
Expressivity and Complexity of MongoDB Queries
Elena Botoeva
Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
botoeva@inf.unibz.it

Diego Calvanese
Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
calvanese@inf.unibz.it

Benjamin Cogrel
Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
cogrel@inf.unibz.it

Guohui Xiao1

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
xiao@inf.unibz.it

Abstract
In this paper, we consider MongoDB, a widely adopted but not formally understood database
system managing JSON documents and equipped with a powerful query mechanism, called the
aggregation framework. We provide a clean formal abstraction of this query language, which we
call MQuery. We study the expressivity of MQuery, showing the equivalence of its well-typed
fragment with nested relational algebra. We further investigate the computational complexity of
significant fragments of it, obtaining several (tight) bounds in combined complexity, which range
from LogSpace to alternating exponential-time with a polynomial number of alternations.

2012 ACM Subject Classification Information systems→ Semi-structured data, Theory of com-
putation → Data modeling, Theory of computation → Database query languages (principles)

Keywords and phrases MongoDB, NoSQL, aggregation framework, expressivity

Digital Object Identifier 10.4230/LIPIcs.ICDT.2018.9

Related Version A full version of this paper with more details and selected proofs is available
as a technical report [3].

Acknowledgements We thank Christoph Koch, Dan Suciu, Henrik Ingo, and Martin Rezk for
helpful discussions. This research has been partially supported by the project “Ontology-based
Data Access for NoSQL Databases” (OBDAM), funded through the 2016 call issued by the
Research Committee of the Free University of Bozen-Bolzano.

1 Introduction

JavaScript Object Notation (JSON) is currently adopted extensively as the de-facto standard
format for representing nested data. JSON organizes data as semi-structured tree-shaped
documents, with a minimalistic set of node types, and as such is commonly considered
a lightweight alternative to XML. JSON documents can also be seen as complex values
[11, 1, 9, 7], in particular due to the presence of nested arrays. Consider, e.g., the document

1 Corresponding author

© Elena Botoeva, Diego Calvanese, Benjamin Cogrel, and Guohui Xiao;
licensed under Creative Commons License CC-BY

21st International Conference on Database Theory (ICDT 2018).
Editors: Benny Kimelfeld and Yael Amsterdamer; Article No. 9; pp. 9:1–9:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:botoeva@inf.unibz.it
mailto:calvanese@inf.unibz.it
mailto:cogrel@inf.unibz.it
mailto:xiao@inf.unibz.it
http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Expressivity and Complexity of MongoDB Queries

Listing 1 A sample JSON document in the bios collection.
{ "_id": 4,

" awards ": [
{ " award ": " Rosing Prize ", "year": 1999 , "by": " Norwegian Data Association " },
{ " award ": " Turing Award ", "year": 2001 , "by": "ACM" },
{ " award ": "IEEE John von Neumann Medal ", "year": 2001 , "by": "IEEE" }],

" birth ": "1926 -08 -27",
" contribs ": ["OOP", " Simula "],
" death ": "2002 -08 -10",
"name": { " first ": " Kristen ", "last": " Nygaard " } }

in Listing 1, containing personal information (such as name and birth-date) about Kristen
Nygaard, and information about the awards he received, the latter stored inside an array.

Following its massive adoption by practitioners, recently JSON has also received attention
in the database theory community. A powerful (Turing-complete, in its full generality)
Datalog-like query language for JSON named JLogic is introduced in [12], where the expressive
power and complexity of the full language and of significant fragments are studied. In [4],
both JSON and its main schema language JSON Schema2 are formalized, and their expressive
power and the computational complexity of basic computational tasks, such as satisfiability
and evaluation of expressions, are studied. Although some of the latter results apply to
the simple find query language3 of the widespread JSON-based document database system
MongoDB, still little is known about the precise formal properties of the query languages
for JSON with rich capabilities popular among practitioners, such as JSONiq [10] and
SQL++ [16].

Differently from XML, where XQuery is the official standard query language, embraced
also by the developer community, so far there is no standard query language for JSON.
However, in terms of adoption, the MongoDB aggregation framework4 is currently the most
prominent language providing rich querying capabilities over collections of JSON documents,
and hence has become the de-facto standard language for JSON. This language is modeled
on the flexible notion of a data processing pipeline, where a query consists of multiple stages,
each defining a transformation using a specific operator, applied to the set of documents
produced by the previous stage. As such, the language is very expressive and rich in features,
but it has been developed in an ad-hoc manner, resulting in some counter-intuitive behavior.

Here, we propose a first study on the formal foundations and computational properties
of the MongoDB aggregation framework. Since JSON documents can be seen as complex
values and are closely related to XML documents, we expect the aggregation framework to
have many similarities with well-known query languages for complex values, such as monad
algebra [5, 15], nested relational algebra (NRA) [19, 8] and Core XQuery [15].

Our first contribution is a formalization of the JSON data model and of the aggregation
framework query language. We aim at achieving a good balance between the contrasting
requirements of capturing all aspects of MongoDB, and of keeping the formalization sufficiently
simple and streamlined so as to allow for a formal study of the language properties. To do
so, we deliberately abstract away some low-level features of MongoDB, which appear to be
motivated by implementation aspects and possibly by ad-hoc choices, and we make some
simplifying assumptions, commonly considered in database theory. Specifically, we adopt set
semantics (as opposed to bag or list semantics), and we abstract away from order within

2 http://json-schema.org/
3 https://docs.mongodb.com/manual/crud/
4 https://docs.mongodb.com/manual/core/aggregation-pipeline/

http://json-schema.org/
https://docs.mongodb.com/manual/crud/
https://docs.mongodb.com/manual/core/aggregation-pipeline/

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao 9:3

documents. Our formal language, which we call MQuery, includes the match, unwind, project,
group, and lookup operators, roughly corresponding to the NRA operators select, unnest,
project, nest, and left join, respectively. In our investigation, we consider various fragments
of MQuery, which we denote byMα, where α consists of the initials of the stages allowed
in the fragment. As a useful side-effect of our formalization effort, we point out different
“features” exhibited by MongoDB’s query language that are somewhat counter-intuitive, and
that might need to be reconsidered by the MongoDB developers.

Our second contribution is a characterization of the expressive power of MQuery obtained
by comparing it with NRA. Given the regular structure of nested relations, the comparison
requires considering JSON documents that are suitably well-typed, for which we define a
relational view, and restricting the attention to well-typed MQuery, given that an arbitrary
MQuery might produce non well-typed documents. We devise translations in both directions
between well-typed MQuery and NRA, showing that the two languages are equivalent in
expressive power. We also consider the Mmupg fragment, where we rule out the lookup
operator, which allows for joining a given document collection with external ones. Actually,
we establish that alreadyMmupg is equivalent to NRA over a single relation, and hence is
capable of expressing arbitrary joins (within one collection), contrary to what is believed in
the community of MongoDB practitioners. Interestingly, all our translations are compact
(i.e., polynomial), hence complexity results between MQuery and NRA carry over.

Finally, we carry out an investigation of the computational complexity ofMmupgl and its
fragments. In particular, we establish that what we consider the minimal fragment, which
allows only for match, is LogSpace-complete (in combined complexity). Projection and
grouping allow one to create exponentially large objects, but by representing intermediate
results compactly as DAGs, one can still evaluate Mmpgl queries in PTime. The use of
unwind alone causes loss of tractability in combined complexity, specifically it leads to
NP-completeness, but remains LogSpace-complete in query complexity. Adding also project
or lookup leads again to intractability even in query complexity, although Mmupl stays
NP-complete in combined complexity. In the presence of unwind, grouping provides another
source of complexity, since it allows one to create doubly-exponentially large objects; indeed
we show PSpace-hardness ofMmug. Finally, we establish that the full language and also the
Mmupg fragment are TA[2nO(1)

, nO(1)]-complete (i.e., complete for exponential time with a
polynomial number of alternations under LogSpace reductions) in combined complexity. As
a byproduct of this study, we also establish that the TA[2nO(1)

, nO(1)] lower bound previously
known for the combined complexity of Boolean query evaluation in NRA is actually tight
(the best known upper bound was ExpSpace [15]).

2 Preliminaries

We recap the basics of nested relational algebra (NRA) [13, 8], mainly to fix the notation.
Let A be a countably infinite set of attribute names and relation schema names. A

relation schema has the form R(S), where R ∈ A is a relation schema name and S is a finite
set of attributes, each of which is an atomic attribute (i.e., an attribute name in A) or a
schema of a sub-relation. A relation schema can also be obtained through an NRA operation
(see below). We use the function att to retrieve the attributes from a relation schema name,
i.e., att(R) = S. Let ∆ be the domain of all atomic attributes in A. An instance R of a
relation schema R(S) is a finite set of tuples over R(S). A tuple t over R(S) is a finite set
{a1:v1, . . . , an:vn} such that if ai is an atomic attribute, then vi ∈ ∆, and if ai is a relation
schema, then vi is an instance of ai. We may refer to relation schemas by their name only.

ICDT 2018

9:4 Expressivity and Complexity of MongoDB Queries

e ::= a | c | f | (f? e: e) | subrel(t, . . . , t)
f ::= true | a = a | a = c | ¬f | f ∧ f | f ∨ f

t ::= {b:e, . . . , b:e}

Figure 1 Syntax of expressions e used in extended projection. Here, a ∈ att(R), c is a constant,
f a Boolean expression, b a fresh attribute name, t a tuple definition, and subrel(t1, . . . , tn) a relation
definition, which constructs a relation from the tuples t1, . . . , tn of the same schema.

Value ::= Literal | Object | Array
Object ::= {{ List<Key : Value> }}
Array ::= [List<Value>]

List<T> ::= ε | List+<T>
List+<T> ::= T | T , List+<T>

Figure 2 Syntax of JSON objects. We use double curly brackets to distinguish objects from sets.

