 7.9. Inclusion X C X’ is representable in S and M, if there exists a (possibly trivial) target axiom « such that,
whenever 7 is a parsimonious UCQ-representation of S under M, it holds that 7' =7 U {«} is also a parsimonious
UCQ-representation of S under M, and moreover 7' UB = XC X'.

In this case, we say that X C X’ is representable via «.

Definition 7.10. Pair (X,Y) is target contradictable in S and M, if there exists a (possibly trivial) target axiom « such
that, whenever 7 is a parsimonious UCQ-representation of S under M, it holds that 7" =7 U {«} is also a parsimonious
UCQ-representation of S under M, and moreover (X, Y) is 7’ U B-inconsistent.

In this case, we say that (X, Y) is target contradictable via o.

Our last definition before we present a characterization of the cases when S is UCQ-representable under M is the
notion of a generating path. In the case a concept B generates a role R in S U B, B~ syuB R, existence of a generating
path for (B, R) ensures that there exists a parsimonious UCQ-representation 7 satisfying condition (iii) of Lemma 7.1 for B
and R. For a TBox O and a concept B (resp., role R), denote by supg(B) (resp., supg(R)) the set of all concepts B’ (resp.,
roles R’) over ¥ such that O =B C B’ (resp.,, O =R C R').

Definition 7.11. Let B be a concept over ¥ and R a role. A generating path for (B, R) in § and M is a sequence (Co, C1,...Cp)
of concepts, with n > 0, such that Co = B, and such that for 1 <i <n and 0 < j <n the following holds:

(A) C;=3Q; for some role Q; such that SUB = C;—1 £3Q; and sup‘?UB(Qi) #0,;

(B) for each D; e supEVB(C)), inclusion C; C D; is representable in S and M;

(C) for each S; e supZUB(Qy), inclusion Q; C S; is representable in S and M;

(D) sup£“B(3R™) C supVB(Cy), and if supSUB(R) # 0, then n =1 and sup2VB(R) C supSVB(Q).

Example 7.12. Consider M and S from Example 7.3. Then (A,3S~,3Q ~) is a generating path for (A, R) in S and M. Below
we represent it graphically, where the sup?UB labels are shown to the right.

3Q- ———30', B
A
Q ——Q'
3§~ ——————35'~,3Q’
A
S St
A— A, 3¢
z I

To the contrary, for M and S from Example 7.2, there exists no generating path for (A,R) in § and M. O

Having defined all notions above, we provide a characterization of the cases when S is UCQ-representable under M,
which has a similar structure to the characterization of UCQ-representations in Lemma 7.1.

Lemma 7.13. Given a mapping M = (£, T, B) and a TBox S over %, S is UCQ-representable under M, if and only if the following
conditions are satisfied:
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(I) For each S-consistent pair of concepts or roles X, Y over X, such that (X, Y) is S U B-inconsistent, (X, Y) is target contradictable
inS and M.
(I) For each S U B-consistent concept or role X over ¥ and each X’ over I such that SU B = X C X/, inclusion X T X' is repre-
sentable in S and M.
(IlI) For each S U B-consistent concept B over X and each role R such that B~ s_p R, there exists a generating path for (B, R) in S
and M.

Proof. (<) Assume that conditions (I)-(II) are satisfied, we construct a TBox 7 over I' and prove that it is a
UCQ-representation for S under M. The required 7 will be given as the union of the three sets of axioms presented
below. First, let (B, C) be an S-consistent and S U B-inconsistent pair of concepts over X, then (B, C) is target contra-
dictable by condition (I): assume that (B, C) is target contradictable via «, then define set ax;(B,C) to be equal to {«]}.
Similarly, we define ax;(R, Q) = {«} for an S-consistent and S U B-inconsistent pair of roles R, Q over X. Next, take an
S U B-consistent concept B over ¥, and assume that SU B = B C C’ for C’ over I, then by condition (Il), B = C’ is repre-
sentable in S and M: let ax;;(B, C’) = {«} such that B C C’ is representable via «. Similarly, for an S U B-consistent role
R over ¥ and Q' over T, such that SUB =R C Q’. Finally, for each S U B-consistent concept B over ¥ and each role
R such that B~»gyg R, define the set ax;;;(B, R) from the generating path (Co,...,C,) for (B,R) in S and M given by
condition (IM). Take ax;;;(B, R) equal to the set of all axioms «, where C; C D; is representable via « in (B), or Q; C S; is
representable via « in (C). Finally we have:

T= U  asxv v U eae.x) v U oaB.R)
X,Y conc. or roles over X, X conc. or role over X, SUB-cons. B over X,
S-consistent and SUB-consistent , B~suBR

SUB-inconsistent X' over I', SUBE=XCX’

Then it immediately follows that 7 is a UCQ-representation of S under M: On the one hand, by construction, 7 is
a parsimonious UCQ-representation. On the other hand, the = directions of conditions (i) and (ii), and condition (iii) of
Lemma 7.1 are satisfied by construction of 7 and by definition of ax;, ax;;, ax;;. From this it follows that for each ABox As
consistent with S, (7 U B, As) I'-query entails (S U B, Ag). Hence, indeed, 7 is a UCQ-representation of S under M.

(=) Let 7 be a UCQ-representation for S under M. It is easy to see that conditions (I) and (II) are satisfied.

We show that condition (IHI) is satisfied; assume that B is an S U B-consistent concept over X and B ~syn R for

some role R. By condition (iii) of Lemma 7.1 it follows that there exists y € A9"(7UB.B©) gych that t%e"(SUB’B(O))(W[R]) c

t%en(TUB,B(o)) ), and l.Ig‘en(SuB,B(o)) (o, W[R]) c l_?‘en(TUB,B(o))
WiQ ]~ -+~ WQy]- Then TUBE{BC3Q 1} U U;:ll {EIQi_ E3Qi+1}U{3Q, C B’}, for all B/

r?en(SUB‘B(O)) (0, wig)) # ¢ impliesn=1and TUB = Q; C R’ forall R’ € r%en(SUB‘B(O)) (0, wg}). One can show by induction

on n that for each i, 1 <i <n, there exist S; over X such that SUBES;C Q; and SUB = {BC 35} U U?;]{HSI.’ C

3S;11} U {3S; C B'}, for all B’ e tlg-e"(SUB’B(O»(W[R]). We define the sequence (Co,...,Cy) as Co = B, and C; = 3S;, for

1 <i <n: it can be straightforwardly verified that (Co, ..., C,) is a generating path for (B,R) in S and M. O

(0, y). Assume that y = wyq,; for n > 0, where 0 ~(7UB,B(0))

c t%en(SUB'B(O))(W[R]), and

We now use the above characterization to verify UCQ-representability in the following examples.

Example 7.14. Consider M and S from Example 7.3, that is, M = (Z, T, B), where

¥ ={A,R,S, Q) B={ACA,3R"CPB,SCS,QCQ',3Q LB}
r={A,B,S, Q') S={AC3R,AC35,35~ =3Q)

Then one can see that conditions (II)-(IIl) are satisfied. Thus, for instance, SUB = AC 35 and SUB E3S~ C 3Q":
clearly both inclusions are representable in & and M. Then, A~sug R and A ~gsyp S, and in both cases there exist
generating paths: (A,3S7,3Q ) from Example 7.12 and (A, 3S™), respectively. This confirms that S is UCQ-representable
under M. O

Example 715. Consider M and S from Example 7.2, that is, M = (,T,B), where ¥ = {A,R}, I = {A’,R’, B},
B={AC A’,3R~ CB'},and S={AC 3R}

In contrast with the previous example, condition (III) is not satisfied. In fact, A~ syug R, however there exists no gener-
ating path for (A, R) in S and M as we mentioned in Example 7.12. So indeed, S is not UCQ-representable under M. O

Example 7.16. Consider M and S from Example 5.19-(3), that is, M = (X, T, B), where ¥ = {A,B,C}, ' = {A/, B},
B={ACA,BCB,CC—A’}, and S = {B C C}. We show that condition (I) is satisfied: the pairs (A, C) and (A, B) are
S U B-inconsistent. As the former pair is already B-inconsistent, this case is not interesting. For the latter pair, one can
easily verify that (A, B) is target contradictable in S and M via B’ © —=A’: in particular, 7 = {B’ C —A’} is a parsimonious
UCQ-representation, and (A, B) is 7 U B-inconsistent. O
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Finally, we obtain the complexity bound of the non-emptiness problem for UCQ-representations.
Theorem 7.17. The non-emptiness problem for UCQ-representations is NLOGSPACE-complete.

Proof. As in the case of Theorem 7.6, the lower bound is shown by a reduction from the directed graph reacha-
bility problem, however, we need a slightly more involved encoding. To encode the graph G = (V,E), we use a set
{VilvieV}U({Sq, F1, S2, F2} of X-concept names and a set {V/|v; € V}U{S’, F'} of I'-concept names. Consider the TBox

S={ViCVj|(vi,vj) e E}U{S1 E Vi, Vin C Fq, 52 C Fa},
where vj and vy, are, respectively, the initial and final vertices. Then, let
B={ViCV]|vieV} U {S;CS FjCF|j=12)

we show:
- there is a directed path from vy to vy, in G iff there exists a UCQ-representation for S under M = (X, T, B).

Indeed, using Lemma 7.13, there exists a representation iff condition (II) is satisfied. By the structure of S U B one can
see that this is the case iff inclusion S, = F’ is representable in S and M via S'C F/, i.e, iff SUB = S1 C S’ implies
SUB k= S1 E F/, and this holds iff S = S C Fy. The latter is the case iff there exists a path from v; to vy in G. This
completes the proof of the lower bound.

To show the upper bound, we prove that conditions (I)-(IlI) of Lemma 7.13 can be checked in NLOGSPACE. First, one can
derive syntactic conditions that allow one to check whether an inclusion is representable in S and M, and whether a pair
is target contradictable in S and M (see Propositions D.1, D.2, D.3 and D.4). In fact, these conditions can be checked using
a directed graph reachability algorithm, similar to what is done in the proof of Theorem 7.6. The new case is condition (III);
to verify for an S U B-consistent concept B over ¥ and a role R such that B~ gyg R, that there exists a generating path
7w ={(Co,...Cy) for (B,R) in S and M, we can use the following procedure, which runs in NLOGSPACE. First, we take Co = B
and guess whether the path should end here (i.e.,, n = 0). If we guessed so, it only remains to verify condition (D). This
verification can be performed in NLOGSPACE, similarly to the method described in the proof of Theorem 7.6. If, on the other
hand, we guessed that the path should continue, we guess C; = 3Q ~ for some role Q, and verify that conditions (A), (B)
and (C) are satisfied. Now, if we guess that the path should stop, it remains to verify condition (D). If, on the contrary,
we guess that the path should continue, we can forget Co, guess C,, and proceed with it in the same way as we did
with Ci. Finally, when we reach the concept Cy, such that the algorithm guesses to stop, it remains to verify condition (D).
It should be clear that whenever a generating path w = (Cop,...Cy,) for (B,R) in S and M exists, we can find it by the
above non-deterministic procedure. Note that n is bounded by the number of roles in S U B3, since every generating path in
which a role appears more than once can be shortened to one in which the subpath between the first and last occurrence
of the role is removed (in fact, if (Co,...,C;,...,Cj,...,Cy) is a generating path for (B,R) in & and M, for 0 <i < j and
Ci =Cj, then it is easy to see that (Co,...,Ci_1,Cj,...,Cy) is also a generating path for (B, R) in S and M). O

We conclude this section by observing that the proof of Lemma 713 contained an algorithm for computing a
UCQ-representation in the case S is UCQ-representable under M.

8. Concluding remarks and future work

In this article, we have defined the problem of exchanging knowledge between a source and a target KB connected
through a mapping. In particular, we have considered source KBs, target KBs, and mappings specified in the Description
Logic DL-Litez, which is the logic underlying OWL2 QL (one of the three profiles of the standard Web Ontology Language
OWL2), and we have studied some fundamental problems related to the exchange of knowledge in this context. We have
developed novel game- and automata-theoretic techniques, and have provided complexity results for these problems that
range from NLOGSPACE to EXPTIME.

