
Formalizing MongoDB Queries

Elena Botoeva, Diego Calvanese, Benjamin Cogrel, and Guohui Xiao

Free University of Bozen-Bolzano, Italy
lastname@inf.unibz.it

Abstract. In this paper, we report on our ongoing work in which we formal-
ize MongoDB, a widely adopted document database system managing complex
(tree structured) values represented in a JSON-based data model, equipped with a
powerful query mechanism. We study the expressiveness of the MongoDB query
language, showing its equivalence with nested relational algebra, and we investi-
gate the computational complexity of significant fragments of it.

1 Introduction

In the past decade numerous database (DB) architectures and data models have been
proposed as attempts to better address the varying demands of modern data-intensive
applications. Many of these new systems do not rely on the relational model but instead
adopt a semi-structured data format, and alternative query mechanisms, which combine
an increased flexibility in data handling, with a higher efficiency (at least for the most
common operations). These systems are generally categorized under the term NoSQL
(which stands for “not only SQL”) [6,13].

A popular design among these non-relational systems consists in organizing data in
collections of semi-structured, tree-shaped documents in the JavaScript Object Notation
(JSON) format. Such documents can be seen as complex values [9,1,18,8], in particular
when they contain nested arrays. As an example, consider the document in Figure 1,
containing personal information about Kristen Nygaard (e.g., name and birth-date) to-
gether with information about the awards he received, stored in an array.

Unsurprisingly, many similarities can be observed between non-relational lan-
guages for querying JSON collections having rich capabilities (see, e.g., [2,14,16]),
and well-known query languages for complex values, such as nested relational algebra

{"_id": 4,
"awards": [
{ "award": "Rosing Prize", "year": 1999, "by": "Norwegian Data Association" },
{ "award": "Turing Award", "year": 2001, "by": "ACM" },
{ "award": "IEEE John von Neumann Medal", "year": 2001, "by": "IEEE" }],

"birth": "1926-08-27",
"contribs": ["OOP", "Simula"],
"death": "2002-08-10",
"name": { "first": "Kristen", "last": "Nygaard" }
}

Fig. 1. A sample MongoDB document

VALUE ::= LITERAL | OBJECT | ARRAY
OBJECT ::= {{ LIST<KEY : VALUE> }}
ARRAY ::= [LIST<VALUE>]

LIST<T> ::= ε | LIST+ <T>
LIST+ <T> ::= T | T , LIST+ <T>

Fig. 2. Syntax of JSON objects. We use double curly brackets to distinguish objects from sets

(NRA) [15,17], monad algebra [5,12] and Core XQuery [12]. However, the formal se-
mantics and the computational properties of these query languages are still largely not
understood and are being actively investigated [4,10].

In this work, we conduct the first major study into the formal foundations and
properties of the data model and query language of MongoDB, a widely adopted dis-
tributed JSON-based document database. MongoDB provides rich querying capabilities
by means of the aggregation framework1. In this framework, a query is a multi-stage
pipeline, where each stage defines a transformation, using a MongoDB-specific opera-
tor, applied to the set of documents produced by the previous stage.

Our first contribution is a formalization of the MongoDB data model and of the frag-
ment of the aggregation framework query language that includes the match, unwind,
project, group, and lookup operators, and which we call MQuery. Each of these oper-
ators roughly corresponds to an operator of NRA: match corresponds to select, project
to project, lookup to left join, group to nest, and unwind to unnest.

Our second contribution is a characterization of the expressive power of MQuery
obtained by comparing it with NRA. We devise translations in both directions between
the two languages showing that they are equivalent in expressive power.

Finally, we carry out an investigation of the computational complexity of MMUPGL

and of various fragments of it. Interestingly, since our translations between MQuery
and NRA are compact (i.e., polynomial), they allow us also to carry over complexity
results between MQuery and NRA.

We provide here only an overview, and refer to the full version for more details [3].

2 MQuery

Objects in the JSON format are defined inductively as consisting of key-value pairs,
where a key is a string, and a value can be a literal, an object, or an array of values, con-
structed inductively according to the grammar in Figure 2 (where terminals are written

1
https://docs.mongodb.com/core/aggregation-pipeline/

{{}}

4 [] 1926-08-27 [] 2002-08-10 {{}}

Kristen Nygaard{{}} {{}} {{}} OOP Simula

Rosing
Prize

Norwegian
Data

Association

1999 Turing
Award

ACM 2001 IEEE John
von Neumann

Medal

IEEE 2001

id name
awards birth contribs death

first last0 1 2 0 1

award by year award by year award by year

Fig. 3. The tree representation of the MongoDB document in Figure 1

https://docs.mongodb.com/core/aggregation-pipeline/

ϕ ::= p = v | ∃p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ
d ::= v | p | [d, . . . , d] | β | κ
β ::= p = p | p = v | v = v | ∃p | d ∨ d | d ∧ d | ¬d
κ ::= (d?d:d)