A filter ψ over a set A ⊆ A is a Boolean formula constructed from atoms of the form
(a = v) or (a = a′), where {a, a′} ⊆ A, and v is an atomic value or a relation. Let R and R′
be relation schemas. We use the following operators:
(1) set union R ∪R′ and set difference R \R′, for att(R) = att(R′);
(2) cross-product R × R′, resulting in a relation schema with attributes {rel1.a | a ∈

att(R)} ∪ {rel2.a | a ∈ att(R′)};
(3) selection σψ(R), where ψ is a filter over att(R);
(4) projection πP (R), for P ⊆ att(R);
(5) extended projection πP (R), where P may also contain elements of the form b/e, for b a

fresh attribute name, and e an expression constructed according to the grammar shown
in Figure 1. Notice that such an expression is computable in AC0 in data complexity;

(6) nest ν{a1,...,an}→b(R), resulting in a schema with attributes (att(R) \ {a1, . . . , an}) ∪
{b(a1, . . . , an)}; and

(7) unnest χa(R), resulting in a schema with attributes (att(R) \ {a}) ∪ att(a).
For more details on (5)–(7) (including the semantics of extended projection), we refer to [3].
Given an NRA query Q and a (relational) database D, the result of evaluating Q over D is
denoted by ansra(Q,D).

3 JSON Documents

In this section, we propose a formalization of the syntax and the semantics of JSON documents.
With respect to MongoDB, we abstract away the order of key-value pairs within a document.

A MongoDB database stores collections of documents, where a collection corresponds to
a table in a (nested) relational database, and a document to a row in a table. We define the
syntax of documents. Literals are atomic values, such as strings, numbers, and Booleans. A
JSON object is a finite set of key-value pairs, where a key is a string and a value can be a
literal, an object, or an array of values, constructed inductively according to the grammar
in Figure 2 (where the terminals are ‘{{’, ‘}}’, ‘[’, ‘]’, ‘:’, and ‘,’). We require that the set
of key-value pairs constituting a JSON object does not contain the same key twice. A
(MongoDB) document is a JSON object not nested within any other object, with a special
key ‘_id’, used to identify the document. Listing 1 shows a document with keys _id, awards,
birth, etc. Given a collection name C, a (MongoDB) collection for C is a finite set FC of
documents, each identified by its value of _id, i.e., each value of _id is unique in FC . Given
a set C of collection names, a MongoDB database instance D (over C) is a set of collections,
one for each name C ∈ C. We write D.C to denote the collection for name C.

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao 9:5

4
n1

1926-08-27
n3

[]
n4

2002-08-10
n5

Kristen
n7

Nygaard
n8

OOP
n12

Simula
n13

Rosing
Prize
n14

Norwegian
Data

Association
n15

1999
n16

Turing
Award
n17

ACM
n18

2001
n19

IEEE John
von Neumann

Medal
n20

IEEE
n21

2001
n22

[]n2 {{}}n6

{{}}n9 {{}}n10 {{}}n11

{{}}
n0

_id nameawards birth contribs death

first last0 1 2 0 1

award by year award by year award by year

Figure 3 The tree tKN corresponding to the JSON document in Listing 1.

We formalize JSON objects as finite unordered, unranked, node-labeled, and edge-labeled
trees (see Figure 3 for the tree tKN corresponding to the document in Listing 1, where we
have additionally labeled nodes with ni, to refer to them later). We assume three disjoint
sets of labels: the sets K of keys and I of indexes (non-negative integers), used as edge-labels,
and the set V of literals, containing the special elements null, true, and false, and used
as node labels. A tree is a tuple (N,E,Ln, Le), where N is a set of nodes, E is the edge
relation, Ln : N → V ∪

{
‘{{}}’, ‘[]’

}
is a node labeling function, and Le : E → K ∪ I is an

edge labeling function, such that
(i) (N,E) forms a tree,
(ii) a node labeled by a literal must be a leaf,
(iii) all outgoing edges of a node labeled by ‘{{}}’ must be labeled by keys, and
(iv) all outgoing edges of a node labeled by ‘[]’ must be labeled by distinct indexes.
The type of a node x in a tree t, denoted type(x, t), is defined as literal if Ln(x) ∈ V , object
if Ln(x) = ‘{{}}’, and array if Ln(x) = ‘[]’. root(t) denotes the root of t. A forest is a set
of trees.

We define inductively the value represented by a node x in a tree t, denoted value(x, t):
(i) value(x, t) = Ln(x), if x is a leaf in t;
(ii) let x1, . . . , xm, be all children of x with Le(x, xi) = ki. Then value(x, t) is
{{k1:value(x1, t), . . . , km:value(xm, t)}} if type(x, t) = object, and
[value(x1, t), . . . , value(xm, t)], if type(x, t) = array.

The JSON value represented by t is then value(root(t), t). Conversely, the tree corresponding
to a value u, denoted tree(u), is defined as (N,E,Ln, Le), where N is the set of all xv such
that v is an object, array, or literal value appearing in u, and for xv ∈ N :
(i) if v is a literal, then Ln(xv) = v and xv is a leaf;
(ii) if v = {{k1:v1, . . . , km:vm}} for m ≥ 0, then Ln(xv) = ‘{{}}’, and xv has m children

xv1 , . . . , xvm with Le(xv, xvi) = ki;
(iii) if v = [v1, . . . , vm] for m ≥ 0, then Ln(xv) = ‘[]’, and xv has m children xv1 , . . . , xvm

with Le(xv, xvi) = i− 1.
In the following, when convenient, we blur the distinction between JSON values and the
corresponding trees.

4 The MQuery Language

MongoDB is equipped with an expressive query mechanism provided by the aggregation
framework (we refer to [3] for its formal syntax, but we provide in App. A some examples to
illustrate its main features). Our first contribution is a formalization of the core aspects of this
query language, where we use set (as opposed to bag and list) semantics, and we deliberately
abstract away some low-level features that either are not relevant for understanding the

ICDT 2018

9:6 Expressivity and Complexity of MongoDB Queries

ϕ ::= true | p = v | ∃p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ
d ::= v | p | [d, . . . , d] | β | (β? d: d)
β ::= true | p = p | p = v | ∃p | ¬β | β ∨ β | β ∧ β
s ::= µϕ | ωp | ρP | γG :A | λp=C.p

p

P ::= p | p/d | p, P | p/d, P
G ::= p/p | p/p,G
A ::= p/p | p/p,A
MQuery ::= C . s . · · · . s

Figure 4 The MQuery language. Here, p denotes a path, v a value, C a collection name, ϕ a
criterion, d a value definition, β a Boolean value definition, s a stage, P a list for project, G a list
for grouping, and A a list for aggregation.

expressive power and computational properties of the language, or appear ad-hoc and possibly
are remnants of experimental development. We call the resulting language MQuery.

An MQuery is a sequence of stages, also called a pipeline, applied to a collection name C,
where each stage transforms a forest into another forest. The grammar of MQuery is given in
Figure 4. In an MQuery, paths, which are (possibly empty) concatenations of keys, are used
to access actual values in a tree, similarly to how attributes are used in relational algebra.
We use ε to denote the empty path. For two paths p and p′, we say that p′ is a (strict) prefix
of p, if p = p′.p′′, for some (non-empty) path p′′. MQuery allows for five types of stages5:

match µϕ, which selects trees according to criterion ϕ. Such criterion is a Boolean
combination of atomic conditions p = v, expressing the equality of a path p to a
value v, or ∃p, expressing the existence of a path p. E.g., for ϕ1 = (_id=4), ϕ2 =
(awards.award="Turing Award"), and ϕ3 = (name = {{first: "Kristen"}}), µϕ1 and µϕ2 se-
lect tKN, but µϕ3 does not. (See App. A.1 for details.)
unwind ωp, which flattens an array reached through a path p in the input tree, and outputs
a tree for each element of the array. E.g., ωawards applied to tKN produces three trees,
which coincide on all key-value pairs, except for the awards key, whose values are nested
objects such as, e.g., {{award: "Turing Award", year: 2001, by: "ACM"}}. (See App. A.2.)
project ρP , which modifies trees by projecting away paths, renaming paths, or introducing
new paths. Here P is a sequence of elements of the form p or q/d, where p is a path to
be kept, q is a new path whose value is defined by d, and among all such paths p and q,
there is no pair p, p′ where p is a prefix of p′. A value definition d can provide for q:

(i) a constant v,
(ii) the value reached through a path p (i.e., renaming path p to q),
(iii) a new array defined through its values,
(iv) the value of a Boolean expression β, or
(v) a value computed through a conditional expression (β? d1: d2).
E.g., ρbool/(birth=death), cond/((∃awards)? contribs: _id), newArray/[0,1] applied to tKN produces
{{bool: false, cond: ["OOP", "Simula"], newArray: [0,1]}}. (See App. A.3.)
group γG :A, which groups trees according to a grouping condition G and aggregates
values of interest according to A. Both G and A are (possibly empty) sequences of
elements of the form p/p′, where p′ is a path in the input trees, and p a path in the
output trees. Each different combination ~v of values in the input trees for the p′s in G
determines a group. For each such group there is a tree in the output with an _id whose
value is constructed from ~v and the ps in G. The remaining keys in each output tree
have as value an array constructed using the aggregation expression A. Consider, e.g.,

5 We suggest readers unfamiliar with MongoDB to read the following paragraphs in parallel to the
respective subsections in App. A, which contain additional examples and the actual syntax of MongoDB.

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao 9:7

as input {{a: 1, b: "x"}}, {{a: 1, b: "y"}}, and {{a: 2, b: "z"}}. Then γc/a : bs/b produces the two
groups {{_id: {{c: 1}}, bs: ["x","y"]}} and {{_id: {{c: 2}}, bs: ["z"]}}. (See App. A.4.)
lookup λp1=C.p2

p , which joins input trees with trees in an external collection C, using a
local path p1 and a path p2 in C to express the join condition, and stores the matching
trees in an array under a path p. E.g., let C consist of {{_id: 1, a: 3}} and {{_id: 2, a: 4}}.
Then λ_id=C.a

docs evaluated over tKN adds to it docs: [{{_id: 2, a: 4}}]. (See App. A.5.)
Observe that the Boolean expressions β allowed in a project stage are more expressive than
those in the criterion ϕ of a match stage, since in the former one can also compare the values
of two paths, while in the latter one can only compare the value of a path to a constant
value. We consider also various fragmentsMα of MQuery, where α consists of the initials of
the allowed stages. E.g.,Mmupgl denotes MQuery itself, whileMmupg disallows lookup.