As future work, we first note that the complexity of the non-emptiness problem has not been pinpointed in all cases
(see Table 1). In particular, it would be interesting to close the gap between the lower and upper bounds for the complex-
ity of this problem for universal solutions and extended ABoxes, as we currently know it to be PSPACE-hard and included
in EXPTIME. Moreover, it would also be interesting to establish a lower bound for this problem for the case of universal
UCQ-solutions and simple ABoxes, and to prove it to be decidable for the case of universal UCQ-solutions and extended
ABoxes. Second, the target signature in the non-emptiness problem is allowed to include new concepts or roles neither
in universal solutions nor in universal UCQ-solutions nor in UCQ-representations. The problem of allowing such addi-
tional symbols in these constructions is certainly interesting and worth investigating in the future. Third, it is interesting
to study the problem of knowledge exchange for richer ontology formalisms, such as the DLs of the ALC-family, DLs with
number restrictions or functionality, or existential rule languages/Datalog® [66-68]. The aim would be to understand for
which variants of such formalisms the existing techniques can be extended, and which variants instead would require a
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novel approach. For example, the techniques based on reachability games and two-way alternating tree automata, both of
which heavily rely on the canonical model property, can be extended to other Horn DLs, such as DL-Lite,:”gm, ELH, and
Horn- ALCHZ, similarly to the approach in [30]. Finally, in this work we have not dealt with other standard data exchange
reasoning tasks, such as composition and inversion of mappings [69,70,31,20,21]. These problems are certainly of interest in
the KB exchange framework, and will be the subject of further investigation.
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Appendix A. Proofs in Section 5

A.1. Proof of Proposition 5.3

Proof. For the sake of contradiction, assume that 7 is not trivial, that is, there exists an interpretation J* = (A7",.7") of
" such that 7* b= T.

Given that (SUB, As) is consistent, there exists an interpretation Z* = (AZ", . L") of (£ UT) such that Z* = (SU B, As).
Then define interpretations Z = (AZ, . T) of £ and J = (A7, -7) of T as follows: (1) AL = AT = AT"; (2) aZ = a7 =dZ",
for every constant a € Ng; (3) AlI = A1I‘ and A‘27 = AZT, for every pair of concept names A; € X and A, € T'; and (4) P1I =
PT" and Py = PT", for every pair of role names P; € ¥ and P, € I'. By definition of Z, 7 and given that Z* = (SU B, As),
we conclude that Z € Mop(Ks) and (Z, J) = B.

Without loss of generality, we assume that AZ"° N AJ" = @. Then define an interpretation .7’ of I" as follows: (1) AT =
AT UAT"; (2) a7 =dT’, for every constant a € Ng; (3) A7 = AT U AT", for every concept name A €T'; and (4) P =
PT" U PI”, for every role name P € I'. Given that (Z, J) = B, we conclude that (Z,.J’) = B. In fact, for every concept
inclusion By C B € B, where By, By are basic concepts, we have that BZ C 327’ given that BY c 857, B§7 =BI" and
B‘ZT = B%* U B‘ZT. Moreover, for every concept inclusion B; C —B; € BB, where By, B, are basic concepts, we have that
BT C (=B)Y" given that BZ  (—B3)7, (—B3)7 = (—By)%" and (—By)7 = (—=B3)T" U (=By)7" (since By =BL UBY"
and AT N AJ" = ¢). Finally, for role inclusions R; T Ry and R; T —R, in B, where Ry, R, are basic roles, we conclude
that R1I C Rgl and RlI C (—|R2)‘7/ as in the previous two cases.

From the results in the previous paragraph, we conclude that 7' € SAT 4 (MoD(Ks)) (since J' € SATp((Z) and T €
Mobp(Ks)). On the other hand, we have that J’ & 7, by definition of 7’ and given that J7* & 7. Thus, we have that
J' ¥ Kt and, thus, 7' ¢ Mop(Ky). Therefore, we conclude that SaT ¢ (MoD(Ks)) # Mobp(K), which contradicts the fact that
Kt is a universal solution for KCs under M. This concludes the proof of the proposition. O

Appendix B. Proofs in Section 6

B.1. Proof of Lemma 6.2

Proof. In this proof we assume that KCg = (S, As) and we denote by Kg, the KB (S U B, As).

(=) Let A; be a universal solution for g under M. Then uni(A;) is I'-homomorphically equivalent to uni(Kgp): since A
is a solution, there exists Z, a model of /g, such that (Z, uni(Ay)) = B. Then ZUuni(A;) is a model of K, therefore there is
a homomorphism h from uni(Cgp) to ZUuni(Ay). As X and I" are disjoint signatures it follows that h is a '-homomorphism
from uni(/Cgp) to uni(A;). On the other hand, as A; is a universal solution, 7, the interpretation of I obtained from uni(/Cgp)
is a model of A; with a substitution h’. This h’ is exactly a homomorphism from uni(A4;) to uni(Cgp). Thus, we showed
(hom).

For the sake of contradiction, assume that (safe) does not hold, i.e.,, Ks is not I'-safe with respect to M, and e.g., (cs)
does not hold, i.e., there is a disjointness axiom in S of the form B C —C, such that (B, C) is not safe. Then both B and C
are not safe in uni(Ksp): for some b € B (Ks0) apd ¢ e cuni(Ks),

t'i{ni(’CSb)(b) #£@ or beN,, and tllini(KSD)(c) #@ or céeNg.
Let h be a I'-homomorphism from uni(Kgp) to uni(Ay) (it exists by (hem)), and h(b) =t and h(c) =s. Then it follows that
A £g or beNs,, and ) £p or ceN,.

Take a model 7 of A; with a substitution h s such that A7 ={d} (hence, t7 =s7). Such a model exists because A; does
not assert any negative information and the UNA does not hold. First, assume that both b and ¢ are constants (i.e., b7 =c7).
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Then, obviously there exists no model Z of ¥ such that Z = Ks and (Z, J) k= B: in every such Z, bZ must be equal to ¢Z
which contradicts B = —C, and bZ € BZ and ¢Z € ¢Z. Now, assume that at least b is not a constant and tail(h) = wig; for
some role R over ¥ (hence, b € (3R™)"Xss) and S =3R~ C B). Let B € t‘;"'(lcs”)(b), then by construction of the canonical
model, SUB = 3R~ C B/, by homomorphism, B'(t) € A;, and by construction of 7, B’ = {d}. As A; is a universal solution,
let Z be a model of K such that (Z, 7) = B. Then (3R7)Z is non-empty and (3IR™)Z < B'7. It immediately follows that
d € AR™)Z, hence d € BZ. By a similar argument, it can be shown that d must be in CZ, which contradicts that Z is a
model of B C —C. Contradiction with 4; being a universal solution.

Similar to (cs) we can derive a contradiction if assume that (rs) does not hold.

Now, assume (re) does not hold, i.e., BC —B’ € B and BU"(Xst) £ 5. Note that A, is an extended ABox, i.e., it contains
only assertions of the form A(u), P(u, v) for u, v € Ny UN. Take a model 7 of A; such that B'Y = A7 Such J exists as
Ay contains only positive facts. Since .A; is a universal solution, there exist a model Z of /g such that (Z, J) &= B. Then,
BT £, and it is easy to see that (Z, J) ¥~ B = —B’ because A7 \ B'Y =@ and B~ ¢ AT\ BT,

Similar to (ce) we can derive a contradiction if assume that (re) does not hold.

In every case we derive a contradiction, hence &g is I'-safe with respect to M.

(<) Assume (hom) and (safe) hold. We show that .4; is a universal solution for g under M.

First, A; is a solution for s under M. Let J be a model of 4;, and h; a homomorphism from uni(At) to J. Further-
more, let h be a I'~-homomorphism from uni(Cgp) to uni(Ay). Then hy(x) = hy(h(x)) is a I'-homomorphism from uni(ICgp)
to J. Let Z be the interpretation of ¥ defined as the image of h, applied to uni(/Cs), i.e., Z = ha(uni(KCs)). Next, define a
new function h’: AUKs) > A UAZ, where A is an infinite set of domain elements disjoint from AZ, as follows:

- W) = hy(x) if €75 (x) £ 3 or x € Ny
- W (x) =dy, a fresh domain element from A, otherwise.

We show that interpretation Z’ defined as the image of h’ applied to uni(Kgp), is a model of Ks and (Z', J) = M. It is
straightforward to verify that 7’ is a model of the positive inclusions in S and (Z’, J) satisfy the positive inclusions from B.
In what follows we prove that 7’ is a model of the disjointness axioms in S.

Let S = B C —C for basic concepts B, C. By contradiction, assume I’ b B C —C, i.e., for some d € AL, d e BX ncT.
We defined 7’ as the image of h’ on uni(Ks), hence there must exist b, c € AY(Ks) such that b € BN (Ks) ¢ ¢ cuni(Ke) | and
h'(b) =h'(c) =d. Then, since Ks is I'-safe with respect to M, it follows that (B, C) is safe and it cannot be the case that

G DB £0 or beNs, and g1 #p or ceNe.

Assume b is a null and t;ni(’c“)(b) = (. Then by definition of h’, h’(b) =d, € A (hence d =dp). In either case ¢ is a con-

stant, or t;"'(’cs”)(c) #0, or t‘}"'(’cs”)(c) = {J, we obtain contradiction with h’(b) =dj, = h’(c) (recall, A and AT are disjoint).
Contradiction rises from the assumption Z [~ B C —C.

Next, assume S = R C —Q for roles R, Q, and Z’ £ R = —Q, ie. for some di,dz € AT, (d1,d2) € R nQZ. We
defined 7’ as the image of h’ on uni(Ks), hence there must exist by, by, c1,cz € AUKs) such that (b, by) € RUN(Ks),
(c1,c2) € QUKS) "and K (b;) = h'(c;) =d; for i =1, 2. Then, since Ks is ['-safe with respect to M, it follows that (R, Q) is
safe and it cannot be the case that 1) R and Q are not safe, i.e.,

tF”i(’CSD)(b,-) #¢ or b;jeNg, and tLli”i(KSb)(ci) £ or cjeNg,

or 2) t;”i(’CSb)(bz) # ¥ and t;”i(KSb)(cz) # ) if by = c1. Consider the following possible cases:

- by is a null and ") (b;) =@, Then by definition of i, '(by) =dp, € A (and dy =dj, ).

- ¢ is a null and tllini(lc“)(cl) = ¢, then W' (c1) =dc, = dy, hence ¢c; = by and (by, by) € R™MKS) | (b, cp) € QUML)
Assume b is a null and t‘}”'(’CS")(bz) = (. Then h’(b3) =dp, € A and in either case c; is a constant, or t;”'(’CS”)(cz) 0,

or t‘}”iws”)(cz) =, we obtain contradiction with h'(b2) =dp, =h'(c2).
- Otherwise we obtain contradiction with h'(b1) =dp, =h'(c1).

The cases by or ¢; are nulls with the empty I'-type are covered by swapping R and Q or by taking their inverses.

Finally, assume B = —B' € B and (Z, J) l B C —B/, ie., for some d € BT, d ¢ A7 \ C7. Then there must exist b €
BUN(Ks) such that h'(b) = d. Contradiction with (ce). Similarly, we derive a contradiction with (re) if assume that R C =R’ €
Band Z',J) %= RC =R

Therefore, indeed, Z is a model of Ks and (Z, 7) = B. This concludes the proof A; is a solution for g under M.

Second, A; is a universal solution. Let Z be a model of s and J an interpretation of I" such that (Z, 7) &= M. Then,
since uni(Cgp) is the canonical model of gy, there exists a homomorphism h from uni(Kgp) to ZU J (ZU J is a model
of Kgp). In turn, there is a homomorphism h; from uni(At) to uni(Kgsp), therefore h’ = h o hy is a homomorphism from
uni(A;) to ZU 7, and a I'-homomorphism from uni(A;) to J. Hence, 7 is a model of A;: take h’ as the substitution for
the labeled nulls. By definition of universal solution, A4; is a universal solution for s under M. 0O
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B.2. Proof of Lemma 6.8

Proof. The proof is inspired by one in [30], but makes use of a reduction from the Circuit Value problem, known to be
PTiME-complete [63, Theorem 8.1], instead of a reduction from the Horn Satisfiability problem. Given a monotone Boolean
circuit C consisting of a finite set of assignments to Boolean variables Pq,..., P, of the form P; =0, P;=1, Pi=Pj A Py,
J.k<i,or Pi=PjVv Py, j k<Ii, where each P; appears on the left-hand side of exactly one assignment, check whether the
value P, is 1 in C.