P ::= p | p/d | p, P | p/d, P
G,A ::= p/p′ | p/p′, G

s ::= µϕ | ωn
p | ρniP | γG:A | λp1=C.p2

p

MQuery ::= C . s . · · · . s

Fig. 4. Algebra for MQuery. Here, p denotes a path, v a value, and C a collection name

in black, and non-terminals in blue). The set of key-value pairs constituting a JSON
object may not contain the same key twice. A MongoDB database stores collections of
documents, where each collection has a name, and consists of a finite set of documents.
Each document is a JSON object (not nested within any other object) with a special key
‘ id’, which is used to identify the document. Figure 1 shows a MongoDB document
in which, apart from id, the keys are birth, name, awards, etc. Intuitively, a collec-
tion corresponds to a table in a (nested) relational database, and a document to a row
in a table. We formalize documents as finite unordered, unranked, node-labeled, and
edge-labeled trees, and collections as forests. The tree corresponding to the document
in Figure 1 is depicted in Figure 3.

MongoDB is equipped with a powerful query mechanism provided by the aggre-
gation framework. As a first contribution, we formalize the core aspects of such query
language. We call our language MQuery, and consider also different fragments of it.
An MQuery is a sequence of stages s, also called a pipeline, applied to a collection
name C, where each of the stages roughly corresponds to a relational algebra operation,
and transforms a forest into another forest. Here we are not concerned with syntactic
aspects of MQuery, and instead propose for it an algebra, shown in Figure 4.

In an MQuery, paths, which are (possibly empty) concatenations of keys, are used
to access actual values in a tree, similarly to how attributes are used in relational algebra.
We use ε to denote the empty path. MQuery allows for five types of stages:
– match µϕ, selecting trees according to the criterion ϕ, which is a Boolean combina-

tion of atomic conditions that express either the equality of a path p to a value v, or
the existence of a path p.

– unwind ωp and ω+
p , which flatten an array reached through a path p in the input tree,

and output a tree for each element of the array; the latter operator preserves a tree
even when the array does not exist or is empty.

– project ρP and ρidP , which modify trees by projecting away paths, renaming paths, or
introducing new paths; the latter version projects away id, which otherwise is kept
by default. Here P is a sequence of elements of the form p or q/d, where p is a path
to be kept, and q is a new path whose value is defined by d. Such a value definition
d can provide for q a constant v, the value reached through a path p (i.e., renaming
path p to q), a new array defined through its values, the value of a Boolean expression
β, or a value computed through a conditional expression κ. Note that, in a Boolean
value definition β, one can also compare the values of two paths, while in a criterion
ϕ one can only compare the value of a path to a constant value. Also note that each
value definition can be evaluated to a Boolean value.

– group γG:A, which groups trees according to a grouping condition G and collects
values of interest according to an aggregation condition A. Both G and A are (pos-

sibly empty) sequences of elements of the form p/p′, where p′ is a path in the input
documents, and p a path in the output document. In these sequences, if p coincides
with p′, then we simply write p instead of p/p. Each group in the output will have an
id whose value is given by the values of p′ in G for that group.

– lookup λp1=C.p2p , which joins input trees with trees in an external collection C, using
a local path p1 and a path p2 in C to express the join condition, and uses a path p to
store the matching trees in an array.

We consider also various fragments of MQuery, and we denote each fragment by
Mα, where α consists of the initials of the stages that can be used in queries in the
fragment. Hence, MMUPGL denotes MQuery itself, e.g., MMUPG the fragment of MMUPGL

that does not use lookup, and MMUP the fragment that additionally does not use group.

3 Results

We study the expressiveness and the computational complexity of MQuery.
First, we show that for MongoDB instances of a certain regular structure, MQuery

is essentially equivalent to nested relational algebra (NRA). Regularity of MongoDB
instances allows for defining a nested relational view of MongoDB documents, which
serves for establishing the correctness of the translations between MQuery and NRA,
and hence the equivalence between MMUPGL and NRA. We also consider the MMUPG

fragment, where we rule out the lookup operator, which allows for joining a given doc-
ument collection with external ones, and establish that already MMUPG is equivalent to
NRA over a single relation, and hence is capable of expressing arbitrary joins (within
one collection), contrary to what is believed in the community of MongoDB practition-
ers and users.