To define the semantics of MQuery, we introduce some auxiliary notions.
First, we show how to interpret paths over trees. Specifically, a path p is interpreted as

the set of nodes reachable via p from the root, where the indexes of intermediate arrays that
might be encountered in the tree are skipped. Given a tree t = (N,E,Ln, Le), we interpret a
(possibly empty) path p, and its concatenation p.i1 . . . im with indexes i1, . . . , im, respectively
as the sets of nodes [[p]]t and [[p.i1 . . . im]]t, according to the following inductive definition
(below, q is a path, j1, . . . , jn are indexes, and k is a key): [[ε]]t = {root(t)}, and

[[q.j1 . . . jn]]t = {y ∈ N | there is x ∈ [[q.j1 . . . jn−1]]t s.t. (x, y) ∈ E and Le(x, y) = jn}
[[q.k]]t = {y ∈ N | there are j1, . . . , jn, n ≥ 0, and x ∈ [[q.j1 . . . jn]]t

s.t. (x, y) ∈ E and Le(x, y) = k}
For example, referring to the tree tKN in Figure 3, [[ε]]tKN = {n0}, [[_id]]tKN = {n1},
[[awards]]tKN = {n2}, [[awards.1]]tKN = {n10}, and [[awards.award]]tKN = {n14, n17, n20}. When
[[p]]t = ∅, we say that the path p is missing in t.

Given a tree t and a path p, when type(x, t) = ty, for each x ∈ [[p]]t, where ty ∈
{array, literal, object}, we define the type of p in t, denoted type(p, t), to be ty. Also, when
type(p, t) = array and type(x, t) = ty for each x ∈ [[p.i]]t for i ∈ I, we write type(p[], t) = ty.

Second, we define when a tree t satisfies a criterion or a Boolean value definition ϕ,
denoted t |= ϕ, as follows. It always holds that t |= true, while:
t |= (p = v), if there is x in [[p]]t or in [[p.i]]t for i ∈ I s.t. value(x, t) = v holds
t |= (∃p), if [[p]]t 6= ∅ t |= ϕ1 ∧ ϕ2, if t |= ϕ1 and t |= ϕ2

t |= ¬ϕ, if t 6|= ϕ t |= ϕ1 ∨ ϕ2, if t |= ϕ1 or t |= ϕ2

t |= (p1 = p2), if there is a value v s.t. t |= (p1 = v) ∧ (p2 = v), or t |= ¬(∃p1) ∧ ¬(∃p2)
In this definition, we employ the classical semantics for “deep” equality of non-literal
values, where we ignore duplicates and order in arrays, in line with set semantics. We
also assume that (v = null) holds iff v is null. Note that, the equality (p = v) may
hold both when v is the array reached by p and when v is an element inside this array.
E.g., tKN |= (contribs = ["OOP", "Simula"]) and tKN |= (contribs = "OOP"). Also note that
the values of several paths inside an array can come from different array elements. E.g.,
tKN |= (awards.award = "Rosing Prize") ∧ (awards.year = 2001).

Next, we define the evaluation of a value definition d in a tree t, denoted by eval(d, t), as:
d, if d ∈ V ; the value of (t |= d), if d is a Boolean value definition;

subtree(t, d), if d is a path; [eval(d1, t), . . . , eval(dm, t)], if d = [d1, . . . , dm];
eval(d′, t), if d = (c? d1: d2), where d′ = d1 when t |= c and d′ = d2 otherwise.
Finally, we informally introduce some auxiliary operators over trees (for a formal definition,

see App. B). Let t, t1, t2 be trees, F a forest, p a path, and N a set of nodes. Then:
subtree(t, p) returns the subtree of t rooted at the single node in [[p]]t when |[[p]]t| = 1.
Instead, when |[[p]]t| > 1, it returns the array of all subtrees rooted at the nodes in

ICDT 2018

9:8 Expressivity and Complexity of MongoDB Queries

Table 1 The semantics of MQuery stages.

Match F . µϕ =
{
t | t ∈ F and t |= ϕ

}
Unwind ωp(t) =

{
replace(t, subtree(t, p), subtree(t, p.i))

}
[[p.i]]t 6=∅, i∈I

if p is a first array, and ωp(t) = ∅ otherwise
F . ωp =

⋃
t∈F ωp(t)

Project ρp(t) = subtree(t,Np), where Np are all the nodes in t on a path from root(t) to a leaf via some x ∈ [[p]]t

ρq/d(t) = attach(q, eval(d, t)), unless d is a path and t 6|= ∃d, in which case ρq/d(t) returns the empty tree

F . ρP =
{⊕

p∈P ρp(t) ⊕
⊕

(q/d)∈P ρq/d(t) | t ∈ F
}

Group F . γg1/y1,..,gn/yn : a1/b1,..,am/bm ={
attach(_id,null)⊕

⊕m

i=1 attach
(
ai, array(F . µϕ∧∃bi , bi)

)
| ϕ =

∧n

j=1(¬∃yj), (F . µϕ) 6= ∅
}
∪{⊕

j∈J attach(_id.gj , tj)⊕
⊕m

i=1 attach
(
ai, array(F . µψ∧∃bi , bi)

)
| J ∈ 2{1,..,n} \ ∅,

tj ∈ forest(F, yj) for j ∈ J, ψ =
∧
j∈J((yj = tj) ∧ ∃yj) ∧

∧
j /∈J(¬∃yj), (F . µψ) 6= ∅

}
Lookup λp1=C.p2

p [F ′](t) = t⊕ attach(p, array(F ′ . µϕ, ε)), for ϕ = (p2 = subtree(t, p1)) if t |= ∃p1, and ϕ = ¬∃p2 otherwise
F . λp1=C.p2

p [F ′] =
{
λp1=C.p2
p [F ′](t) | t ∈ F

}

[[p]]t, and when [[p]]t = ∅, it returns null. E.g., subtree(tKN, name) returns {{first: "Kristen",
last: "Nygaard"}}, and subtree(tKN, awards.year) returns [1999,2001,2001].
subtree(t,N) returns the subtree (i.e., a subgraph) of t induced by the set N of nodes.
attach(p, t) constructs a new tree by attaching t (via its root) to the end of the path p.
E.g., attach(info.name,{{first: "Kristen"}}) returns {{info: {{name: {{first: "Kristen"}}}}}}.
replace(t, t1, t2) constructs a new tree by replacing in t its subtree t1 by a new tree t2.
t1 ⊕ t2 constructs a new tree resulting from merging t1 and t2 by identifying nodes
reachable via identical paths. E.g., {{name: {{first: "Kristen"}}}}⊕ {{name: {{last: "Nygaard"}}}}
returns {{name: {{first: "Kristen", last: "Nygaard"}}}}.
array(F, p) constructs a new tree that is the array of all subtree(t, p) for t ∈ F , while
forest(F, p) keeps all subtree(t, p) in a set.

Now, we are ready to define the semantics of the MQuery stages: specifically, given a
forest F and a stage s, we define the forest F . s (for a lookup stage, we also require an
additional forest F ′ as parameter), as shown in Table 1. We observe that, for all operators
except group, each tree in the input can be processed independently of the other trees, and
gives rise to zero, one, or more trees in the output. Below, we provide some explanations:

Match. We just observe that match might produce an empty output.
Unwind. We say that a path p is a first array in t if type(p, t) = array and type(p′, t) 6= array,

for each strict prefix p′ of p. When p is a first array in t with value different from [], then
ωp(t) contains one tree for each element in such an array, obtained by replacing in t the
array by the element. In all other cases (i.e., when p is a first array in t and its value is
[], when p is missing in t, when type(p, t) 6= array, or when type(p, t) = array but p is not
a first array in t), we have that ωp(t) is empty.

Project. ρP produces exactly one output tree from each input tree, obtained by applying to
the input tree each of the elements in P , independently of the other elements. Note that,
when q/p ∈ P and p is missing in the input tree, then also q is missing in the output tree.
Instead, for q/[p] ∈ P with p missing, q is present in the output with value [null].

Group. In γG :A, when G is empty, i.e., n = 0, ϕ is the empty conjunction and hence true,
so all input trees are grouped in one output tree where the value of _id is null. Instead,
when G = g1/y1, . . . , gn/yn with n ≥ 1, then the set of input trees is partitioned into
“groups”, where each group corresponds to a (possibly empty) subset Y of {y1, . . . , yn},
so that the trees in the group agree not only on the respective values tj reached through

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao 9:9

all the paths yj ∈ Y , but also on the non-existence of paths not in Y . Each group
Y = {yj1 , . . . , yjk} gives rise to one output tree. In the case where k > 0 and all gjis are
keys, in the output tree the value of _id for that group is {{gj1 :tj1 , . . . , gjk :tjk}}, and in
the case where k = 0 (i.e., Y = ∅) the value of _id is null. Moreover, for each pair ai/bi
in A, the values of bi of all trees in a group are collected in an array, and such an array is
inserted in the output tree for that group as the value of ai.

Lookup. λp1=C.p2
p [F ′] produces exactly one output tree from each input tree. Each such tree

coincides with the input tree, except for one additional array containing all the trees of
F ′ for which the value of p2 coincides with the value of p1 in the input tree.

We clarify what we mean by “employing set semantics”. For every stage s and forest F , F . s
is a set of trees, i.e., contains no duplicates. Duplicates are detected by comparing trees using
deep equality, where comparison of arrays ignores the element indexes. However trees might
contain arrays with duplicates. Also, array indexes are sometimes important for merging
trees correctly when computing the result of a project stage (see Example 24 in App. A.3).

The semantics of an MQuery is obtained by composing (via .) the answers of its stages.

I Definition 1. Let q = C . s1 . · · · . sn be an MQuery. The result of evaluating q over
a MongoDB instance D, denoted ansmo(q, D), is defined as Fn, where F0 = D.C, and for
i ∈ {1, . . . , n}, Fi = (Fi−1 . si) if si is not a lookup stage, and Fi = (Fi−1 . si[D.C ′]) if si is
a lookup stage referring to an external collection name C ′.

Counter-intuitive Choices in the Semantics of MongoDB

We conclude this section by discussing some choices in the semantics of MongoDB that we
consider counter-intuitive, and that could be considered as an inconsistency in the behavior
of operators. Therefore, in MQuery, we have chosen a cleaner, more uniform semantics.