We fix signatures ¥ ={P,L,R} and ' ={L’, R’}. Let ay, ..., a, € Ng, and consider

As ={P(ap)} U {L(aj,a;), R(aj,a;) | Pi=1in C}U {L(aj,a;j), R(a;,a) | Pi = Pj A P in C}
U {L(aj,aj), R(a;,a;), L(a;, ar), R(a;, ar) | Pi= PV P in C}
S={PC3L, PC3R, 3L C P, IR™ C P}, B={LCL, RER}
Ar={L"(a;,aj) | L(a;,a;) € A} U{R'(a;, aj) | R(a;, a;) € As}

Note that X, I', S, and B do not depend on C, hence the reduction provides a lower bound for data complexity. We show
that the value of P, in C is 1 if and only if A; is a universal solution for s = (S, As) under M = (X, T, B). Denote by
Ksp the KB (S U B, As). Clearly, uni(A;) € uni(Cgp) (independently of the value of P, in C). So, it suffices to show that the
value of P, in C is 1 if and only if uni(Ksp) is I'-homomorphically embeddable into uni(Ay).

(=) Suppose P, evaluates to 1 in C. Observe that the projection of uni(/Cep) over I' contains an infinite binary tree
whose root is a,, and in which each left edge is labeled with L’ and each right edge is labeled with R’. We define a
I'-homomorphism h from uni(g)® to uni(A;) by induction on the length of o € AU (Kw)™ Note that, since T' contains
only role names, the local homomorphism condition is trivially satisfied.

For the base case, we set h(a,) = a,. For the inductive step, assume the value of P; is 1 and we already defined h(o) = q;
for 0 € AU K™  Consider the following three cases. First, if P; = Pj A Py in C, then A; contains assertions L'(a;, a;) and
R'(a;, ax), moreover, P; and Py both evaluate to 1: we set h(ow)) =a; and h(o wigj) = ax. Second, if P; = Pj Vv Py in C,
then 4; contains assertions L'(a;, aj), R'(a;, aj) and L'(a;, ax), R'(a;, ai), and at least one of P and Py evaluates to 1, assume
it is Pj: we set h(o wy)) =aj and h(o wig)) =a;. Finally, if P; =1 in C, then A; contains assertions L'(a;, a;) and R’(a;, a;):
we set h(ow(r)) =a; and h(o wig)) = a;. Hence, by construction, h is a I"'-homomorphism.

(<) Suppose A; is a universal solution for s under M. Then uni(S U B, As) is I'-homomorphically embeddable in
uni(A;). We prove that the value of P, is 1 in C.

Let h be a I'-homomorphism from uni(KCgp) to uni(Ay). Since uni(Kgp)? is an infinite tree, and the only role cycles that
Ay contains are loops of the form L'(a;, a;) and R’(a;, a;), there exists a bound m such that for each o =a,w(s,]--- Wis,,] €
AU K™ with S; € {L, R}, it holds h(o) =g; for some i such that P; =1 in C.

Assume 1 < ¢ <m and for each 0 =apw(s,)---wis,; with Sj € {L,R} and each 1 <i <n, the value of P; is 1 in C
whenever h(o) = a;. We verify by induction on ¢ that for each 6§ =a,w(s,]--- ws,_,] and each 1 <i <n, the value of P;
is 1 in C whenever h(8) = a;. Assume that h(Swr)) = a;, h(wgr)) = ar and the values of P; and P are 1 in C, moreover
h(8) =a;. If i = j =k, then obviously the value of P; is 1 in C. Otherwise i # j and i #k. If j =k, then given that h is a
I'-homomorphism, .4; contains assertions L'(a;,a;) and R’(a;,a;) (hence, As contains assertions L(a;,a;) and R(a;, aj)). By
construction of As, it follows that there is an assignment P; = Pj v Pj in C for some j'. As P;j is 1, we obtain that also P;
evaluates to 1. If j #k, then A; contains assertions L'(a;, aj) and R'(a;, ax), so by construction of As there is an assignment
P;=PjAPgor Pi=PjV Py in C. Again it follows that P; evaluates to 1 in C. By induction, P, evaluates to 1in C. O

B.3. Proof of Lemma 6.12
Proof. The proof is by reduction from 3-colorability of undirected graphs known to be NP-hard. Consider an undirected

graph G = (V, E), which we view as a symmetric directed graph, and fix signatures ¥ = {E(-,-)} and " = {E’(-, -)}. Further,
let r,g,b e Ny, V< N; and

As = {E(r,8).E(g, 1), E(r,b), E(b,1), E(g,b), E(b, 2)},
S =1,
B ={ECE}

Ay = {E'(r,g),E'(g,1), E'(r,b),E'(b,1), E'(g,b), E'(b, )} U
{E'(x,y) | (x,y) €E}.

Note that the nodes in G become labeled nulls in .4;. We show that G is 3-colorable if and only if 4; is a universal solution
for Ks = (S, As) under M = (X, T, B).

(=) Suppose G is 3-colorable. Then it follows that there exists a function h that assigns to each vertex from V one of
the colors {r, g, b} such that if (x, y) € E, then h(x) # h(y). Hence h is a homomorphism from G to the undirected graph

({r.g.b}. {(r, &), (g,b), (b,1)}).
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We prove that 4; is a universal solution for /s under M by employing Lemma 6.2. Obviously, /Cs is I'-safe with respect
to M. Thus, it remains to verify that uni(A4;) is '-homomorphically equivalent to uni(S U B, As). First, it is easy to see
that uni(S U B, As) is I'-homomorphically embeddable into uni(A;). Second, h is also a homomorphism from uni(A;) to
uni(S U B, As). Thus Ay is indeed a universal solution for KCs under M.

(<) Suppose now A; is a universal solution for Ks under M. Then by Lemma 6.2 it follows that uni(A4;) is
I'-homomorphically equivalent to uni(S U B, As). Let h be a homomorphism from uni(A4;) to uni(S U B, As). Notice that
AUN(SUB.As) — ind(As), hence h assigns to each labeled null x € AUAY some constant a € ind(As), and it is easy to see
that h is an assignment for the vertices in V that is a 3-coloring of G. O

B.4. Proof of Lemma 6.15

Proof. The proof is by reduction from the validity problem for Quantified Boolean Formulas (QBF), known to be
PSpace-complete. Consider a QBF

m
@ =QiX1--QuXn /\ G
j=1

where Q; € {¥,3} and C;, 1 < j <m, are clauses over the variables X;, 1 <i<n.
Let = ={A, Qo, Qi, QK Rj, Po, P, Pk, R?, Ri|je{l,....,m}, ie{l,....,n}, k€ {0,1}} where A is a concept name and

the rest are role names. Let S be the following TBox over ¥ for je{1,...,m},ie{1,...,n} and k € {0, 1}:
Ac3Q, 3Q,C3Qf ife=Y QfFCQ 3Q;C3R; WR;EIR g
3Q,_,C3Q;, ifQgi=3 '
AC 3Py 3P, , £ 3Pk PkC P; APH~ C aR;., if=X;eC; a(Rg)* C 3R§—1 62)

3(PH” E3RY, i Xi€C;

and As ={A@a)}.
Further, let T' = {X?, X!, T, S} where X?, X! are concept names and T, S; are role names, M = (X, T, B), and B the
following set of inclusions:

QET 3QH ™ C X RjES; RiCS;
P;iCT 3P4~ & xk PiCS; ROC ST

Then, = ¢ if and only if uni(S U B, As) is I'-homomorphically embeddable into a finite subset of itself, i.e., if and only if a
universal solution for g = (S, As) under M exists. We show this following the line of the proof of Theorem 11 in the full
version of [55].

(=) Suppose = ¢. We show that the canonical model uni(S U B, As) is '-homomorphically embeddable into a finite
subset of itself. More precisely, let us denote with S™ the subset of S consisting of the first 6 axioms (B.1), and S™ the
subset of S consisting of the last 6 axioms (B.2). Then uni(SU B, As) = uni(S™ U B, As) Uuni(Sf"U B, As). In the following
we use Uiy to denote uni(S™ U B, As), and Upn to denote uni(SfMU B, As), and show how to construct a I'-homomorphism
h: Z/{,'nf — Uﬁn.

We begin by setting h(a) = a. Then we define h in such a way that, for each path 7 in Uy of length i +1 <n, h(w)
is a path of the form aw“j;;]] --~W[F{<i] in Up, and it defines an assignment o) to the variables Xi, ..., X; by taking
opary(Xi) =T if ky =1 and ah(ﬂ)(X,-/x) =1 if ky =0, for all 1 <i’ <i. Such assignments o, will satisfy the following:

the QBF obtained from ¢ by removing QX1 ... Q;X; from its prefix is true under o). (a)

For the paths of length 1 the I'-homomorphism h has been defined and («) trivially holds. Suppose that we have defined h
for all paths in Uy of length i +1 <n. We extend h to all paths of length i + 2 in Uy such that («) holds. Let 7w be a path
of length i + 1. Observe that h(sr) has two successors in Ug,: h(r) - Wipo and h(r) - W[P]H]. Now,

i+ 1

- if Q; =V then 7 has two successors in Ujns: 7 - Wiqo | and 7 - Wil } Thus, we set h(r - Wik ) =h(r)- Wipk b for
i+1 i+1 i+1 i+1
k=0, 1. Clearly, («) holds.
- if Q; =3 then 7 has one successor in Ujys: T - Wiq,,,]- Since ¢ is valid, by («) the QBF obtained from ¢ by removing
Q1X1...Q;X; is true under either o) U {X; = T} or apry U {X; = L}. We set h(rr - wq,, ) =h(r) - Wipk where
i+
k=1 in the former case, and k =0 in the latter case. Either way, () holds.

Let now 7 be a path of length n+4 1 in Ujy. By construction, we have that h(z) =a-w kit W pka - Next, on the one
n

[Py
hand, in Ujys the path 7 has m infinite extensions of the form 7 - wg;} - Wg;}---, for 1 < j <m. On the other hand, by («),
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Fig. 6. The projection of uni(S U B, Ag) over I" for ¢ =3X1VX23X3(X1 A (X2 V —X3)).

ap(ry b= Cj for each clause Cj, i.e., there is some 1 <i <n such that k; =1 if X; € Cj, or k; =0 if —=X; € C;. For [ > 1, denote

by 77 the path 77 - wg;j - ... wig;) where wyg;) is repeated [ times. We now set
h(m)=a-w W , for1<l<n-—i,
(1) (P (Pl <l=
h(m) =a- W[Pllq] e W[P;q] . W[Rg] e W[R,]HH]. forn—i<l<n+1,
frd . . . . H . i . . ix i* = —_
h(m) =a W[P/ﬁ W[P:(,-] W[ij_] W[ij—]] W[R; I forn+1<land i*=mn—-1+1) mod 2.

It is immediate to verify that h is a I'-homomorphism from U4y to Upy,. Since Ky is I'-safe with respect to M, by Lemma 6.4
we obtain that a universal solution for &C; under M exists.

(«) Let h be a '-homomorphism from U,s to Us,. We show that = ¢.

Let T =a-wi---wp be a path of length n 4 1 in Uj,s. Then its homomorphic image h(w) must be of the form a -
W[P1;1J~~-W[Pﬁn]. This implies a variable assignment o : o7 (Xj) =T if ki =1 and a;(X;) =L if ki =0, for 1 <i<n. It

is sufficient to show that o |=C; for every 1 < j <m, ie, the clause C; contains at least one of the literals X; with
o (X)) =T, or =X; with a; (X;) = L.

Consider a path 77 - wg; - ... - wig;) of length 2n +2 in Uy (i.e., wg;) is repeated n+ 1 times). Then its h-image in Uy
must be of the forma-w__x, ... W k. - Wpii+ Wpi-1, ... Wypo, fOr some 1 <i <n. Now, by construction of S, if k; =0
[Py iy TIRE IR [Rj1
(hence, az (X;j) = 1), then C; must contain —X;, otherwise C; must contain X;. O

We illustrate the above reduction with the following example.

Example B.1. Let us consider the QBF ¢ = 3X1VYX23X3(X1 A (X2 vV —X3)), which is valid. A finite portion of the projection of
uni(SU B, As) over I' is depicted in Fig. 6, where each edge -.--» is labeled with T, each edge - - + is labeled with T, ST,
S5, and the labels of edges — are shown to the left of each infinite and finite path. The concept labels of the individuals
(if any) are shown next to them.