Second, we obtain the exact complexity of MMUPGL and of some of its fragments:
– What we consider the minimal fragment, namely MM, which allows only for match,

is LOGSPACE-complete in combined complexity.
– Projection and grouping allow one to create exponentially large objects, but by rep-

resenting intermediate results compactly as DAGs, one can still evaluate MMPGL

queries in PTIME. Specifically, MMP is PTIME-hard in query complexity and MMPGL

is in PTIME in combined complexity.
– For MMU, the use of unwind causes loss of tractability in combined complexity,

specifically it leads to NP-completeness, but the language remains LOGSPACE-
complete in query complexity.

– Further adding project in MMUP, or lookup in MMUL, leads again to NP-harness even
in query complexity, although MMUPL stays NP-complete in combined complexity.

– In the presence of unwind, grouping provides another source of complexity, since it
allows one to create doubly-exponentially large objects; indeed MMUG is PSPACE-
hard in query complexity.

– The full language MMUPGL and also the MMUPG fragment are complete for
TA[2n

O(1)

, nO(1)] (i.e., exponential time with a polynomial number of alterna-
tions [7,11]) in combined complexity, and in AC0 in data complexity.

The latter result provides also a tight TA[2n
O(1)

, nO(1)] bound for the combined com-
plexity of Boolean query evaluation in NRA, whose exact complexity was open [12].

Acknowledgements. This research has been partially supported by the project
“Ontology-based Data Access for NoSQL Databases” (OBDAM), funded through the
2016 call issued by the Research Committee of the Free University of Bozen-Bolzano.

References

1. S. Abiteboul and C. Beeri. The power of languages for the manipulation of complex values.
Very Large Database J., 4(4):727–794, 1995.

2. K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C. Kanne, F. Ozcan, and
E. J. Shekita. Jaql: A scripting language for large scale semistructured data analysis. Proc.
of the VLDB Endowment, 4(12):1272–1283, 2011.

3. E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao. Expressivity and complexity of MongoDB
(Extended Version). CoRR Technical Report arXiv:1603.09291, arXiv.org e-Print archive,
2017. Available at http://arxiv.org/abs/1603.09291.

4. P. Bourhis, J. L. Reutter, F. Suárez, and D. Vrgoč. JSON: Data model, query languages and
schema specification. In Proc. of the 36th Symp. on Principles of Database Systems (PODS),
pages 123–135, 2017.

5. P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming with complex
objects and collection types. Theoretical Computer Science, 149(1):3–48, 1995.

6. R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4):12–27, May 2011.
7. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM,

28(1):114–133, 1981.
8. E. Dantsin and A. Voronkov. Complexity of query answering in logic databases with complex

values. In Proc. of the 4th Int. Symp. on Logical Foundations of Computer Science (LFCS),
pages 56–66, 1997.

9. S. Grumbach and V. Vianu. Tractable query languages for complex object databases. In
Proc. of the 10th Symp. on Principles of Database Systems (PODS), 1991.

10. J. Hidders, J. Paredaens, and J. Van den Bussche. J-Logic: Logical foundations for JSON
querying. In Proc. of the 36th Symp. on Principles of Database Systems (PODS), pages
137–149, 2017.

11. D. S. Johnson. A catalog of complexity classes. In Handbook of Theoretical Computer
Science, volume A, chapter 2. Elsevier Science Publishers, 1990.

12. C. Koch. On the complexity of nonrecursive XQuery and functional query languages on
complex values. ACM Trans. on Database Systems, 31(4):1215–1256, 2006.

13. N. Leavitt. Will NoSQL databases live up to their promise? Computer, 43(2):12–14, Feb.
2010.

14. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: a not-so-foreign
language for data processing. In Proc. of the ACM SIGMOD Int. Conf. on Management of
Data, pages 1099–1110, 2008.

15. S. J. Thomas and P. C. Fischer. Nested relational structures. Advances in Computing Re-
search, 3:269–307, 1986.

16. A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy. Hive: A warehousing solution over a map-reduce framework. Proc. of the VLDB
Endowment, 2(2):1626–1629, 2009.

17. J. Van den Bussche. Simulation of the nested relational algebra by the flat relational algebra,
with an application to the complexity of evaluating powerset algebra expressions. Theoretical
Computer Science, 254(1):363–377, 2001.

18. J. Van den Bussche and J. Paredaens. The expressive power of complex values in object-
based data models. Information and Computation, 120(2):220–236, 1995.

http://arxiv.org/abs/1603.09291

	Formalizing MongoDB Queries