“Entering an array” when comparing value and path. In MongoDB, the satisfaction rela-
tion t |= (p = v) behaves differently in match and in project when the type of p in t is
array. In match, equality holds when v is

(1) exactly the array value of p, or
(2) an element inside the array value of p,
while project checks only condition (1). In MQuery, we take a uniform approach, in
which t |= (p = v) in project behaves as in match.

Null and missing values. In some cases, MongoDB does not distinguish
(a) when the value of a path p is null, i.e., [[p]]t = {x} and value(x, t) = null, from
(b) when p is missing in t.
In particular, inmatch both (a) and (b) imply that t |= (p = null). Instead, in project, only
(a) implies it. Similarly, in group, when grouping by one path (e.g., γg/p :A), MongoDB
puts the trees satisfying (a) and (b) into the same group (having _id = {{g : null}}).
Instead, when grouping with multiple paths (e.g., γg1/p1,g2/p2,... :A), the trees with all
pi missing are put into a separate group (having _id = {{}}). In MQuery, instead, we
systematically distinguish the cases (a) and (b).

Comparison of values. In MongoDB, equality of non-literal values is determined by compar-
ing their binary representation6. Hence, two objects with the same key-value pairs but in
different orders, will not be considered the same, which might result in missed answers.
In MQuery, we employ the classical semantics for “deep” equality of non-literal values.

6 https://docs.mongodb.org/manual/reference/bson-types/#comparison-sort-order

ICDT 2018

https://docs.mongodb.org/manual/reference/bson-types/#comparison-sort-order

9:10 Expressivity and Complexity of MongoDB Queries

5 Expressivity of MQuery

In this section we characterize the expressivity of MQuery in terms of nested relational
algebra (NRA), and we do so by developing translations between the two languages.

5.1 Nested Relational View of MongoDB

We start by defining a nested relational view of MongoDB instances. In the case of a
MongoDB instance with an irregular structure, there is no natural way to define such a
relational view. This happens either when the type of a path in a tree is not defined, or
when a path has different types in two trees in the instance. Therefore, in order to define a
schema for the relational view, which is also independent of the actual MongoDB instances,
we impose on them some form of regularity. We start by introducing the notion of type of a
tree, which is analogous to complex object types [15], and similar to JSON schema [17].

I Definition 2. Consider JSON values constructed according to the following grammar:
Type ::= literal | {{List<Key:Type>}} | [Type]

Given such a JSON value d, we call the tree tree(d) a type. We say that a tree t is of type τ
if for every path p we have that t |= ∃p implies
(i) τ |= ∃p,
(ii) type(p, t) = type(p, τ), and
(iii) type(p[], t) = type(p[], τ).
A forest F is of type τ if all trees in F are of type τ . A forest (resp., tree) is well-typed if it
is of some type.

We now associate to each type τ a relation schema rschema(τ) in which, intuitively,
attributes correspond to paths, and each nested relation corresponds to an array in τ . In the
following definition, given paths p and q, we say that p.q is a simple extension of p if there is
no strict prefix q′ of q such that type(p.q′, τ) = array.

I Definition 3. For a type τ , the relation schema rschema(τ), is defined as Rτ (rattτ (ε)),
where, for a path p in τ , rattτ (p) is the set of simple extensions p′ of p such that p′ is an
atomic attribute if type(p′, τ) = literal, and p′ is a sub-relation if type(p′, τ) = array. In the
latter case, p′ has attributes {p′.lit} if type(p′[], τ) = literal, and rattτ (p′) otherwise.

Observe that the names of sub-relations and of atomic attributes in rschema(τ) are given by
paths from the root in τ , and therefore are unique.

Next, we define the relational view of a well-typed forest. In this view, to capture the
semantics of the missing paths, we introduce the new constant missing.

I Definition 4. The relational view of a well-typed forest F , denoted rel(F), is defined as
{rtupleτ (Rτ , ε, t) | t ∈ F}, where τ is the type of F . For a relation name R in rschema(τ)
and a path p, rtupleτ (R, p, t) is the R-tuple {p.q : rval(p.q, t)}p.q∈rattτ (p), where

rval(p.q, t) =


missing, if [[q]]t = ∅;
value(subtree(t, q)), if p.q is atomic;{

(p.q.lit : value(subtree(t, q.i))) | [[q.i]]t 6= ∅, for i ∈ I
}
, if attτ (p.q) = {p.q.lit};{

rtupleτ (p.q, p.q, subtree(t, q.i)) | [[q.i]]t 6= ∅, for i ∈ I
}
, otherwise.

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao 9:11

_id
awards

awards.award awards.year birth contribs
contribs.lit

name.first name.last

4
Rosing Prize 1999
Turing Award 2001

IEEE John von Neumann Medal 2001
1926-08-27 OOP

Simula Kristen Nygaard

Figure 5 Relational view of the document about Kristen Nygaard.

I Example 5. Consider the type τbios for bios:
{ "_id": " literal ", " awards ": [{ " award ": " literal ", "year": " literal " }],

" birth ": " literal ", " contribs ": [" literal "],
"name": { " first ": " literal ", "last": " literal " } }

Then, rschema(τbios) is defined as bios
(
_id, awards(awards.award, awards.year), birth, con-

tribs(contribs.lit), name.first, name.last
)
. Moreover, for the tree t in Figure 3, the relational

view rel({t}) is illustrated in Figure 5. J

To define the relational view of MongoDB instances, we introduce the notion of (MongoDB)
type constraints, which are given by a set S of pairs (C, τ), one for each collection name C,
where τ is a type. We say that a database D satisfies the constraints S if D.C is of type τ ,
for each (C, τ) ∈ S. For a given S, for each (C, τ) ∈ S, we refer to τ by τC . Moreover, we
assume that in rschema(τC), the relation name RτC is actually C.

I Definition 6. Let S be a set of type constraints, and D a MongoDB instance satisfying S.
The relational view rdbS(D) of D with respect to S is the instance {rel(D.C) | (C, τ) ∈ S}.

Finally, we define equivalence between MQueries and NRA queries. To this purpose, we
also define equivalence between two kinds of answers: well-typed forests and nested relations.

I Definition 7. A well-typed forest F is equivalent to a nested relation R, denoted F ' R, if
rel(F) = R. An MQuery q is equivalent to an NRA query Q w.r.t. type constraints S, denoted
q ≡S Q, if ansmo(q, D) ' ansra(Q, rdbS(D)), for each MongoDB instance D satisfying S.

Notice that the above definition of equivalence between well-typed forests and nested
relations appears to be asymmetric, since it would in principle allow for nested relations
that are not equivalent to any well-typed forest. We remark, however, that the MongoDB
view of a nested relation always exists, is well-typed, and can be defined in a straightforward
way. Therefore, we can consider both translations (from NRA to MQuery, and vice-versa),
as defined on well-typed forests and their relational views.

5.2 From NRA to MQuery
We now show thatMmupgl captures NRA, whileMmupg captures NRA over a single collection.

In our translation from NRA to MQuery, we have to deal with the fact that an NRA
query in general has a tree structure where the leaves are relation names, while an MQuery
contains one sequence of stages. So, we first show how to “linearize” tree-shaped NRA
expressions into a MongoDB pipeline. More precisely, we show that it is possible to combine
twoMmupg sequences q1 and q2 of stages into a singleMmupg sequence pipeline(q1, q2), so
that the results of q1 and q2 can be accessed from the result of pipeline(q1, q2) for further
processing. We define pipeline(q1, q2) as dup . subq1(q1) . subq2(q2).

The idea of dup is to create for each tree t of the input forest two trees differentiated
by an ad-hoc key-value pair actRel: j and storing the original tree as relj: t, for j ∈
{1, 2}. More precisely, we want to obtain for each forest F that F . dup = F1 ∪ F2, where

ICDT 2018

9:12 Expressivity and Complexity of MongoDB Queries

Table 2 Subquery subqj(s) for stage s, where we have detailed only the short forms for project
and group stages. We use e[p→q] to denote the expression e in which every occurrence of the path p
is replaced by the path q, and use norm to abbreviate ρactRel, {reli/((actRel=i)? reli: dummy)}i=1,2 .

s subqj(s) s subqj(s)
µϕ µ(actRel=3−j)∨ϕ[p→relj.p] γg/y : a/b γg/relj.y, actRel : a/relj.b, rel(3−j) .

ρactRel/_id.actRel, relj._id.g/_id.g, relj.a/a, rel(3−j)
.ρactRel, relj, rel(3−j)/((actRel=3−j)? rel(3−j): [0])
. ωrel(3−j) . norm

ωp ρactRel, rel(3−j), relj/((actRel=j)? relj: {{p:[0]}})
. ωrelj.p . norm

ρp, q/d ρactRel, rel(3−j), relj.p,
relj.q/((actRel=j)? d[q′→relj.q′]: dummy)

F1 = {{{actRel: 1, rel1: t}}}t∈F and F2 = {{{actRel: 2, rel2: t}}}t∈F . This is achieved by setting
dup = ρorigDoc/ε, actRel/[1,2] .ωactRel . ρactRel, {relj/((actRel=j)? origDoc: dummy)}j=1,2 , where dummy
is a path that does not exist in any collection.

The idea of subqj(qj) is to execute qj so that it affects the trees from Fj , but not
from F3−j , and to obtain that (F1 ∪ F2) . subq1(q1) . subq2(q2) evaluates to the forest
{{{actRel: 1, rel1: t}}}t∈(F.q1) ∪ {{{actRel: 2, rel2: t}}}t∈(F.q2). Before describing subqj formally,
we provide the intuition in an example.

I Example 8. Consider the sequences of stages q1 = µa=1 . ρa, b and q2 = µc="x" . ρc, d, and
the forest F = {t1, t2, t3, t4}, for t1 = {{a:1, b:6, d:8}}, t2 = {{a:1, b:7, c:"x", d:9}}, t3 = {{a:2, b:6,
c:"x", d:7}}, and t4 = {{a:3, b:8, c:"y", d:6}}.