Let Uiy be the projection over I' of the part of uni(SU B, As) generated using the axiom templates (B.1) of S; similarly,
for Ug, and the axiom templates (B.2). Note that Uy, is infinite, while U, is finite. Intuitively, in U, the dashed part
is a full binary tree representing all possible assignments to the variables X7, X3, X3, where edges whose target node is
labeled with X? (resp., Xil) represent the assignment of O (resp., 1) to variable X;. Moreover, each solid part (ending in a
loop) starting at a node labeled X,.0 (resp., Xg) and labeled with S represents the fact that literal —X; (resp., X;) appears
in clause Cy; analogously for Sy and Cy. As for Uy, the dash-dotted part represents the quantifier prefix of ¢: if quantifier
Q; is 3, then there is a single edge at level i (counting from individual a); instead, if quantifier Q; is V, then there are two
distinct edges at level i, one whose target node is labeled with X? and one whose target node is labeled with Xl]. For each
clause Cj, each node at level 3 is the origin of an infinite chain, all of whose edges are labeled with S ;.
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The QBF ¢ is valid, and we show that there is indeed a I"-homomorphism h from Uiy to Us, (hence, uni(S U B, As) is
I'-homomorphically embeddable into g, ). Therefore, the ABox obtained from g, is a universal solution for Ks under M.
First, by considering the assignment of 1 to X;, we obtain the formula VX,3X35(1 A (X3 v —X3)), which is valid. Hence
h maps x = aw\q,) to the node in U, labeled with X}. Then, for assignment of 0 to X, we obtain 3X3(0 v —X3), and
for assignment of 1 to X, we obtain 3X3(1 v —X3), which are both valid. Hence h maps y :xw[Qg] to the successor of

h(x) labeled with XS and z = XWol to the successor of h(x) labeled with X%. Finally, in the case where X, =0, for the
assignment of 0 to X3, we obtain 0 v —0, which is valid; instead, in the case where X, =1, any assignment to X3, e.g., 1
can be used. Hence h maps u = yw[q,) to the successor of h(y) labeled with X9 and v =zwq,) to the successor of h(z)
labeled with X;. Since for all considered assignments the clauses of ¢ are satisfied, h can indeed map each infinite chain
starting from u and v, to a chain in g, ending in a loop. For example, the infinite chain starting from v and labeled with
Sq is mapped to the path in Ug, that starts with the dashed edges connecting h(v) to h(z) and h(x), and continues with
the edge and loop labeled with S1. O

B.5. Proof of Lemma 6.16

Proof. Let M = (X, T, B) be a mapping, and Ks = (S, As) a KB over . We construct X, and M’ such that there exists a
universal solution for Ks under M iff there exists a universal UCQ-solution for C; under M.

Define M’ to be equal to (¥',T”, B’), where X’ extends X with fresh concept and roles names {X; | X € I'} and fresh
role names Qq, Qz, I’ extends I' with a fresh role name Q, and B =BU{X;EX|XeT}JU{Q:C Q,Q2C Q}. Let
K, = (S, Ay), where A is the union of Ag, assertions

{X1(ax) | X e " is a concept name} U {X1(ax, bx) | X € I is a role name},

for fresh constants ay,bx for each symbol X, and assertions {3Qq(aq), Q2(aq,bq)}, for fresh constants aqg,bq. If Ks is
not I'-safe with respect to M, then S’ =S U {3Q; E 3Q1}, otherwise S’ =S. We prove K and M’ are as required.

Assume /s and M are inconsistent, that is, the KB (S U B, Ag) is inconsistent. Then each inconsistent target KB is a
universal solution for K’s under M. On the other hand, K} and M’ are inconsistent, and, again, each inconsistent target KB
is a universal UCQ-solution for K} under M’. In what follows, we assume Ks and M are consistent, and K and M’ are
consistent.

Assume there exists a universal solution A4; for Ks under M. Then K is I'-safe with respect to M, and it is easy to see
that A; U {X(ax) | X €T is a concept name} U {X(ax,bx) | X € " is a role name} U {Q (aq, bq)} is a universal UCQ-solution
for K under M’

Now, assume there exists a universal UCQ-solution K; = (7, A;) for K] under M’. First, it follows that uni(S’ U B', A;)
does not contain an infinite Q -chain starting from aq, hence S’ does not contain the axiom 3Q; ©3Q and Ks is I'-safe
with respect to M. Second, without loss of generality, we may assume that 7 does not contain disjointness axioms and .4;
is closed with respect to 7. Finally, uni(K;) is finitely I'-homomorphically equivalent to uni(S’'UB’, AY), so for each concept
name A €T, A(aa) € A; and for each role name P €I, P(ap, bp) € A;. We show that 7 is a trivial TBox. By contradiction,
assume « € 7 is a non-trivial axiom. Consider various cases of «:

o =ALC B, for concept name B distinct from concept name A. Then K = B(aa), however (S’ U B, AL) b~ B(aa), hence it
is not the case uni(KCy) is finitely I'-homomorphically equivalent to uni(S U B’, A7). Contradiction.

a =3P C A, for role name P. Then K = A(ap), however (S"UB’, AL) i~ A(ap), hence it is not the case uni(XCy) is finitely
I'-homomorphically equivalent to uni(S’ U B, Ay). Contradiction.

a =3P~ C A, for role name P. As above, but in this case K; = A(bp) and (S’ U B', AL) = A(bp).

a=PLCR, for role R distinct from role name P. Then K; = R(ap, bp), however (S' U B’, AL) ¥~ R(ap, bp), hence it is not
the case uni(K,) is finitely I'-homomorphically equivalent to uni(S’ U B’, A). Contradiction.

a=ALC3R, for role R. Then there exists o € AUKY distinct from a4 such that R € rD (qy, o). Since in uni(S’ U
B', A, as is not connected to anything, uni(XCy) is not finitely I'-homomorphically embeddable into uni(S" U
B', AL). Contradiction.

« =3P C 3R, for role R distinct from role name P. Then there exists o € AV distinct from ap such that R €
&0 @p, o). If 0 = bp then we get a contradiction similar to the case « = P C R. If o # bp then we get a
contradiction as above.

a =3P~ C 3R, for role R distinct from P~. As above.

o =3P~ C 3P, for role name P. Then in uni(X;) there exists an infinite P-chain starting from bp, and obviously, it is not
finitely I'-homomorphically embeddable into uni(S" U ', A}). Contradiction.

Therefore, 7 is a trivial TBox, so we obtain that uni(A,) is finitely [-homomorphically equivalent to uni(S" U ', A}). Since
uni(Ay) is finite, it follows uni(A;) is I'-homomorphically equivalent to uni(S’ U B, AL). Let A; be the subset of A; such
that ind(Aj) = ind(As). It is easy to see that uni(A;) is T-homomorphically equivalent to uni(S U B, As), and as Ks is
I"-safe with respect to M, we conclude that A, is a universal solution for /Cs under M. O
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B.6. Reachability games on graphs

Reachability games are two-person infinite games. Here we employ the “Spoiler vs. Duplicator” terminology instead of
the standard “Player O vs. Player 1” terminology used for instance in [62], as we find it more intuitive.

A game is played by two players: Spoiler and Duplicator, and defined by a game arena (or playground) and a winning
condition. A (game) arena is a triple A= (S,D, T), where P=SUD is a finite set of states, SND=@, and TCP x P is a
transition relation. The game starts in some state sp € P, and it is played in turns. In each turn, if the current state s is
in S, then Spoiler chooses some state s’ € P such that (s,s’) € T, and if the current state s is in D, then Duplicator chooses
some state s’ € P such that (s,s’) € T. Thus, each play in the game is viewed as a path 7, which can be infinite (i.e.,
T =50-51-S2---, where s; € P and (s;, Si+1) € T for every i > 0) or finite (i.e., w =Sg-S1-52---Sk € Pk+1 where (SiySi+1) €T
for every i € {0, ...,k —1} and {s | (s, s) € T} =¥).

The winning condition characterizes the plays won by Spoiler. We consider a reachability condition specified as a set
F C P of accepting states. Given a winning condition F, a play 7 is a win for Spoiler iff some state from F occurs in 7.
Finally, a reachability game is a pair G = (G, F) where G is a game arena and F is a reachability condition.

A strategy for Spoiler from state s is a (partial) function fs:P*S — P that assigns to each finite sequence of states
So - S1---Sk with sp =s and si € S, a successor state sgy1 such that (sg, Sk+1) € T. A play w =50 - S1--- is said to conform
with strategy fs if siy1 = fo(SoS1...5i) for every i > 0 such that s; € S. Then, a strategy fs is a winning strategy for Spoiler
from s € P, if every play that conforms with fs and starts in s is a win for Spoiler. The corresponding notions for Duplicator
are defined analogously.

Proposition B.2 (/62,71]). Given a reachability game G = (A, F) and a state s in A, it can be checked in PTIME whether Spoiler (or
Duplicator) has a winning strategy from s.

B.7. Two-way alternating automata

Infinite trees are represented as prefix closed (infinite) sets of words over N (the set of positive natural numbers).
Formally, an infinite tree is a set of words T C N*, such that if x-c € T, where x € N* and c € N, then also x € T. The
elements of T are called nodes, the empty word € is the root of T, and for every x € T, the nodes x - ¢, with c € N, are
the successors of x. By convention we take x-0=x, and x-i-—1 = x. The branching degree d(x) of a node x denotes the
number of successors of x. If the branching degree of all nodes of a tree is bounded by k, we say that the tree has branching
degree k. An infinite path P of T is a prefix closed set P € T such that for every i > 0O there exists a unique node x € P
with |x| =1i. A labeled tree over an alphabet ¥ is a pair (T, V), where T is a tree and V : T — X maps each node of T to
an element of X.

Alternating automata on infinite trees are a generalization of nondeterministic automata on infinite trees, introduced in [72].
They allow for an elegant reduction of decision problems for temporal and program logics [73,74]. Let B(I) be the set of
positive boolean formulae over I, built inductively by applying A and Vv starting from T (denoting true), L (denoting false),
and elements of I. For a set J €I and a formula ¢ € B(I), we say that J satisfies ¢ if and only if, assigning true to the
elements in J and false to those in I\ J, makes ¢ true. For a positive integer k, let [k] = {—1,0,1,...,k}. A two-way
alternating tree automaton (2ATA) running over infinite trees with branching degree k, is a tuple A = (X, Q, 8, qo, F), where
Y is the input alphabet, Q is a finite set of states, § : Q x X — B([k] x Q) is the transition function, go € Q is the initial
state, and F specifies the acceptance condition.

The transition function maps a state ¢ € Q and an input letter 0 € X to a positive boolean formula over [k] x Q.
Intuitively, if §(gq, o) = ¢, then each pair (c,q’) appearing in ¢ corresponds to a new copy of the automaton going to the
direction suggested by c¢ and starting in state q’. For example, if k =2 and §(q1,0) = ((1,q2) A (1,¢3)) V ((—=1,q1) A (0, q3)),
when the automaton is in the state q; and is reading the node x labeled by the letter o, it proceeds either by sending off
two copies, in the states g, and g3 respectively, to the first successor of x (i.e., x- 1), or by sending off one copy in the state
q1 to the predecessor of x (i.e., x- —1) and one copy in the state g3 to x itself (i.e., x-0).

A run of a 2ATA A over a labeled tree (T, V) is a labeled tree (T, r) in which every node is labeled by an element of
T x Q. A node in T, labeled by (x, q) describes a copy of A that is in the state ¢ and reads the node x of T. The labels of
adjacent nodes have to satisfy the transition function of A. Formally, a run (T¢,r) is a T x Q -labeled tree satisfying:

- € €Ty and r(e) = (€, qo).

- Let y € Ty, with r(y) = (x,q) and 8(q, V (x)) = ¢. Then there is a (possibly empty) set S = {(c1,q1), ..., (Cn, qn)} S [k] x Q
such that:
- S satisfies ¢ and
- forall 1 <i<n, we have that y-i e Ty, x-¢; is defined (x-¢c; € T), and r(y -i) = (x - ci, q;).

A run (Ty, 1) is accepting if all its infinite paths satisfy the acceptance condition. Given an infinite path P € Ty, let inf(P) C Q
be the set of states that appear infinitely often in P (as second components of node labels). We consider here Biichi
acceptance conditions. A Biichi condition over a state set Q is a subset F of Q, and an infinite path P satisfies F if
inf(P)NF #@.
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The non-emptiness problem for 2ATAs consists in determining, for a given 2ATA, whether the set of trees it accepts is
nonempty. It is known that this problem can be solved in exponential time in the number of states of the input automa-
ton A, but in linear time in the size of the alphabet as well as in the size of the transition function of A.

B.8. Proof of Lemma 6.17

Proof. (=) Let D € A2 be a finite set, and h a X-homomorphism from Z/{f to I/IZD. We construct a labeled tree T =
({1,...,n}*, V) where n = max(ng, ny) and show that T € £(Ap). The labeling function V is defined as follows: V(¢) =R
and

V(i) =a, for each a; € D Nind(K3)
V(iyip---iy) =w;,, foreacha;wi,---w; €D
Vx)=S, foreach x € {1, ..., n}* such that V (x) was not defined above.

To show that T € L£(Ap), we construct a run tree (Ty,r) of A on T. The tree structure Ty and the labeling function r
are defined inductively as follows, where for (x,q) € {1,...,n}* x Q, f((x,q)) denotes x, and (z)4 denotes z---z, where z is
repeated q times:

€ € Ty is the root of Ty and r(€) = (¢, qo),
€ has two children Oy and 0p, such that r(0f) = (€, qy) and r(0p) = (€, qn),
- Oy has children cy, ..., ¢y, such that r(c;) = (i, ;),
- forie({l,...,nq} and each w; such that a; ~x, wj, ¢; has a child ¢; - wj with r(¢c; - wj) = (i - j, w)),
- for each node in Ty of the form x = c¢;, wj, --- w;,, such that r > 2 and a;, w;, ---w;, € D, and each w; such that
Wi, ~xc, Wj, X has a child x- w; with r(x- wj) = (i1iz - - - iy j, wj),
- 0p has one child yo with r(yo) = (i, yo) where i € {1,...,n4} is such that b =a;,
- for each node of the form x = yq - (z,)9" - y), - (2,)® - y1, - - - ()% - y},, where k>0, q; > 0, z; denotes x;; or k,’i, and
f@®(x)) =j1---js with s > 1, and for each v; such that v; -5>v, and h(bvy, --- v} v)) =a;, Wi, - - - Wi,
- X has a child x - x; with r(x-x) = (j1-- s, X1);
- if j; =11, let t be the number such that j; =iy, ..., jr =i, and
if j1 #1q, let t =0, then
x every node of the form x' =x(x)7, 1 <q <s—t, has one child X' - x; with r(x" - x)) = (j1 - js—q, X1,
x every node of the form x' =x(x)4, s—t+1<qg<s—t-+r—t has one child ¥ - x with r(x - x) =
(1 -+ Jrits1 -+ ieyg—s—1)> V1), and
% node X' = x(x) "t ~*1 has one child ¥ - y; with (X' - y;) = (i1 - - - ir, }).
- for each node of the form x=yq - (z)" - y), - (21,)% - y1, - - - (z;,)% - y},, Where k>0, g; > 0, z, denotes x;, or lii, and
f(x(x)) =1, and for each v, such that v; —>v,, x has a child
- Xy with r(x - y() =(@-j, )/,). if h(bvy, --- vy, v) =a;wj,

- x-k with r(x-k)) = (€, k}), if h(bvy, --- v, v) =a;.

- for each node of the form x = yo - (z,)?" - y;, - (2,)% - y1, - - (z,)% - y),, where k>0, q; >0, z, denotes x;, or kl], and
f@x(x)) =iy---ip for ' > 2, and for each v; such that v, <>v; and h(bv;, --- v}, v)) = a;, wi, - -- wj,, x has a child x - y,
with r(x- y)) = (i1---ir, V). A

- for each node of the form x=yg-z1---24 -klj, g>0and z; € {y,-,x,-,k::/}, x has one child x - y; with r(x- y)) = (J, ¥)-

It is easy to see that (Ty,r) is an accepting run of Aj.

(<) Assume that the language of A is non-empty and T = ({1,...,n}*, V) € L(Ap). Let (T, r) be an accepting run of
Ay over T. Denote by U/; and U», and by G; and G, the canonical and the generating models of K; and /C,, respectively.
We construct a finite set D € A2 and a homomorphism h from L{{’ to Z/lzD using T and (T, r).

Firstly, we prove that T encodes a finite subset of AY2. We show

(a) for each i € {1,...,ng}, V(i) =aj;

(b) for each k > 2, such that a;, wi,---wy, € A% and for each 2 < j <k, V(i1 ceeij) = Wij, then V(i ---ix) = Ww;, or
V(p---ip) =S;

(c) for each infinite path a;, Wi € AY2 | there exists j > 2, such that V (i <eij)=S.

Proof of (a): by definition of §(«;, L).
Proof of (b): for the sake of contradiction, assume for some a;, wj, - -- w;, € AY2 k>2 foreach2<j<k, V(i--- ij)= \7v,~j,
but V(i1 ---ig) =R or V(i1 ---ix) =a;. Since (Tg, ) is a run over T there exists a path in T, of the form

(€,90), (€,q¢), (i1, aj,), (i1i2, Wjy), ..., (i1 - - - ik, Wy, ).
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Then by definition of the transition function, both §(w;,, R) = L and §(wj, ,d;) = L, which contradicts the assumption (T, r)
is a run.

Proof of (c): By contradiction, assume that there exists an infinite path a;, ---wj;--- in A2 such that for each j > 2,
V(i1---ij) #S. Now, since (Ty, 1) is a run of Aj, over T, there must exist an infinite path 7 in Ty of the form

(67 QO), (G,Qf)’ (i15‘xi])v (ilizs wi2)7 LERE} (ll o l]v wij)5 LR

Since inf(w) N {y1,..., ¥n,} =9 we obtain a contradiction with the assumption that (T, r) is an accepting run. Therefore,
let d > 2 be the depth of S, ie, for each a;, ---wj;--- € A2 for some j <d, V(i1 ---ij) = S. The finite set D is given by
{aj, wi, ---wj, | € Auz}.

Next, we show there exists a I'-homomorphism from Z/If to L{zD by constructing that h. By induction of k, we build
h(bvy, ---vy) for each bv;, ---v; € AU

Base of induction. First, in T, there must exist a path (¢, qo), (¢,qp), and as Ty is a run, for some i, b = a;, hence this
path continues with (i, yo) (and the current path is (¢, qo), (€, gn), (i, Y0)). Then, §(p,d;) is satisfied, which means that
tcﬁ =T and, in turn, tLZ’1 (b) < t%’z (a;), so we can set h(b) = aj.

Inductive step. Assume h is defined for each path of length k+1 in AY1, k>0, let bvy, ---vy, € AU (vi, denotes b), and
h(bvy, ---vy,) =aj,wj, ---wj,, and assume the current path 7 in T is of the form

(67 qo)s (63 qh)v (103 VO)3 (xv q)*v cees (lO e ir, yk),

where (x,q)* denotes a finite (possibly empty) sequence of tuples (x,q) with x € {1,...,n}* and q € {y, Xl,Kli [1<I<
m, 1 <i<ng}. Then §(yk, W;,) (recall, that ig---i; € T is labeled with W;, ) is satisfied. Now, let v;, ~x, Vi B v, =2 v
then at least one of the formulas
Vig: Vit :
Vi = pw,w; NU Vi), forwi~x, wj (wi, denotes aj),
vy, Vi . .
Vi = Paga A=k ), ifr=0,

Vi Vi .
Y_1 = Nw, + ALY ) ifr >0,

vy, ,V
is satisfied. Assume 1; is satisfied for some j € {1,...,ny}: then pv\,lfr",ﬁ{j“ =T, hence ' (v, Vi) S 192 (wi,, w), and the

A . . v .
run is continued with (ig - - -ir j, ¥,,,). Moreover, 8(y,,,, W;) is satisfied, so rwlj.‘“ =T, ie, tJ! Vi) € t92(w ;). Therefore,
we can set h(bvy, --- vy ) to be equal to aj;wi, --- Wi wj.

vy, V,
In the case r =0 and v; is satisfied for some i € {1,...,nq}, we have that ,oailt’)‘al“+1

»ai

=T, hence rgl (Vigs Vig,) S
G2 ; ; ; i ; A i : Vikr1 _ ;
ry’(aj,,a;), and the run is continued with (E,K,k“),(l,)/lkﬂ). Moreover, 8(y,,,,a) is satisfied, so 7,7 =T, ie,

tg] (Vi) S tgz (a;). Therefore, we set h(bv,, ---v;,,,) to be equal g;.

’V’k+1

v
Alternatively, if for r > 0, /_1 is satisfied, it follows that nV;’,‘ =T, hence {R™ |R € rgl Vi, Vi, )} € rgz(wiH, wi,),

.

. . s . : ~ s . Vi .
and the run is continued with (ig---ir—1,¥,,). Moreover, §(y,,, Wi,_;) is satisfied, so rwf*‘] =T, ie, tgl(vlkﬂ) c
-

tgz(wim). Therefore, we can set h(bvy, ---v;_,) to be equal to aj,wj, ---wj,_,. It concludes the inductive step for the
case Vi, —57 Vi, -
Consider now, v, -5* vy, ,. Then the run continues with (i1 ---ir, xy,,)- Let

X1 X1 ) -0 R Kbeyr)s R Vi)

. . . . . . . I . v
be a continuation of the current path 7 - (iy -+ -ir, Xj,,) in Tr, and xj = jo - - js. Then 8(y;,,,, wj,) is satisfied, so ‘L’W;‘:] =T,

and tgl (Vi) C t%(sz). Since rgl (bvyy -+ vy, by, - vy, ) =0, we can set h(bvy, ---v;,,,) to be equal to aj,wj, --- wj,.
Note that the runs considered in the induction never visit a node labeled with S, otherwise it contradicts the definition
of a run. Therefore, in such a manner, we can define h, a ¥-homomorphism from u{’ to Z/{ZD. a

Appendix C. Membership problem for UCQ-representability
Let K = (O, A) be a consistent KB, a,b € Ny, o € A" and tail(o) ~x w(r). We make use of the following properties:

(A) B’ e t""®)(q) iff A}=B(a) and O =B EC B/, and
R e a, b) iff A=R(a,b) and O =RCER/;
Proof: first, by definition of the canonical model, B’ € ") (q) if and only if K &= B’(a). Next, assume A (= B'(a), i.e.,
neither B’(a) € A, nor S(a,b) ¢ A for B’ =3S and some b € Ng. Obviously, a € ind(A), so for some concept A, A(a) € A,
or for some role S, S(a, b) € A. By contradiction, assume that O [~ A C B’ for each A(a) € A, and O [~ 3S C B’ for each
S(a, b) € A. Then there exists a model Z of K such that aZ ¢ B'’Z, which contradicts K = B’(a). Hence, ©® = A C B’ for
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some A(a) € A or O =35 C B’ for some S(a, b) € A. The opposite direction is obvious. The proof for R € r*") (a, b) is
analogous.

(B) B et (gwg)) iff O =3R™ C B, and
Rer"® (o, owpy) iff O =R CR.
Proof: Follows from the definition of the canonical model and the types.

(C) Let a~x wig) for some basic role R. Then there exists a basic concept B, such that A = B(a) and B~ R.
Proof: by definition of a ~»x wig; it follows that /C = 3R(a) and R is a minimal with respect to <o role among
all {R" | K =3R'(a)}. By (A) we have that A = B(a) for some concept B, and O = B C 3R. Now, consider KB B =
(O, {B(0)}) for some o € Ny. Obviously, B = 3R(0), B [~ R(0,0), and R is a minimal with respect to <¢ role among all
{R"| B =3R(0)}. Therefore, 0 ~p w(g}, and B~ R.

(D) Let ws ~x wigy for basic roles S and R. Then 35~ ~¢ R.
Proof: by definition of ws)~x wig; it follows that O =35~ C 3R, [ST]#[R], and R is a minimal with respect to <p
role among all {R’ | O =3S~ C 3R’}. Consider KB B = (O, {35~ (0)}) for some o € N,. The rest of the proof is similar to
the proof of (C).

(E) Let {B1,..., By} be a set of basic concepts and @ a TBox such that Kg = (O, {B1(0), ..., Bp(0)}) and (O U O, A)
are consistent. Assume y € AUB_If for some §, € AUOVOA) g, B} C tuni(OUO A5y then there exists
8y € AUN(OVOLA gych that

tunl(ICB)(y) g tuni(OUO’,A) (sy) and l.uni(ICB)(O’ y) g runi(OUO’,A) (80, (Sy) (C.])

Proof: consider the cases of y € AUN(Cs) [f y =o, then 8y, =&,. Let y =o0Wr,]--- W[,,) for m > 1: then for some 1 <
i<n, OEBiC3Rj,andfor1<j<m, OFE Ele_ E 3Rj41. Obviously, these entailments are valid in O U @', s0 3R €
tni(OUO" A (5,) and there exists §; € AUOUOLA such that Ry e rMOUOA (s, §1) and 3R] € OV A g,
Moreover, for each 1 < j <m, we have that 3R} € t""(OUO A5y and there exists §j1 € AOUOA) such that
Rjyq € rn(©OUO" A (s, s:. 1) and IR}, € N (OUO" A (s, 1). So we take 8y to be equal to 8. It is easy to see that (C.1)
is satisfied.