Denote by tpqi the tree resulting from ti by applying ρp, q to it. Then F . q1 evaluates to
{tab1 , t

ab
2 }, and F .q2 to {tcd2 , tcd3 }. Thus, (F1∪F2).subq1(q1).subq2(q2) should be {{{actRel: 1,

rel1: tab1 }}, {{actRel: 1, rel1: tab2 }}, {{actRel: 2, rel2: tcd2 }}, {{actRel: 2, rel2: tcd3 }}}. We achieve this by
setting subq1(q1) = µ(actRel=2)∨(rel1.a=1) . ρrel2, actRel, rel1.a, rel1.b and subq2(q2) =
µ(actRel=1)∨(rel2.c="x") .ρrel1, actRel, rel2.c, rel2.d. Here, in the case of subq1(q1), by transforming
the criterion (a = 1) into (actRel = 2)∨(rel1.a = 1) we make sure to preserve the trees in F2,
and we check the condition on the correct path rel1.a in the trees in F1. Similarly, the
project stage ρa,b became ρrel2, actRel, rel1.a, rel1.b in order to preserve the tis in F2 stored under
rel2, to preserve the auxiliary key actRel, and to project the correct paths rel1.a and rel1.b
in the trees from F1. J

Formally, when qj = s1 . · · · . sn then subqj(qj) is defined as subqj(s1) . · · · . subqj(sn),
for j ∈ {1, 2}, where subqj for single stages is defined in Table 2. Recall that the idea of
subqj(s) is to affect only the trees in Fj , hence:

subqj(µϕ) selects all trees in F3−j (those that satisfy (actRel = 3− j)), while from Fj it
selects the trees that satisfy ϕ, where all original paths p are replaced by relj.p.
The unwind stage ωp cannot be implemented simply by ωrelj.p, since all trees in F3−j
would be lost (they do not contain the path relj.p). Therefore we first create a temporary
non-empty array ([0]) under the path relj.p in the trees from F3−j , unwind the path
relj.p, and then in norm normalize the trees by making sure that the trees with (actRel = i)
contain only reli but not rel(3− i).
The encoding of the project stage ρp, q/d makes sure that rel(3− j) and actRel are not
lost, and that the path relj.q is not created in the trees from F3−j (guaranteed by the
conditional expression for q/d).
The encoding of the group stage γg/y : a/b adds actRel to the grouping condition and
aggregates rel(3− j) so as to group all trees from F3−j in one tree, and then renames
appropriately the paths _id.actRel, _id.g, and a. It is concluded similarly to subqj(ωp)
in order to flatten the array rel(3− j) where all trees from F3−j have been aggregated.

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao 9:13

Table 3 Translation from NRA toMmupg. We extend the function att from schema names to
NRA queries such that att(Q) is the attribute set of the schema implied by an NRA query Q.

Q nra2mq(Q)
C ρatt(C)

σψ(Q1) nra2mq(Q1) . ρatt(Q1), cond/ψ . µcond=true . ρatt(Q1)
πS(Q1) nra2mq(Q1) . ρS
νS→b(Q1) nra2mq(Q1) . ρ(att(Q1)\S), {b.p/p | p∈S} . γ(att(Q1)\S) : b . ρb, {p/_id.p | p∈att(Q1)\S}
χa(Q1) nra2mq(Q1) . ωa
Q1 ×Q2 pipeline(nra2mq(Q1), nra2mq(Q2)) . γ : rel1, rel2 . ωrel1 . ωrel2
Q1 ∪Q2 pipeline(nra2mq(Q1), nra2mq(Q2)) . ρ{pi/((actRel=1)? rel1.pi: rel2.pi)}n

i=1
. γp1,...,pn : . ρ{pi/_id.pi}n

i=1

Q1 \Q2 pipeline(nra2mq(Q1), nra2mq(Q2)) . ρrel2, {pi/((actRel=1)? rel1.pi: rel2.pi)}n
i=1

. γp1,...,pn : rel2 . µrel2=[]
.ρ{pi/_id.pi}n

i=1

Now, having defined pipeline(q1, q2), we are ready to show how to translate NRA to
MQuery. We start with a singleton set S = {(C, τC)} of type constraints for a collection
name C, and consider an NRA query Q over the relation name C (with schema rschema(τC)).
The translation of Q is the Mmupg query C . nra2mq(Q), where nra2mq(Q) is defined
inductively in Table 3. To encode select, the filter is translated as a Boolean value definition,
except that atoms of the form ¬(a = missing) become ∃a. The translation of Q1 ×Q2 first
groups all input trees in one tree, where the answer trees ti to Qi are aggregated in arrays
reli, i ∈ {1, 2}, and then unwinds these two arrays, thus producing all possible pairs (t1, t2).
The translations of Q1 ∪Q2 and Q1 \Q2, where we assume that att(Qi) = {p1, . . . , pn}, first
create fresh paths pi in each tree to be used in the grouping condition. Then, in the case of
union it only remains to rename the paths _id.pi back to pi, while in the case of difference,
we also select only those “tuples” that were not present in the answer to Q2.

I Example 9. Consider the forest F from Example 8 stored under a collection name C,
and the type τC = {{a: literal, b: literal, c: literal, d: literal}}. Then rschema(τC) is defined
as C(a,b,c,d), and rel(F) is the relation {(a: 1, b: 6, c:missing, d: 8), (a: 1, b: 7, c: "x", d: 9),
(a: 2, b: 6, c: "x", d: 7), (a: 3, b: 8, c: "y", d: 6)}. Let Q be the NRA query σrel1.b=rel2.d

(
Q1 ×Q2

)
,

where Q1 = πa,b(σa=1(C)) and Q2 = πc,d(σc="x"(C)). Then Q evaluated over rel(F) returns
{(rel1.a: 1, rel1.b: 7, rel2.c: "x", rel2.d: 7)}.

Now, nra2mq(Qj) = ρa, b, c, d . qj , for j = 1, 2, where q1 and q2 are as in Example 8.
Since ρa, b, c, d . qj and qj are equivalent (return the same answers over all forests), we have
that F . pipeline(nra2mq(Q1), nra2mq(Q2)) = F . pipeline(q1, q2). Denote by F ′ the result
of F . pipeline(q1, q2), see Example 8. Then

F ′′ = F ′ . γ : rel1, rel2 is the forest {{{rel1: [tab1 , tab2], rel2: [tcd2 , tcd3]}}}.
F ′′′ = F ′′ . ωrel1 . ωrel2 is the forest {{{rel1: tab1 , rel2: tcd2 }}, {{rel1: tab2 , rel2: tcd2 }}, {{rel1: tab1 ,
rel2: tcd3 }}, {{rel1: tab2 , rel2: tcd3 }}}.
Finally, F ′′′.ρcond/(rel1.b=rel2.d).µcond=true.ρrel1.a, rel1.b, rel2.c, rel2.d is the forest {{{rel1: tab2 ,
rel2: tcd3 }}}, or equivalently {{{rel1: {{a: 1, b: 7}}, rel2: {{c: "x", d: 7}}}}}. J

I Theorem 10. Let Q be a NRA query over C. Then C . nra2mq(Q) ≡S Q.

Next, we consider NRA queries across several collections, and show how to translate them
toMmupgl. Let S be a set of type constraints for collection names C1, . . . , Cn, with n ≥ 2,
Q an NRA query over C1, . . . , Cn, and C1 the collection over which we evaluate the generated
MQuery. The translation of Q is the Mmupgl query C1 . bring(C2, . . . , Cn) . nra2mq?(Q),
where intuitively (1) the phase bring(C2, . . . , Cn) “brings in” the trees from the collections
C2, . . . , Cn, and (2) the function nra2mq?(Q), adapted from nra2mq(Q), simulates the NRA

ICDT 2018

9:14 Expressivity and Complexity of MongoDB Queries

operators in Q. More precisely, we want that if F1, . . . , Fn are collections for C1, . . . , Cn, the
result of F1 . bring(C2, . . . , Cn)[F2, . . . , Fn] is the forest

⋃n
i=1{{{actColl: i, colli: t}}}t∈Fi . This

is done by setting bring(C2, . . . , Cn) as
γ : coll1/ε . λ

dummy=C2.dummy
coll2 . · · · . λdummy=Cn.dummy

colln . ρcoll1,..,colln, actColl/[1..n] . ωactColl .

ρactColl, {colli/((actColl=i)? colli: [0])}n
i=1

. ωcoll1 . · · · . ωcolln . ρactColl, {colli/((actColl=i)? colli: dummy)}n
i=1

Moreover, we define the function nra2mq?(Q) that differs from nra2mq(Q) in the translation
of the collection names as nra2mq?(Ci) = µactColl=i . ρ{p/colli.p | p∈att(Ci)}.

I Theorem 11. Let Q be an NRA query over C1, . . . , Cn, and q = C1 . bring(C2, . . . , Cn) .
nra2mq?(Q). Then q ≡S Q. Moreover, the size of q is polynomial in the size of Q.

Thus, we obtain thatMmupgl captures full NRA, and thatMmupg captures NRA over a
single collection. We observe that the above translation serves the purpose of understanding
the expressive power of MQuery, but is likely to produce queries that MongoDB will not be
able to efficiently execute in practice, even on relatively small database instances. We also
note that the translation from NRA to MQuery works even if we allow for database instances
D such that D.C is not strictly of type τC , but may also contain other paths not in τC .

5.3 From MQuery to NRA
In this section, we aim at defining a translation from MQuery to NRA, and for this we
want to exploit the structure, i.e., the stages of MQueries. Hence, we define a translation
mq2nra(s) from stages s to NRA expressions such that, for an MQuery C . s1 . · · · . sn,
the corresponding NRA query is defined as C ◦ mq2nra(s1) ◦ · · · ◦ mq2nra(sn)7, where we
identify the collection name C with the corresponding relation schema in the relational
view. However, such a translation might not always be possible, since MQuery is capable
of producing non well-typed forests, for which the relational view is not defined. This
capability is due to value definitions in a project operator: already a query as simple as
ρa/(_id=1? [0,1]: "s") produces from the well-typed forest {{{_id: 1}}, {{_id: 2}}} a non well-typed
one: {{{_id: 1, a: [0,1]}}, {{_id: 2, a: "s"}}}. Therefore, in order to derive such a translation
mq2nra(s), we restrict our attention to MQueries with stages preserving well-typedness.