(F) concept B is O-inconsistent iff O =B T Cn D for some concept disjointness C = —D € O, or there exist n > 1 and
roles R1,..., Ry such that B~ Ry, 3R; ~o Rit1, and
- O =3R,; ECN D, for some concept disjointness C E =D € O, or
- OEFER,;,CSNQ or O=R,C S 1 Q, for some role disjointness ST —Q € O.

(G) role R is O-inconsistent iff O =RCE SN Q or O =RC S™ N Q™ for some role disjointness S C —=Q € O, or one of
3R, IR~ is O-inconsistent.

Proposition C.1. Let conditions (ii) and (iii) of Lemma 7.1 hold. Further, let As be an ABox over ¥ such that (S U B, As) and (T U
B, As) are consistent, and let Us, and Uy, be their respective canonical models. Then Uy, is I'-homomorphically embeddable into Uy,.

Proof. We build a function h from A to AY®, which is a I'-homomorphism from Usy, to Usp.

Base of induction. Initially, for each a € ind(As) we define h(a) = a. Let us immediately verify that t?“’ (a) C tllf‘b (a). Let
B e t?Sb (a), it follows by (A) there exists B over ¥ such that As = B(a) and SUB = B C B’. Note that B is SUB-consistent,
then by (ii), 7 U B |= B C B/, therefore we obtain B’ €  (a). The proof of erbe (a,b) C rlzi{“’ (a, b) is analogous.

Next, assume that ¢ € AY» and o = aw(g]. We show how to define h(o). It follows that a ~ i, wg) and by (C) we
obtain a concept B over ¥ such that As = B(a), and B ~sug R. Then B is S U B-consistent, and by (iii) there exists
y € A9nN(TUB.B©) gych that

tgen(SUB,B(o)) gen(SUB,B(0))
r

(wigy) St TUBBO) (y)  and 1! (0, wig)) S r9N(TVEBO) (g ).
Since {B} C t!o (a), by (E) there exists § € AU such that
9en(TUB.B0) () Mo (), and  19e"(TUB-BO) (o y) C fHe(q, §).

As for a TBox O, ABoxes A and A, and x € A%NOA | 7 ¢ AUO.A) with x = tail(z), the concept and role types of x and z
coincide, it follows now by transitivity of ‘C’ that

Uy
r

tllbe (awpry) CtL®(8), and rzlbe(a,aw[R]) C rlbf‘b (a, §).

Hence, we assign h(o) = 3.

Inductive step. We show now how to define homomorphism for owgj € AY» with o = o’ws) given that h(o) and
h(c’) are defined. It follows wsj ~x, Wir) and S is a basic role over ¥ by the structure of S U . Moreover, 35~ is

S U B-consistent, and by (D), 35~ ~»sug R. So (iii) is triggered, and there exists y € A%MNTUB.3S70) satisfying

gen(SUB,3S™(0)) gen(TUB,357(0))

SuUB,3s~
tlgen( (0)) (y), and r} (0, wig)) C 110 (0,¥).

TUB,35~
(wigy) € tlg~en( ©»
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Let B=supZ(357), C=supB(3S), and S = supZ(S) (sup§ was defined in Section 7.2). Then uni(S U B,35(0)) and
uni(7 U B,357(0)) can be partially depicted as follows. Note that here the presented concept and role labels are not the
exact concept and role types. Moreover, we depict only those individuals and links between them that are guaranteed to
exist given the information at hand. Note also that in the pictures further in this proof, we depict only the necessary bits of
information.

WIR] y
JR-O0- - - - - - - - - - - - o
W= Wis-)
R 35,C.0 0 35,C
357,3R,B @ @35 B
[} 0
gen(SUB,35 (0)) gen(7 UB,35 (0))

Denote by B(o) assertions B1(0),...,Bn(0) for B; € B, and similarly for C(a). Moreover, denote by S(a,o0) assertions
S1(a,0),...,Sk(a,0) for S; € S. There are two possible cases considering that B is a set of inclusions from X to ', T

is a TBox over I', and S is a role over X.

(1) 0~ (TUB,35-(0)) W[Q;1 ™~ "~ W[qQ,], 1 >0 and Q; are roles over I'.
Then, if n =0, y =0, otherwise y = wyq,).

Consider KB (7, {B(0)}), then we obtain that y € A9"(T.(B©@} apd

tgen(TUB,EIS‘(o)) tgen(T {B(0)}) gen(7UB,357(0)) gen(7,{B(0)})
T

y) € (¥), and rp (0,y)Crp, (0, y).

Observe that B C tlrth (h(0)), since obviously B C tﬁi’“’ (o) and h is a homomorphism on o. Therefore, by (E) we obtain
8 € AU such that

gen(T {B(0)})

tgen(T,{B(O)}) (y) C t?ﬁb (8), and (0,y) C l-rtb (h(o), 5).

As above, it follows tlli{s" (owiry) C t“b(a) and rer (0,0WR) C rr‘b (h(0), 8). Hence, we assign h(o wig) = 8. This case can
be depicted as follows:

OW[R] 8
IR~ [« EEEE R (o)
WIR] Y =WwiqQ.l
R-O0- - - - - - - - o
R
35 ElRB o .............. B
o =0'ws) h(o)
S,S S
3S7,3R,.B @ ®B
0 o
ECN o« YRR R PRPR ocC
gen(SUB,357(0) gen(T, {B(0)}) o’ h(o’)
Usp Uty

(I1) 0~ (TUB,35-(0)) W[s—]~ W[Q] "~ * -+~ W[q,], 1 >0, Q; are roles over I'.
Then, if n =0, y = w[s-j, otherwise y = w(q,.

Consider KB (7, {C(a),S(a,0)}). Then a~+ic@.s@o))) Wia:]~ -~ Wq,], ¥’ € A®NTAC@S@oOD: jf n — 0, y' =q,
otherwise y’ = wq,], and

tti;‘en(TUB,EIS*(o))(y) c t?‘en(T,{C(a),S(a,o)}) (y,)7 gen(TUB,EIS*(o))(O’ y) C tlglen(T,{C(a),S(a,o)})

and r} ©.y).

As above, CC tzlif“’ (h(c")), therefore by (E) we obtain § € AY® such that tl%en(T’[C<a)’s(a’o)})(y’) c tlli{“’ (6).

Observe that if r?en(sug’asi(o))(o, wigy) # @, it has to be the case that

y=wi-;, ¥ =a, and 3§=h(o).



56 M. Arenas et al. / Artificial Intelligence 238 (2016) 11-62
Let R’ € r?en(su&asi(o))(o, wig)), it follows R’ € r?en(T‘{c(a)’s(a‘o)}) (0,a), and from the latter, 7 = S; € R’ for some S; €.
As S; €4 (h(o”), h(0)), we obtain that R’ € €% (h(a), h(o")).

All in all, it follows that tlzi{Sb(aw[R]) C tlli{‘b(5), and rlzi{Sb(o,aw[R]) C rlli{‘b(h(o),a). Hence, we set h(ocwg)) = 3. We
conclude with a graphical representation of this case:

O WIR] )
, 3R7 o ......................... o
WIR] Y = WiqQal
JR-0- - - - - - - - - o
R
h(o)
R 3ST,ARB O cvvrevneinn OB
o =O”W[SJ
s S.S S
35~,3R.B @ 0<+—OC
0 [0} a
JS,C Q-cccevvvvvlnes ocC
gen(S U B, 357 (0)) gen(T, {C(a),S(a,0)}) o’ h(o")
Llsb Mtb

In such a way we can define h(o) for each o € A, hence h is a [-homomorphism from Usp, t0 Uy O

Proposition C.2. Let conditions (ii) and (iv) of Lemma 7.1 hold. Further, let As be an ABox over X such that (S U B, Ag) and (T U
B, As) are consistent, and let U, and Uy, be their respective canonical models. Then Uy, is T'-homomorphically embeddable into Usy,.

Proof. We build a function h from AY to A, a '-homomorphism from Uy to Usp.

Base of induction. Initially, for each a € ind(As) we define h(a) = a. Let us immediately verify that t?“’ (a) < tzfle (a). Let
B’ € tlzi{“’ (a), it follows by (A) there exists B over X such that As = B(a) and 7 U B = B C B'. Then B is S U B-consistent
(recall that Kgp = (S U B, As) is consistent), so by (ii), SU B & B C B/, therefore we obtain B’ € t“(a). The proof of
rlzi"b (a,b) C rlb-[s" (a, b) is analogous.

Next, assume o € AU and o = aw(g], we show how to define h(o). It follows that a ~x,, w(g and by (C) we obtain B
over ¥ such that Ag = B(a), and B ~7g R. We are going to show now there exists y € A9eN(SUB.B©) gych that

t%en(TUB,B(o))(W[R]) c t%en(SUB’B(O))(y), and (C.Z)
l‘%en(TUB'B(O))(O, W[R]) c r%en(SUB,B(o)) (O, y). (C.3)

Assume, first, R is a role over I', and observe that B is S U B-consistent, then by (iv) there exists y € A%n(SUB.B()
satisfying (C.2) and (C.3).

Assume now R is a role over X, then it follows B =3R. Let 0 ~(suB,3r()) W[q] for a role Q over X such that S=Q CR
(such Q always exists, for instance R itself if it does not have proper subroles). Then we choose y to be wq}, and show

first that (C.2) is satisfied. Let B € t%en(TUB’aR(O))(W[R]), then by (B), 7UBE3JR-C B, and as 3R~ ¢ t%en(SUB’aR(O))(W[Q]),
by (ii) we obtain that B € t%en(SUB’HR(O»(W[Q]). In a similar way, we can show that (C.3) is satisfied.

To continue the proof consider {B} C &% (a), then by (E) there exists § € AUsv such that t9e"(SUB.B(©) () c tUsv (§) and
19en(SUB.BO) (o, ) < o (a, 8). It follows now using (C.2) that £ (@wg;) < £ (8). Analogously using (C.3) one obtains
rzlf“’ (a,awg)) S rzlfs" (a, §).

Inductive step. We show how to define homomorphism for owg; € AY with o = o’ w(s) given that h(o) is defined.
It follows wys) ~x,, Wir], therefore 7 U B =35~ C 3R, and R is a role over I' distinct from S~. By (B) it also follows
3R et (¢), and since h is a I'-homomorphism, 3R € tlrlSb (h(0)). As As is an ABox over ¥ and S is a TBox over X, there
exists a concept B over ¥ such that B € t=(h(c)) and B = B C 3R. Next, assume that o ~(TUB,B(0)) W[q] for some role

Q such that 7 UB = Q C R. Then B is S U B-consistent and B ~7y5 Q. As above for o = awg}, by (vi) there exists
y € A9N(SUB.B©) gych that

gen(7UB,B(0)) c gen(SUB,B(0)) gen(7TUB,B(0)) gen(SUB,B(0))
tr Q) Etp ( r r

(wy y), and r (0,wpqp Cr (0,y).

Again, by (E) we obtain § in AU such that t9e"(SUB.B0)(y) C tHso(§) and r9en(SUB.BO) (o, y) C 0 (h(o), §). Observe
that 7 U B = Q E R, so the concept and role types of wg; and (o, wigj) are subsumed by those of wiq; and (o, wiq))
in gen(7 U B, B(0)). Finally, we obtain that % (cwg)) C t“=(8) and e (o, o wr)) C = (h(c), 8). Hence, we assign
h(U W[R]) =34.

In such a way we can define h(o) for each o € Al hence h is a [-homomorphism from Uy, to Usy. O
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Appendix D. Non-emptiness problem for UCQ-representability

Proposition D.1. For a concept B over ¥ and C’ over T, inclusion B C C' is representable in S and M if and only if there exists B’
over I' such that B = B C B’, and for each S-consistent concept D over X:

(H) SUBE=DC B impliesSUBEDLC(C/,
(I) if BB =3Q’~ for some role Q' over I, then S U B = D C 3Q’ implies D ~syup Q for some role Q such that SUB = {Q C
Q',3Q" (')

In this case, B C C’ is representable by B’ C C’.

Proof.

(<) Let B be a concept over ¥ and C’ over I', B’ # C’/, and conditions (H) and (I) are satisfied. We show inclusion
B C (' is representable in S and M by B’ C C'. Take 7 a parsimonious UCQ-representation for S under M: we prove
T =T U{B' C ('} is a parsimonious UCQ-representation by showing the following is satisfied:

- for each S-consistent and 7’ U B-inconsistent pair of concepts or roles (X, Y), it follows (X, Y) is S U B-inconsistent,
which corresponds to the « direction of condition (i) of Lemma 7.1,

- for each S U B-consistent concept or role X over ¥ and each X’ over I', T"UB k= X C X’ implies SUBEXE X/,
which corresponds to the < direction of condition (ii) of Lemma 7.1, and

- condition (iv) of Lemma 7.1.

Observe that from 7 is a parsimonious UCQ-representation of S under M, it follows the above conditions are already
satisfied for 7, S and M.

First, for condition (ii) of Lemma 7.1, let D be an S U B-consistent concept over ¥ and E’ a concept over I" such that
T'UBEDLCE and T UB D C E'. Hence, there exists D’ over I' such that 7 ={D'C B',C'CE'} and B=DLC D'.
Since 7 is a parsimonious UCQ-representation and 7 U B = D C B/, it follows SUB =D C B, so there exists By over ¥
such that S =D C By and B |= B C B’. Next, B/, C’ satisfy condition (H), therefore SU B = B C C/, so there exists C over
¥ such that SE=B; C C and B = C C C'. And we can continue by analogy. To summarize, there exist By, C and E over ¥
such that

SE{DEB1,B1CC,CCE} (D.1)
and B={B;C B/,CC (/,EC E'}. Finally, we obtain that SUBE=DC E’.

Next, for condition (i), let (D1, D) be a pair of S-consistent, 7 U B-consistent and 7’ U B-inconsistent concepts. For the
sake of contradiction, assume (D1, Dy) is S U B-consistent (hence, each D; is S U B-consistent).

Suppose both D; are 7’ U B-consistent. Without loss of generality, we may assume that for some D’ over I', 7" U B =
{D1 C D', D, E—D’}. From condition (ii), it follows there exists D over ¥ such that S =D{ C D and B =D C D’. Consider
the following cases:

1) TUBE=Dy; E—=D’ (and T UB = D1 E D'). Then, either there exist D), F’ over I' such that 7 |={D}, C F/, F' £ =D’} and
B = Dy E D), (see the diagram below), or B |= D E —D’. In both cases, (D, D3) is 7 U B-inconsistent, so it follows (D, D7)
is S U B-inconsistent. In view of S = D1 C D, we obtain contradiction with the assumption (D, D) is S U B-consistent.
2) T UB W Dy C —D'. Then, there exists F' over I' such that 77 UB D, C F' and 7 = F' C =D’ (note, 7T U B [~
D, C F’). From condition (ii), it follows there exists F over £ such that S =D, C F and B=F C F'. Now, as (D, F)
is 7 U B-inconsistent, it follows (D, F) is S U B-inconsistent, which in view of S = {D{ C D, D; C F} contradicts the as-
sumption (D1, D) is S U B-consistent.

AXVP A AXVD[
D—~———D T F—~————F
DZMD; i b
D} —~——— D Dy —~———»D)
S T S T

Suppose one of D; is 7’ U B-inconsistent. Consider the following two cases by (F):
1) for some D’ over I', 7' U B |={D; E D', D; = —=D’}. The contradiction is obtained similarly as in the case both D; are
T’ U B-consistent.
2) there exist n > 1 and distinct roles S/, ..., S; such that D; ~7g S}, ES}_ ~TIUR S’j+] and TTUBES,CR nQ’ for
RC—=Q' eT,or TTUBEIS, " CENF forEEC—F eT.
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If n=1 and S is a role over ¥ (i.e., D; =3S] and S} is S U B-consistent), then from condition (ii), it follows SU B |=
SI{ER'MQ or SUBE EIS/l_ E E'nF’. In the former case, there exist roles R, Q over ¥ such that S =S, ERNQ and B =
{RC R, Q CQ'}; then (R, Q) is T U B-inconsistent, since 7 is a parsimonious UCQ-representation, it follows (R, Q) is
SUB-inconsistent. In the latter case, there exist concepts E, F over X such that S = 35’]_ CENFand B={ECE, FCF'};
then (E, F) is 7 U B-inconsistent, hence (E, F) is S U B-inconsistent. In any case we obtain S} is S U B-inconsistent, which
contradicts the assumption D; is S U B-consistent.

Ifn=1 and S is a role over T, assume 7 UB j~ D; C 3S. From condition (ii) it follows SUB = D; E 35/, so there exists
D over ¥ such that S |=D; E D and B |= D C 3S/. Then D ~7yg T’ for some role T” (possibly coinciding with S} ) such that
TUBET ES|.Inthe case TUBES]CRNQ or TUB = EIS/f C E'NF/, since T is a parsimonious UCQ-representation,
from condition (iv) it follows there exists a role T such that D ~gsyg T, and SUBE=TC R MQ ' or SUBEIT CE'NF.
Again, we obtain that D is S U B-inconsistent, which contradicts the assumption D; is S U B-consistent.

Assume now 7 U B k35| CE'nF’ (the case T UB =S E R N Q’ is not possible). Then it follows 7 = (3577 C
B, C'C E’} andfor T {EIS/l’ C B/, C'C F’}, and the role T above is such that SUB 3T~ C B. If T is over X,
then S =3T~ C By and B = B; C B’ for some concept By over X, next we have that 77U B &= B1 C E'n F/, so from
condition (ii) it follows SUB =By C E' 1 F’/, and as before By is S U B-inconsistent, which contradicts the assumption Dj;
is S U B-consistent. If T is over T', then B’ =3T~ =357, and by (I) it follows there exists S; such that D ~»syg S and
SUBE{S1C S/l, 35, £ C'}. Since EIS/f # (', it follows Sq is over X, and there exists C over ¥ such that S =357 EC
and B = C C C’. Now, we have that 7"UB = CE E'n F/, from condition (ii) it follows SUB = CEZ E'n F/, so as before C
is S U B-inconsistent, which contradicts the assumption D; is S U B-consistent.

For n > 1, we can continue reasoning as for the case n =1 to obtain a contradiction. Finally, we conclude that D; is
S U B-inconsistent, hence (D1, Dy) is S U B-inconsistent.

Let (S1, S2) be a pair of S-consistent, 7" U B-consistent and 7’ U B-inconsistent roles (this is the only non-trivial case).
Since 7’ extends 7 with a concept inclusion, we have that there exist D1, Dy covering {3S1,3S2} or {357,3S;} such
(D1, Dy) is T’ U B-inconsistent and 7 U B-consistent. By reasoning as above, we obtain (Dq, D) is S U B-inconsistent,
therefore (S1, S») is S U B-inconsistent.

To show condition (iv) of Lemma 7.1 assume an S U B-consistent concept D over ¥ and a role R such that D~y R
and it is not the case that D ~»7_g R. Hence, R is a role over I', and there exists D’ over I" such that 7 = {D’ E B/, C' C 3R}
and B =D C D’. As before, we can conclude there exists (an S U B-consistent) C over ¥ such that B=CC (' (and S &
D E C). It means 7 UB = C C 3R, therefore either C ~7yp R, or C =3Q for some role Q over X such that TUB = Q ER,
and C~»7up Q. Since 7T is a parsimonious UCQ-representation, it follows there exists z € A9N(SUB.CO)) gych that

gen(7TUB,C(0)) gen(SUB,C(0))

tlgen(TuB,C(o)) x) C then(SUB’C(o)) (z) and rd (0,%) C rd 0,2),

with X = wg) or x = wjq]. Observe that R e r¥" 7“5 4 x) which implies that z = wys) for some role S such that
SUB = CC3S. Now, notice that SU B |= D C 35: we obtain that 0 ~sus,p()) Wr] for some role T (possibly coinciding
with S) such that SUB =T C S. Finally, we have that

gen(7'UB,D(0))

T'UB.D SUB.D
e ) (wir) < € “(wir) and rf (0. wiry) <

en(SUB,D(0))
Iy (0o, wirp),
so we take y in condition (ii) to be equal to wyr.

Assume now B’ = 3R~ for some role R over T, and D is an S U B-consistent concept over ¥ such that D ~gy3 R.

By condition (ii), it follows S U B = D C 3R. The interesting case to consider is t%en(TUB’D(O>)(w[R]) = {3R™} (hence,

r?en(TUB‘D(O))(o, wir) = {R}), as for 7 it is enough to take y € A9"(SUB.D©) equal to wys) such that D ~s 5 S and

SUBESCR (such S exists: we take S equal to R if D~ sy R). However, given the axiom 3R~ C C’ in 7, we have
9 TVBLO) (o)) 2 (3R, ') (note, still 195" T VEPO) (g i) = (R}). As B and C' satisfy (I) and SUB =D C 3R, it
follows there exists S such that D~ sy S and SUB = {SC R, 3S~ C (’}; moreover by C’ = 3R~ and the structure of
S U B it follows S is over X. From the latter we obtain a role Q over X such that SE=SC Q and B = Q E R, moreover
3Q ~ and Q are SU B-consistent. Now, assume 7 =3R~ C E’; then TUB =3Q ~ C E/, and since 7 satisfies condition (ii)
it follows SU B = 3Q ™ C E/, therefore E’ € t%en(SUB’D(O))(W[s]). Thus tlge"(T UB’D(o))(w[m) c t%en(SUB’D(O))(W[s]), and we
take y = wys) to satisfy condition (iv) of Lemma 7.1.

(=) Suppose inclusion B C C’ is representable in S and M by a target axiom «. Then 7 = {«} is a parsimonious
UCQ-representation and 7 UB = BE C'. If B = B C C/, we take B’ equal to C’: obviously, (H) and (I) are satisfied. Now,
assume B (= B = C'. Then it must be the case « is of the form D’ = C’ and B =B C D’ for some concept D’ over I'. So we
take B’ equal to D’, and prove below (H) and (I) are satisfied.

For (H), let SUB =D C B’ for a S U B-consistent concept D over X. It follows S =D C By and B = B; C B’ for
some concept B1 over X. Consequently, 7 U B = B = C/, and as 7 is a parsimonious UCQ-representation, we obtain that
SUB k& By C (. Finally, we proved that SUB =D LC C'.

For (I), assume B’ is of the form 3Q’~ for some role Q" over I', and S U B = D C 3Q’. As above, there ex-
ists By over ¥ such that B = By C 3Q’. Then, B; ~7yg S’ for some role S’ (possibly coinciding with Q’) such that

TUBES C Q'. By condition (iv) of Lemma 71 and Q' € rlqen(TUB’B‘(o))(o,wm), there exists a role S such that
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(W (ws)) and rlqen(TUB‘B‘(o))(o, wis) € rgren(SUB’B](o))(o, wis)). It implies, By ~sup S.

Further, since S U B =D C By, we have that D ~syp Q for some role Q (possibly coinciding with S) such that
TUBEQ CS. It is straightforward to verify that SUBE={Q £ Q/, 3Q - C('}. O

tlgen(TUB,B1(o)) S’]) c t%en(SuB.Bl(o))

Proposition D.2. For a role R over ¥ and Q' over T, inclusion R C Q' is representable in S and M if and only if there exists R over
I' such that Bl=R C R/, and

(J) for each S-consistent role S over X, SUBE=SC R impliesSUBE=SC Q';
(K) B’, C’ satisfy conditions (H) and (I) for B =3R’,C'=3Q’,and B’ =3R’~,C'=3Q' .

Then, R E Q' is representable by R' C Q.

Proof.

(<) Let R be a role over ¥ and Q' over I', R’ # Q’, and conditions (J) and (K) are satisfied. We show inclusion
R C Q' is representable in S and M by R’ C Q’. Similarly, to the proof of Proposition D.1, take 7 a parsimonious
UCQ-representation for S under M: we prove 7/ =T U{R'C Q'} is a parsimonious UCQ-representation by showing
the direction of condition (i) stating that for each S-consistent and 7’ U B-inconsistent pair of concepts or roles (X, Y),
(X,Y) is S U B-inconsistent, the « direction of condition (ii), and condition (iv) of Lemma 7.1 are satisfied.

Satisfaction of conditions (ii) and (i) of Lemma 7.1 can be shown by analogy with the corresponding proofs in Propo-
sition D.1. Note, here for concept inclusions/disjointness axioms we use the fact that 3R’,3Q’ and IR’ ~,3Q’~ satisfy (H),
and for role inclusions/disjointness axioms we use the fact R’, Q' satisfy (J).