I Definition 12. Given a type τ (and a type τ ′), a stage s is well-typed for τ (and τ ′), if for
each forest F of type τ (and each forest F ′ of type τ ′), F . s (resp., F . s[F ′] when s is a
lookup stage) is a well-typed forest.

We observe that the match, unwind, group and lookup stages are always well-typed, and,
given such a stage s and input types τ , τ ′, we can compute the output type τo of s:
(i) match does not change the input type, i.e., τo = τ ,
(ii) for unwind and group stages s, τo is obtained by evaluating s over {τ}, i.e., {τo} = {τ}.s,

and
(iii) similarly, the output type for a lookup stage is the single tree in ({τ} . λp1=C.p2

p [{τ ′}]).
As for a project stage s = ρP and an input type τ , we can check whether s is well-typed
for τ , and if yes, we can compute the output type τo of s, as follows. For each p/d ∈ P , we
compute the type τd of d with respect to τ ; if all τd are defined, then s is well-typed and τo
is the type where subtree(τo, p) coincides with τd for each p/d ∈ P , and that agrees with τ
on all p ∈ P ; otherwise s is not well-typed. The type τd of a value definition d with respect
to a type τ is defined inductively as follows: τv = τ ′ for a value v, if v is of type τ ′, and

7 We follow the convention that (f ◦ g)(x) = g(f(x)).

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao 9:15

undefined otherwise; τβ = literal for a Boolean value definition β; τp = subtree(τ, p), for a
path p; τ[d1,...,dn] = [τd1] if τd1 = · · · = τdn , and undefined otherwise; τ(c? d1: d2) is τd1 if c is
valid, τd2 if c is unsatisfiable, τd1 if c is satisfiable and not valid and τd1 = τd2 , and undefined
otherwise.

Then, given a set S of type constraints and an MQuery q = C . s1 . · · · . sn, we can check
whether each stage in q is well-typed for its input type determined by q and S. To do so, we
take the input type for s1 to be τ0, where (C, τ0) ∈ S, and we compute sequentially the input
type for each stage si, as long as this is possible, i.e., all stages preceding it are well-typed.

The translation mq2nra(s), for well-typed stages s, is quite natural, although it requires
some attention to properly capture the semantics of MQuery. It is reported in [3].

I Theorem 13. Let S be a set of type constraints, q an MQuery C . s1 . · · · . sm in which
each stage is well-typed for its input type, and Q = C ◦mq2nra(s1) ◦ · · · ◦mq2nra(sm). Then
q ≡S Q, moreover, the size of Q is polynomial in the size of q and S.

A natural question is when an MQuery can be translated to NRA even if it contains non
well-typed stages. E.g., in the example above, this can happen when the path a is projected
away in the subsequent stages without being actually used. We leave this for future work.

6 Complexity of MQuery

In this section we report results on the complexity of different fragments of MQuery. Spe-
cifically, we are concerned with the combined and query complexity of the Boolean query
evaluation problem (i.e., the problem of checking non-emptiness of query answers).

We first establish that Mmupgl and Mmupg are complete for exponential time with a
polynomial number of alternations under LogSpace reductions [6, 14]8. That is, they have
the same complexity as monad algebra with atomic equality and negation [15], which however
is strictly less expressive than NRA. As a corollary, we obtain a tight bound for NRA.

I Theorem 14. Mmupg andMmupgl are TA[2nO(1)
, nO(1)]-complete in combined complexity,

and in AC0 in data complexity.

I Corollary 15. NRA is TA[2nO(1)
, nO(1)]-complete in combined complexity.

Next, we study some of the less expressive fragments of MQuery. We consider match to
be an essential operator, and we start with the minimal fragmentMm, for which we show
that query answering is tractable and very efficient.

I Theorem 16. Mm is LogSpace-complete in combined complexity.

The project and group operators allow one to create exponentially large values by
duplicating the existing ones. For instance, the result of {{{a:1}}} . s1 . · · · . sn, for s1 =
· · · = sn = ρa.`/a, a.r/a consists of a full binary tree of depth n. Nevertheless, without the
unwind operator it is still possible to maintain tractability.

I Theorem 17. Mmp is PTime-hard in query complexity and Mmpgl is in PTime in
combined complexity.

8 We observe that TA[2n
O(1)

, nO(1)] lies between NExpTime and ExpSpace, hence is provably intractable.

ICDT 2018

9:16 Expressivity and Complexity of MongoDB Queries

We can identify the unwind operator as one of the sources of complexity, as it allows
one to multiply the number of trees each time it is used in the pipeline. Indeed, adding the
unwind operator alone causes already loss of tractability, provided the input tree contains
multiple arrays (hence in combined complexity).

I Theorem 18. Mmu is LogSpace-complete in query complexity and NP-complete in
combined complexity.

Adding project and lookup does not increase the combined complexity, but does increase
the query complexity, since they allow for creating multiple arrays from a fixed input tree.

I Theorem 19. Mmup andMmul are NP-hard in query complexity, andMmupl is in NP
in combined complexity.

In the presence of unwind, group provides another source of complexity, since inMmug

we can generate doubly exponentially large trees, analogously to monad algebra [15]. Let
t0 = {{_id: {{x: 0}}}} and t1 = {{_id: {{x: 1}}}}. The result of applying theMmug query s1 . · · ·.sn,
where si = γ : x/_id.x.γx.l/x, x.r/x : .ω_id.x.l.ω_id.x.r, to {t0, t1} is a forest containing 22n trees,
each encoding one 2n-bit value. Below we show that alreadyMmug queries are PSpace-hard.

I Theorem 20. Mmug is PSpace-hard in query complexity.

7 Conclusions and Future Work

We have carried out a first formal investigation on the foundations and computational
properties of the MongoDB aggregation framework, currently the most widely adopted
expressive query language for JSON. We proposed a clean abstraction for its five main
operators, which we called MQuery. Our formalization focuses on set semantics and, similarly
to [12], ignores ordering; bag and list semantics are left for future work. MQuery also
“polishes” some counter-intuitive aspects in the syntax and semantics of the actual aggregation
framework, which are inherited from its ad-hoc development. We believe that these last
changes, which are independent of our simplifying assumptions, make the framework more
uniform, and we consequently encourage the designers of MongoDB to adopt them.

We have studied the expressivity of MQuery, establishing the equivalence between its
well-typed fragment and NRA, by developing compact translations in both directions. This
shows that, despite its design driven by practical requirements, the aggregation framework
relies on solid foundations, and hence is worth attention from the DB theory community. We
hope that our study will also clarify the apparent confusion among practitioners about its
capabilities to perform joins, in particular in the absence of lookup. Moreover, we analyzed
the computational complexity of significant fragments of MQuery, obtaining several (tight)
bounds. As a byproduct, we obtained also a tight bound for NRA.

With version v3.4, MongoDB has been extended with a graph-lookup stage in a pipeline,
allowing for a recursive search on a collection, and it is of interest to understand how this
affects formal and computational properties. We also propose to investigate the properties of
MQuery when the well-typedness restrictions are lifted, and to compare it to JLogic [12],
which is likewise able to handle flexible types. We are currently working on applying the
results presented here, to provide high-level access to MongoDB data sources by relying on
the standard ontology-based data access (OBDA) paradigm [18]. For this, we build on the
translation from NRA to MQuery presented in Section 5.2 [2].

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao 9:17

References

1 Serge Abiteboul and Catriel Beeri. The power of languages for the manipulation of complex
values. Very Large Database Journal, 4(4):727–794, 1995. URL: http://www.vldb.org/
journal/VLDBJ4/P727.pdf.

2 Elena Botoeva, Diego Calvanese, Benjamin Cogrel, Martin Rezk, and Guohui Xiao. OBDA
beyond relational DBs: A study for MongoDB. In Proc. of the 29th Int. Workshop on
Description Logics (DL), volume 1577 of CEUR Workshop Proceedings, http://ceur-ws.
org/, 2016.

3 Elena Botoeva, Diego Calvanese, Benjamin Cogrel, and Guohui Xiao. Expressivity and
complexity of MongoDB (Extended version). CoRR Technical Report arXiv:1603.09291,
arXiv.org e-Print archive, 2017. Available at http://arxiv.org/abs/1603.09291.

4 Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoc. JSON: data model,
query languages and schema specification. In Emanuel Sallinger, Jan Van den Bussche, and
Floris Geerts, editors, Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages
123–135. ACM, 2017. doi:10.1145/3034786.3056120.

5 Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong. Principles of pro-
gramming with complex objects and collection types. Theor. Comput. Sci., 149(1):3–48,
1995. doi:10.1016/0304-3975(95)00024-Q.

6 Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981. doi:10.1145/322234.322243.

7 Evgeny Dantsin and Andrei Voronkov. Complexity of query answering in logic databases
with complex values. In Sergei I. Adian and Anil Nerode, editors, Logical Foundations
of Computer Science, 4th International Symposium, LFCS’97, Yaroslavl, Russia, July 6-
12, 1997, Proceedings, volume 1234 of Lecture Notes in Computer Science, pages 56–66.
Springer, 1997. doi:10.1007/3-540-63045-7_7.

8 Jan Van den Bussche. Simulation of the nested relational algebra by the flat relational
algebra, with an application to the complexity of evaluating powerset algebra expressions.
Theor. Comput. Sci., 254(1-2):363–377, 2001. doi:10.1016/S0304-3975(99)00301-1.

9 Jan Van den Bussche and Jan Paredaens. The expressive power of complex values in object-
based data models. Inf. Comput., 120(2):220–236, 1995. doi:10.1006/inco.1995.1110.

10 Daniela Florescu and Ghislain Fourny. Jsoniq: The history of a query language. IEEE
Internet Computing, 17(5):86–90, 2013. doi:10.1109/MIC.2013.97.

11 Stéphane Grumbach and Victor Vianu. Tractable query languages for complex object data-
bases. In Daniel J. Rosenkrantz, editor, Proceedings of the Tenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, May 29-31, 1991, Denver, Color-
ado, USA, pages 315–327. ACM Press, 1991. doi:10.1145/113413.113442.

12 Jan Hidders, Jan Paredaens, and Jan Van den Bussche. J-logic: Logical foundations for
JSON querying. In Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts, editors,
Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Data-
base Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 137–149. ACM,
2017. doi:10.1145/3034786.3056106.

13 Gerhard Jaeschke and Hans-Jörg Schek. Remarks on the algebra of non first normal form
relations. In Jeffrey D. Ullman and Alfred V. Aho, editors, Proceedings of the ACM Sym-
posium on Principles of Database Systems, March 29-31, 1982, Los Angeles, California,
USA, pages 124–138. ACM, 1982. doi:10.1145/588111.588133.

14 David S. Johnson. A catalog of complexity classes. In Handbook of Theoretical Computer
Science, volume A, chapter 2, pages 67–161. Elsevier Science Publishers, 1990.

ICDT 2018

http://www.vldb.org/journal/VLDBJ4/P727.pdf
http://www.vldb.org/journal/VLDBJ4/P727.pdf
http://ceur-ws.org/
http://ceur-ws.org/
http://arxiv.org/abs/1603.09291
http://dx.doi.org/10.1145/3034786.3056120
http://dx.doi.org/10.1016/0304-3975(95)00024-Q
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1007/3-540-63045-7_7
http://dx.doi.org/10.1016/S0304-3975(99)00301-1
http://dx.doi.org/10.1006/inco.1995.1110
http://dx.doi.org/10.1109/MIC.2013.97
http://dx.doi.org/10.1145/113413.113442
http://dx.doi.org/10.1145/3034786.3056106
http://dx.doi.org/10.1145/588111.588133

9:18 Expressivity and Complexity of MongoDB Queries

15 Christoph Koch. On the complexity of nonrecursive XQuery and functional query languages
on complex values. ACM Trans. on Database Systems, 31(4):1215–1256, 2006. doi:10.
1145/1189769.1189771.

16 Kian Win Ong, Yannis Papakonstantinou, and Romain Vernoux. The SQL++ semi-
structured data model and query language: A capabilities survey of SQL-on-Hadoop,
NoSQL and NewSQL databases. CoRR Technical Report arXiv:1405.3631, arXiv.org e-
Print archive, 2017. Available at http://arxiv.org/abs/1405.3631.

17 Felipe Pezoa, Juan L. Reutter, Fernando Suárez, Martín Ugarte, and Domagoj Vrgoc.
Foundations of JSON schema. In Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian
Horrocks, and Ben Y. Zhao, editors, Proceedings of the 25th International Conference on
World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016, pages 263–273.
ACM, 2016. doi:10.1145/2872427.2883029.

18 Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. Data Semantics, 10:133–
173, 2008. doi:10.1007/978-3-540-77688-8_5.

19 Stan J. Thomas and Patrick C. Fischer. Nested relational structures. Advances in Com-
puting Research, 3:269–307, 1986.

A Examples and Syntax of the MongoDB Aggregation Framework

The MongoDB aggregation framework provides a powerful querying mechanism, in which
a query consists of a pipeline of stages, each transforming a forest into a new forest. We
formalized a core part of this query language consisting of five stages as MQuery. In the
examples below, we provide all queries both as MQueries and in the actual MongoDB syntax.
We assume to have a second document in the bios collection as follows:

{ "_id": 6,
" awards ": [

{ " award ": " Award for the Advancement of Free Software ", "year": 2001 , "by": "FSF" },
{ " award ": " NLUUG Award ", "year": 2003 , "by": " NLUUG " }],

" birth ": "1956 -01 -31",
" contribs ": [" Python "],
"name": { " first ": " Guido ", "last": "van Rossum " } }

A.1 Match

The match operator takes as input a criterion, a Boolean condition on the trees, and returns
the trees that satisfy that condition.

I Example 21. The following MQuery selects trees where the value of the path name.first
is Kristen, and there exists an awards path:

bios . µname.first=“Kristen”∧∃awards

where the corresponding MongoDB query is:

db.bios. aggregate ([
{ $match : {"name. first ": {$eq: " Kristen "},

" awards ": { $exists : true } }}])

This query returns the document about Kristen Nygaard. J

http://dx.doi.org/10.1145/1189769.1189771
http://dx.doi.org/10.1145/1189769.1189771
http://arxiv.org/abs/1405.3631
http://dx.doi.org/10.1145/2872427.2883029
http://dx.doi.org/10.1007/978-3-540-77688-8_5

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao 9:19

I Example 22. Consider the following query consisting of a match stage with two conditions
on keys inside the awards array:

bios . µawards.year=1999∧ awards.award=“Turing Award”

The corresponding MongoDB query is:
db.bios. aggregate ([

{ $match : {" awards .year": {$eq: 1999} ,
" awards . award ": {$eq: " Turing Award "} }}])

The query returns all persons that have received an award in 1999, and the Turing award in a
possibly different year. Observe that it does not impose that one array element must satisfy
all the conditions. This query retrieves the document about Kristen Nygaard because he
received an award (the Rosing Prize) in 1999 in addition to the Turing Award (in 2001). J

A.2 Unwind
The unwind operator creates a new document for every element in an array.

I Example 23. The following MQuery unwinds path awards:
bios . ωawards

The corresponding MongoDB query is:
db.bios. aggregate ([

{ $unwind : " $awards "}])

When applied to the document about Guido van Rossum, it outputs 2 documents:
{ "_id": 6,

" awards ": { " award ": " Award for the Advancement of Free Software ", "year": 2001 ,
"by": "FSF" },

" birth ": "1956 -01 -31",
" contribs ": [" Python "],
"name": { " first ": " Guido ", "last": "van Rossum " } },

{ "_id": 6,
" awards ": { " award ": " NLUUG Award ", "year": 2003 , "by": " NLUUG " },
" birth ": "1956 -01 -31",
" contribs ": [" Python "],
"name": { " first ": " Guido ", "last": "van Rossum " } }

However, unwinding path birth in the same document gives the empty result, since the
value of this path is not an array. J

A.3 Project
The project stage is similar to the extended projection from relational algebra.

I Example 24. The following query preserves the paths starting with _id, name, awards.award
and awards.year:

bios . ρ_id, name, awards.award, awards.year

The corresponding MongoDB query is:
db.bios. aggregate ([

{ $project : { "name": true , " awards . award ": true , " awards .year": true }}])

The document about Kristen Nygaard is then transformed into the document:
{ "_id": 4,

"name": { " first ": " Kristen ", "last": " Nygaard " },
" awards ": [{ " award ": " Rosing Prize ", "year": 1999 },

{ " award ": " Turing Award ", "year": 2001 },
{ " award ": "IEEE John von Neumann Medal ", "year": 2001 }] }

ICDT 2018

9:20 Expressivity and Complexity of MongoDB Queries

Observe that _id is preserved by MongoDB by default. In our formalization, though, the
behaviour of project is the same for all paths. Note also that the information by whom the
awards were given is lost as the path awards.by was not passed as a parameter. J

I Example 25. Project allows for renaming paths. The following query renames name.first
to firstName, awards.award and awards.year to awardsName and awardsYear, respectively, and
a non-existing path abc to invisible:

bios . ρ_id, firstName/name.first, awardsName/awards.award, awardsYear/awards.year, invisible/abc

The corresponding MongoDB query is:

db.bios. aggregate ([
{ $project : {" firstName ": " $name . first ",

" awardsName ": " $awards . award ", " awardsYear ": " $awards .year",
" invisible ": "$abc" }}])

It produces from the document about Kristen Nygaard:

{ "_id": 4,
" firstName ": " Kristen ",
" awardsName ": [" Rosing Prize ", " Turing Award ", "IEEE John von Neumann Medal "],
" awardsYear ": [1999 , 2001 , 2001] }

Note that in the resulting document awardsName and awardsYear are two separate arrays
unlike in the previous example, where keeping awards.award and awards.year without renam-
ing them does not create two arrays. Also note that since there is no path abc in the input
document, the result does not contain invisible key. J

I Example 26. Project also allows for creating new values, either fresh or from the ex-
isting ones. The following query introduces new keys occupation with value "Computer
Scientist", fields whose value is array consisting of the name, birth date and contributions,
sameFirstAndLastNames whose value is the Boolean value of a comparison, and condValue
whose value is calculated based on a condition:

bios . ρ _id, occupation/“Computer Scientist”, fields/[name, birth, contribs],
sameFirstAndLastNames/(name.first=name.last), condValue/((_id=4)? contribs: name)

The corresponding MongoDB query is:

db.bios. aggregate ([
{ $project : { " occupation ": { $literal : " Computer Scientist "},

" fields ": [" $name ", " $birth ", " $contribs "],
" sameFirstAndLastNames ": {$eq: [" $name . first ", " $name .last"]},
" condValue ": { $cond : {

if: {$eq: ["$_id", 4]} , then: " $contribs ", else : " $name " }}])

It produces from the documents in the bios collection:

{ "_id": 4, " occupation ": " Computer Scientist ",
" fields ": [{" first ": " Kristen ", "last": " Nygaard "}, "1926 -08 -27",

["OOP", " Simula "]],
" sameFirstAndLastNames ": false , " condValue ": ["OOP", " Simula " },

{ "_id": 6, " occupation ": " Computer Scientist ",
" fields ": [{" first ": " Guido ", "last": "van Rossum "}, "1956 -01 -31", [" Python "]],
" sameFirstAndLastNames ": false , " condValue ": {" first ": " Guido ",

"last": "van Rossum "} }

Note that this project stage is a non-well-typed one. First, the array fields is not a well-
typed array. Second, the types of condValue in the two resulting trees do not coincide. This
demonstrates that project is a very powerful stage and can produce from a well-typed input
forest a non-well-typed one. J

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao 9:21

A.4 Group
The group stage allows to combine different trees into one. More specifically, the set of input
trees is partitioned into several according to a grouping condition, and for each group a single
output tree is produced. The documents are grouped together according to the grouping
condition, and only the values of paths specified in the aggregation expression are included
in the output, combined into an array for each group. Notice that, in the MongoDB syntax,
the grouping condition G is specified through the key-value pair _id : G.