For condition (iv), the interesting case to consider is D ~»yyug R/, with D an S U B-consistent concept over X,
tgen(TUB,D(o)) gen(TUB,D(0)) tg(—)n(T’UB,D(o))(W = {EIR,_

T T [R) = ’

(wirp) ={3R" 7} and 1}, (0o, wirp) = {R’}. Now, given R"'E Q' €T,
3Q’~} and rlgen(T UB-D@) (5 wig) 2 (R, Q'}. By condition (ii), it follows S UB = D = 3R’. As 3R’~ and 3Q’~ satisfy (I)
and SU B = D C 3R/, it follows there exists S such that D ~gyp S and SUB = {SC R, 3S~ C 3Q’~}; moreover
by 3Q'~ # 3R~ and the structure of S U B it follows S is over . From the latter we obtain a role Q over ¥ such
that SESC Q and B Q C R, moreover 3Q~ and Q are S U B-consistent. Now, assume 7 = 3R~ C E’; then

T UBE3IQ ™ C E, and since T satisfies condition (ii) it follows SU B |=3Q ~ C E’, therefore E’ € t%en(SUB’D(0>)(W[5]).

Similarly, for T’ such that 7 = R’ C T’, we can show T’ € rlqen(SUB‘D(O))(o, w(s)). Thus, we take y = wys; to satisfy condi-

tion (iv) of Lemma 7.1.

(=) Suppose inclusion R = Q' is representable in S and M by a target axiom «. Then 7 = {«} is a parsimonious
UCQ-representation and TUBERC Q'. If BE=RC Q/, we take R’ equal to Q’: obviously, (J) and (K) are satisfied. Now,
assume B £ R C Q’. Then it must be the case « is of the form S’C Q' and B =R C S’ for some role S’ over I'. So we take
R’ equal to S’, then (J) is shown similarly to (H) in the proof of Proposition D.1, and satisfaction of (K) is shown exactly as
in the proof of = of Proposition D.1 for B =3R’, C'=3Q’,and B'=3R’~,C'=3Q'~. O

Proposition D.3. For roles R1, Ry over X, (R1, Ry) is target contradictable in S and M iff either for {R, Q} C {R1, Ry} there exists
R’ over I such that

(L) B=RE R/, and either Q T =R’ € B, or there exists Q' over T" such that B=Q = Q' and
(a) for each S U B-consistent pair of roles S1, Sz over ¥ it is not the case SUBE{S1C R, S T Q'};
(b) foreach S U B-consistent concept D over  and each role S such that D ~ syg S, it is neither the case SUB=SC R'MQ/,
norSUBE=SCR~NQ',
(M) or B =R C —R’ and inclusion Q T R’ is representable in S and M;

or for {B, C} C {3R1, 3Rz} or {IR] , AR5 } there exists B’ over I such that

(N) B = BLC B, and either C = =B’ € B3, or there exists C’ over I' such that B = C C C" and

(c) for each S U B-consistent pair of concepts D1, D over T it is not the case SUB ={D{ E B’, D, C C'};

(d) for each S U B-consistent concept D over ¥ and each role S such that D ~» gy S it is not the case SUB =35~ C B ' n(/,
(0) or B =B C —B’ and inclusion C T B’ is representable in S and M.

Then (Rq, R>) is target contradictable by either R" T R’, or Q' © =R’ in (L), by axiom «, where Q T R’ is representable by « in (M),
by either B’ C B’, or C' € =B’ in (N), and by axiom o, where C C B’ is representable by « in (0).

Proof. (<) Let R1, R, be roles over £ and one of the conditions (L), (M), (N), or (0) is satisfied. We show (R, Ry) is target
contradictable by « given by each of the conditions. Take 7 a parsimonious UCQ-representation for S under M: we prove
T’ =T U{a} is a parsimonious UCQ-representation, by showing conditions (i), (ii), and (iv) of Lemma 7.1 are satisfied (only
the required directions, see the proof of Proposition D.1). That (Ry, Ry) is 7’ U B-inconsistent, follows immediately from
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the shape of o and B in each of the cases. Observe that if « is given by one of the conditions (M) or (0), then 7" is a
parsimonious UCQ-representation follows from the proof of Propositions D.1 and D.2. As for « given by conditions (L) or (N),
it should be clear that conditions (ii) and (iv) of Lemma 7.1 are satisfied, as disjointness axioms do not affect entailments
of the concept and role inclusions. Therefore, below we show 7~ satisfies condition (i).

Assume condition (L) is satisfied, and « = Q' = —R’ (the case @ = R’ C R’ is trivial), hence B £ Q € —R’. Let (D1, D)
be a pair of S-consistent, 7 U B-consistent and 7’ U B-inconsistent concepts. The case both D; is 7’ U B-consistent is not
possible due to the shape of «. Then some D; is 7’ U B-inconsistent, and by (F) it follows there exist n > 1 and distinct
roles S7,..., Sy such that D; ~7yug5 S}, EIS}’ ~TUB S}H and TUBES,ERNQ or TUBES,ER ~NQ’'".In the
following, we consider only TUBE S, ER' nQ’.

For the sake of contradiction, assume D; is S U B-consistent. If n =1 and S is a role over ¥ (i.e, D; =3S] and S} is
S U B-consistent), then we obtain contradiction with (a) rised from the assumption D; is S U B-consistent. If n=1 and S}
is a role over T', then since 7 is a parsimonious UCQ-representation and D; ~»7yg S}, by condition (iv), we obtain a role
S such that Dj ~syup S1, and SUB =51 C R'n Q’: contradiction with (b).

For n > 1, inductively using condition (iv), we obtain roles S, ..., S,_1 over ¥ and S, such that D; ~gsyug S1, EISJ._ ~SUB

Sj+1,and SUB =S, C R’ Q’. Then (b) implies that 3S,_, is S U B-inconsistent, which contradicts the assumption D; is
S U B-consistent. Finally, we conclude that D; is S U B-inconsistent, hence (D1, D3) is S U B-inconsistent.

Let (S1,S2) be a pair of S-consistent, 7 U B-consistent and 7' U B-inconsistent roles. For the sake of contradiction,
assume (S1, S») is S U B-consistent (and each of S; is S U B-consistent).

Suppose both S; is 7’ U B-consistent. From the shape of «, without loss of generality, we may assume that 7' U B &
{S1C R/, S, C Q’}. From condition (ii), we obtain SUB = {S1C R’, Sy C Q’}, which contradicts (a).

Suppose one of S; is 7’ U B-inconsistent. Then by (G) either TUBES;ER' MQ ' or TUBES;CR~nQ’'~, or
D is T’ U B-inconsistent for D =3S; or D = 3S; . In the latter case, we obtain contradiction as in the case (D1, D3) is
T’ U B-inconsistent. In the former case, from condition (ii), it follows SUBE=S;ER' MQ  or SUBES,C R~ nQ’'~,
which contradicts (a). Finally, we conclude (S, S3) is S U B-inconsistent.

Assume condition (N) is satisfied, and & = C' C —B’ (the case o« = B’ C B’ is trivial), hence B j= C C —=B’. Let (D1, D2) be
a pair of S-consistent, 7 U B-consistent and 7’ U B-inconsistent concepts. For the sake of contradiction, assume (D1, D5) is
S U B-consistent (and each of D; is S U B-consistent).

Suppose both D; is 7’ U B-consistent. From the shape of «, without loss of generality, we may assume that 7 U B |=
{D1 C B, D, E(’}. From condition (ii), it follows SU B = {D1 E B/, D, £ C’}: contradiction with (c).

Suppose one of D; is 7’ U B-inconsistent. By (F), consider 7 U B |= D; = B’ i1 C’. From condition (ii), it follows S U
B |=D; C B’ n (’: contradiction with (c). Now, consider the case there exist n > 1 and distinct roles S/, ..., S, such that
Di~7uB S}, EIS}’ ~TUB S;'+1 and 7 U B =3S;,” € B’'n (. Inductively using condition (iv), we obtain roles Sq,..., Sp—1
over ¥ and S, such that D; ~sug S1, 387 ~suB Sjt1, and SU B [=3S; C B'n (. Then (d) implies that 35, (or D;
if n=1) is S U B-inconsistent, which contradicts the assumption D; is S U B-consistent. Finally, we conclude that D; is
S U B-inconsistent, hence (D1, D) is S U B-inconsistent.

Let (S1, S2) be a pair of S-consistent, 7 U B-consistent and 7’ U B-inconsistent roles. From the shape of «, it follows D
is 7" U B-inconsistent, for D =3S; or D =3S; and i € {1, 2}. It can be shown D is S U B-inconsistent as above.

(=) Suppose pair (R1, Ry) is target contradictable in S and M by a target axiom «. If (R1, Ry) is B-inconsistent, then
there exist R, Q € {R1, Rz} and R’ over I" such that B|={RC R’, Q = =R’} (hence, (L) is satisfied), or there exist B, C in
{3R1,3Ry} or in {3Rq,3R,} and B’ over I such that B={BC B, C = =B’} (hence, (N) is satisfied).

Assume (R1, Ry) is B-consistent. Then « is a non-trivial axiom, 7 = {«} is a parsimonious UCQ-representation, and
(R1, Ry) is T U B-inconsistent.

Suppose « is a role disjointness axiom S; C —Sy. Then it follows there exist R, Q € {R1,R2} and S, T € {Sq, S} such
that B=E{RC S, Q C T}. So we set R’ equal to S and Q' equal to T. We prove (a) and (b) are satisfied. For (a), assume
an S U B-consistent pair of roles Sy, Sy over ¥ such that SUB = {S1 E R/, S, C Q’}. It follows there exist S11, Sy2 over &
such that S ={S1C S11, S2 = Sy} and Bl={S11 T R/, Sy T Q’}. Next, (S11, S22) is 7 U B-inconsistent, and since 7 is a
parsimonious UCQ-representation, it follows (S11, S22) is S U B-inconsistent, which contradicts (S1, S3) is S U B-consistent.
Hence, it cannot be the case SUB = {S1 C R/, S C Q’}. For (b), assume an S U B-consistent concept D over ¥ such that
D~gsup S and SUBE=SC R'NQ’.If S is over X, then as above, we obtain a contradiction with D being SU B-consistent. If
S is over T, it follows S = R’ = Q’, and there exists a concept D1 over ¥ such that S =D C Dy and B = D1 C 3S. As above,
(D1, Dy) is T U B-inconsistent, and since 7 is a parsimonious UCQ-representation, it follows (D1, D1) is S U B-inconsistent,
which contradicts D is S U B-consistent. Hence, it cannot be the case SUB = SC R'mQ’. In a similar way we obtain a
contradiction if assume SUB =S T R’ Q’~. Thus, (L) is satisfied.

Suppose « is a role inclusion assertion S1 C S;. Then it follows there exist R, Q € {R1, Rz} such that B = {R C =S,
Q C S1}. So we set R’ equal to S, the proof Q C R’ is representable by S; C R’ is similar to the proof of = of Proposi-
tion D.2. Thus, (M) is satisfied.

Suppose « is a concept disjointness axiom Dy C —D,. Then it follows there exist B, C in {3R1, 3Rz} or {3R7,3R;} and
D, E € {D1, D3} such that B={BE D, CC E}. So we set B’ equal to D and C’ equal to E. We can prove (c) and (d) are
satisfied by analogy with the proof of (a) and (b). Thus, (N) is satisfied.
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Suppose « is a concept inclusion assertion D1 C D5. Then it follows there exist B, C in {3R1, 3Rz} or {3R], 3R, } such
that B = {BC —D,, CC Dq}. So we set B’ equal to D,, the proof C C B’ is representable by D; C B’ is similar to the proof
of = of Proposition D.1. Thus, (0) is satisfied. O

Proposition D.4. For concepts By, B, over X, (B1, By) is target contradictable in S and M if either for {B, C} € {B1, By} there
exists B’ over I such that

(P) B =B C B/, and either C = =B’ € B3, or there exists C' over I' such that B = C C C’ and

(c) for each S U B-consistent pair of concepts D1, D over X it is not the case SUB ={D{ E B’, D, C C'};

(d) for each S U B-consistent concept D over ¥ and each role S such that D ~»syp S it is not the case SUB =35~ C B 'n(/,
(Q) or B=B C =B’ and inclusion C C B’ is representable in S and M;

or By =3R or By =3R forarole R, and
(R) (R, R) is target contradictable in S and M.

Then (B1, By) is target contradictable by either B’ © B’ or C' © =B’ in (P), by axiom o, where C C B’ is representable by « in (Q),
and by axiom « such that (R, R) is target contradictable by « in (R).

Proof. The proof is similar to the proof of Proposition D.3. O
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