Let us consider an additional collection, called awards, focusing on the award information:
{ "_id": 1, " person_id ": 4, "name": " Rosing Prize ", "in": 1999 },
{ "_id": 2, " person_id ": 4, "name": " Turing Award ", "in": 2001 },
{ "_id": 3, " person_id ": 4, "name": "IEEE John von Neumann Medal ", "in": 2001 },
{ "_id": 4, " person_id ": 6, "name": " Award for the Advancement of Free Software ",

"in": 2001 },
{ "_id": 5, " person_id ": 6, "name": " NLUUG Award ", "in": 2003 }

I Example 27. The following query returns for each year the identifiers of scientists that
received an award in that year:

awards . γyear/in : scientists/person_id

The corresponding MongoDB query is:
db. awards . aggregate ([

{ $group : { "_id": {"year": "$in"}, " scientists ": { $addToSet : " $person_id "} }}])

Running this query over the awards collection produces the following output:
{ "_id": { "year": 2001 }, " scientists ": [4, 6] },
{ "_id": { "year": 1999 }, " scientists ": [4] },
{ "_id": { "year": 2003 }, " scientists ": [6] }

I Example 28. The following group stage has no aggregation condition, so all input docu-
ments are aggregated into one. It returns the names of all the scientists in the bios collection:

bios . γ : names/name

The corresponding MongoDB query is:
db.bios. aggregate ([

{ $group : { "_id": null , " names ": { $addToSet : " $name "} }}])

Running this query over the bios collection produces the following output:
{ "_id": null ,

" names ": [{ " first ": " Kristen ", "last": " Nygaard " },
{ " first ": " Guido ", "last": "van Rossum " }] }

I Example 29. The following query groups persons according to their date of death:
bios . γdeath : names/name

The corresponding MongoDB query is:
db.bios. aggregate ([

{ $group : { "_id": " $death ", " names ": { $addToSet : " $name "} }}])

When executing over the bios collection, it produces the following output:
{ "_id": "2002 -08 -10",

" names " : [{ " first ": " Kristen ", "last": " Nygaard " }] },
{ "_id": null ,

" names ": [{ " first ": " Guido ", "last": "van Rossum " }] }

Since the death path is not present in the document about Guido van Rossum, the latter is
grouped in the document where _id is null. J

ICDT 2018

9:22 Expressivity and Complexity of MongoDB Queries

A.5 Lookup
The lookup stage joins input documents with documents in an external collection, using a
local path and a path in the external collection to express the join condition, and stores the
matching external documents in an array.

I Example 30. For each document in the bios collection, the following query collects
information about the awards received by the scientist from the awards collection and stores
it in the awards_info array:

bios . λ_id=awards.person_id
awards_info

The corresponding MongoDB query is:
db.bios. aggregate ([

{ $lookup : {
from: " awards ", localField : "_id", foreignField : " person_id ", as: " awards_info " }}

])

Executing this query over the bios collection produces the following result:
{ "_id": 4,

" awards ": [
{ " award ": " Rosing Prize ", "year": 1999 , "by": " Norwegian Data Association " },
{ " award ": " Turing Award ", "year": 2001 , "by": "ACM" },
{ " award ": "IEEE John von Neumann Medal ", "year": 2001 , "by": "IEEE" }],

" birth ": "1926 -08 -27",
" contribs ": ["OOP", " Simula "],
" death ": "2002 -08 -10",
"name": { " first ": " Kristen ", "last": " Nygaard " },
" awards_info ": [

{ "_id": 1, " person_id ": 4, "name": " Rosing Prize ", "in": 1999 },
{ "_id": 2, " person_id ": 4, "name": " Turing Award ", "in": 2001 },
{ "_id": 3, " person_id ": 4, "name": "IEEE John von Neumann Medal ", "in": 2001 }] },

{ "_id": 6,
" awards ": [

{ " award ": " Award for the Advancement of Free Software ", "year": 2001 , "by": "FSF" },
{ " award ": " NLUUG Award ", "year": 2003 , "by": " NLUUG " }],

" birth ": "1956 -01 -31",
" contribs ": [" Python "],
"name": { " first ": " Guido ", "last": "van Rossum " },
" awards_info ": [

{ "_id": 4, " person_id ": 6, "name": " Award for the Advancement of Free Software ",
"in": 2001 },

{ "_id": 5, " person_id ": 6, "name": " NLUUG Award ", "in": 2003 }] }

B Details on the Semantics of tree operations in MQuery

In the following, let t = (N,E,Ln, Le) be a tree. Below, when we mention reachability, we
mean reachability along the edge relation.
subtree: The subtree of t rooted at x and induced by M , for x ∈ M and M ⊆ N , denoted

subtree(t, x,M), is defined as (N ′, E|N ′×N ′ , Ln|N ′ , Le|E′) where N ′ is the subset of nodes
inM reachable from x by traversing only nodes inM . Note that subtree(t, x,M) might be
the empty tree, e.g., whenM is a set of nodes disconnected from x. We write subtree(t,M)
as abbreviation for subtree(t, root(t),M).
For a path p with |[[p]]t| = 1, the subtree subtree(t, p) of t hanging from p is defined as
subtree(t, rp, N ′) where {rp} = [[p]]t, and N ′ are the nodes reachable from rp via E. For a
path p with |[[p]]t| = 0, subtree(t, p) is defined as tree(null).

attach: The tree attach(k1 . . . kn, t) constructed by inserting the path k1 . . . kn on top of the
tree t, for n ≥ 1, is defined as (N ′, E′, L′n, L′e), where
(i) N ′ = N ∪ {x0, x1, . . . , xn−1}, for fresh x0, . . . , xn−1,
(ii) E′ = E ∪ {(x0, x1), (x1, x2), . . . , (xn−1, root(t))},
(iii) L′n = Ln ∪ {(x0, ‘{{}}’), . . . , (xn−1, ‘{{}}’)}, and
(iv) L′e = Le ∪ {((x0, x1), k1), . . . , ((xn−2, xn−1), kn−1), ((xn−1, root(t)), kn)}.

E. Botoeva, D. Calvanese, B. Cogrel, and G. Xiao 9:23

intersection: Let tj = (N j , Ej , Ljn, L
j
e), j = 1, 2, be trees. The function t1 ∩ t2 returns

the set of pairs of nodes (xn, yn) ∈ N1 ×N2 reachable along identical paths in t1 and
t2, that is, such that there exist (x0, x1), . . . , (xn−1, xn) in E1, for x0 = root(t1), and
(y0, y1), . . . , (yn−1, yn) in E2, for y0 = root(t2), with L1

n(xi) = L2
n(yi) and L1

e (xi−1, xi) =
L2

e (yi−1, yi), for 1 ≤ i ≤ n.
merge: Let tj = (N j , Ej , Ljn, L

j
e), j = 1, 2, be trees such that N1 ∩ N2 = ∅, and for each

path p leading to a leaf in t2, i.e., t2 |= (p = v) for some literal value v, we have that
t1 6|= ∃p and the other way around. Then the tree t1⊕ t2 resulting from merging t1 and t2
is defined as (N,E,Ln, Le), where
(i) N = N1 ∪N2′, for N2′ = N2 \ {x2 | (x1, x2) ∈ t1 ∩ t2},
(ii) E = E1 ∪ (E2 ∩ (N2′ ×N2′)) ∪ ((t1 ∩ t2) ◦ E2),
(iii) Ln = L1

n ∪ L2
n|N2′ , and

(iv) Le = L1
e ∪ L2

e |N2′×N2′ ∪ {((x1, y2), `) | L2
e (y1, y2) = `, (x1, y1) ∈ t1 ∩ t2}

replace: Let t = (N,E,Ln, Le) and tj = (N j , Ej , Ljn, L
j
e), j = 1, 2, be trees such that t1 is

a subtree of t with root(t1) 6= root(t) and N2 is disjoint from N . Further, let x be the
parent of root(t1) in t, i.e., (x, root(t1)) ∈ E, with Ln(x, root(t1)) = `. Then the tree
replace(t, t1, t2) resulting from replacing t1 by t2 in t is defined as (N ′, E′, L′n, L′e), where
(i) N ′ = N \N1 ∪N2,
(ii) E′ = E ∩ (N ′ ×N ′) ∪ E2 ∪ {(x, root(t2))},
(iii) L′n = Ln \ L1

n ∪ L2
n, and

(iv) L′e = Le|E′ ∪ L2
e ∪ {((x, root(t2)), `)}.

array: Let {t1, . . . , tn}, n ≥ 0, be a forest and p a path. The operator array({t1, . . . , tn}, p)
creates the tree encoding the array of the values of the path p in the trees t1, . . . , tn. Let
tpj = subtree(tj , p) with (N j , Ej , Ljn, L

j
e) where all N j are mutually disjoint, tj1 6= tj2 for

j1 6= j2, and rj = root(tpj), where 1 ≤ j ≤ m ≤ n (without loss of generality, we may
assume that t1, . . . , tn are ordered accordingly). Then, array({t1, . . . , tn}, p) is the tree
(N,E,Ln, Le) where
(i) N =

(⋃n
j=1 N

j
)
∪ {v0},

(ii) E =
(⋃n

j=1 E
j
)
∪ {(v0, r1), . . . , (v0, rn)},

(iii) Ln =
(⋃n

j=1 L
j
n
)
∪ {(v0, ‘[]’)}, and

(iv) Le =
(⋃n

j=1 L
j
e

)
∪ {((v0, r1), 0), . . . , ((v0, rn), n− 1)}.

We also define subtree(t, p) for paths p such that |[[p]]t| > 1. In this case it returns
the tree encoding the array of all subtrees hanging from p. Formally, subtree(t, p) =
array({t1, . . . , tn}, ε), where {r1, . . . , rn} = [[p]]t, Nj the set of nodes reachable from rj
via E, and tj = subtree(t, rj , Nj). We observe that the definition of the array operator is
recursive as it uses the generalized subtree operator.

ICDT 2018

	Introduction
	Preliminaries
	JSON Documents
	The MQuery Language
	Expressivity of MQuery
	Nested Relational View of MongoDB
	From NRA to MQuery
	From MQuery to NRA

	Complexity of MQuery
	Conclusions and Future Work
	Examples and Syntax of the MongoDB Aggregation Framework
	Match
	Unwind
	Project
	Group
	Lookup

	Details on the Semantics of tree operations in MQuery

